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Abstract: This work focuses on the performance and validation of compressible turbulence models
for the pressure-strain correlation. Considering the Launder Reece and Rodi (LRR) incompressible
model for the pressure-strain correlation, Adumitroaie et al., Huang et al., and Marzougui et al., used
different modeling approaches to develop turbulence models, taking into account compressibility
effects for this term. Two numerical coefficients are dependent on the turbulent Mach number, and
all of the remaining coefficients conserve the same values as in the original LRR model. The models
do not correctly predict the compressible turbulence at a high-speed shear flow. So, the revision
of these models is the major aim of this study. In the present work, the compressible model for
the pressure-strain correlation developed by Khlifi−Lili, involving the turbulent Mach number, the
gradient, and the convective Mach numbers, is used to modify the linear mean shear strain and
the slow terms of the previous models. The models are tested in two compressible turbulent flows:
homogeneous shear flow and the newly developed plane mixing layers. The predicted results of the
proposed modifications of the Adumitroaie et al., Huang et al., and Marzougui et al., models and of
its universal versions are compared with direct numerical simulation (DNS) and experiment data.
The results show that the important parameters of compressibility in homogeneous shear flow and
in the mixing layers are well predicted by the proposal models.

Keywords: turbulence; compressible; model; pressure-strain; shear flow; mixing layers

1. Introduction

Compressible turbulence modelling is an essential element for many industrial prob-
lems. Abetter understanding of the compressibility effects is highly relevant in the design
of aerospace, supersonic, and hypersonic flights; combustion field; and other engineering
problems. Firstly, attention is paid to study the compressibility effects on homogeneous
shear flow(the mean velocity is (Sx2, 0, 0), S = cte), which is a useful problem because this
flow summarizes some of the important compressibility properties in a simplified setting.
In addition, this flow has excessively been used in calibration and evaluating turbulence
models. In this context, the DNS results of Blaisdell et al. [1] and Sarkar et al. [2] show
that there are significant turbulence changes when the compressibility increases as the
turbulent kinetic energy growth rate decrease with the increasing turbulent Mach number,

Mt =
√

2K/a, a =
√

γRT̃. Both studies show that the dilatational terms, πd and εc, on
the R.H.S of the turbulent kinetic energy equation were found to be much smaller com-
pared with the control compressibility effects. Sarkar [3], Simone et al. [4], and Hamba [5]
developed DNS results and reached a similar conclusion concerning the role of the dilata-
tional terms. It has been found in their DNS results that the structural compressibility
effects affect the pressure field and then the pressure-strain, which is recognized as the
main factor responsible for the strong changes in the magnitude of the Reynolds stress
anisotropies, and thereafter the reduced trend of the growth rate of the turbulent kinetic
energy when the compressibility increases. Similar conclusions are confirmed by the DNS
results of Vreman et al. [6]; the experimental data of Goebel et al. [7] and Samimy et al. [8];
and, more recently, the DNS data of Pantano et al. [9] and Foysi et al. [10], in which it
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is reported that the compressibility effects on the pressure-strain are the main cause of
the changes in the planar compressible mixing layers. Thus, we argue that the pressure-
strain correlation is one of the mean terms contributing to the reduced growth rate and
the changes of the Reynolds stress arising from the compressibility effects. Modeling the
turbulent pressure-strain correlation occurs mainly at a high speed. Three independent
compressible pressure-strain models, by Adumitroaie et al. [11], Huang et al. [12], and
Marzougui et al. [13], are considered in this study. These models are derived by considering
different variable density extensions of the Launder et al. LRR model [14], which account
for the compressibility effects by using the turbulent Mach number.It has been shown
that these models may be able to reproduce low and moderate compressibility effects.
However, when the compressibility effects are more significant, the models do not correctly
predict the decrease in the spreading rate of the mixing layers, as it is observed in [7–10],
nor the reduction in the growth rate of turbulent kinetic energy [3–5]. The deficiencies
of this closure are probably because LRR-compressibility correction models seem to be
insufficient to induce important variation in calculations in accordance with the anisotropy
turbulence strong changes when the compressibility is higher. Thus, one can see that
in the models [11–13], the two coefficients that affect the linear term in relation to the
Reynolds stress anisotropy and the mean stain are modified, which then become a function
of the turbulent Mach number. All of the other remaining coefficients that affect the mean
shear and the return to isotropy terms are conserved as in the LRR model [14], without
any modification. However, modification of these models taking into account structural
compressibility effects is needed for the pressure-strain correlation coefficient models. The
present work focuses on this major issue. For this, more attention is paid to the results and
the analysis of the DNS [3,4], in which some important compressibility discrepancies for
homogeneous turbulent shear flows can be sound. It has been argued that the gradient

Mach number, Mg = Sl/a(S =
√

Ũi, jŨi, j, where S and l are the mean shear constant and
integral length scale, respectively),is an appropriate parameter in addition to the turbulent
Mach number for studying the structural compressibility effects and must be added to Mt
in the compressible modelling concept. Similar recommendations have been suggested
in different experimental [7,8] and DNS [9] data, which identify the convective Mach
number, Mc = (U1 −U2)/(a1 + a2), where U1, a1 and U2, a2 denoting the velocity and
the speed sound in the high speed stream and in the low speed stream, respectively, as an
appropriate parameter in order to study the compressibility effects on the planar mixing
layer as in [7,8,15].

In the present study, a revision ofthe models by Adumitroaie et al. [11], Huang et al. [12],
and Marzougui et al. [13] for pressure-strain is considered, making the model coefficients
as a function of Mt, Mg, and Mc. The proposed models are tested in different compressible
turbulent homogeneous shear flow and compressible mixing layers cases.

2. Basic Equations

In general, compressible turbulent flow is described by continuity, Navier–Stokes,
energy, and state equations. It is well known that the basic equations of the mean quantities
used in describing turbulence closure schemes are essentially those using the Favre average.
These equations are formally similar to those governed by incompressible turbulent flows.
Obviously, this technique gives reason to the extension of the incompressible turbulent
models to study compressible turbulent flows. This is one of the essential advantages pro-
vided by the density weighting technique for modeling compressible turbulence. For this
study, the Favre averaged continuity, momentum, and specific internal energy equations
are respectively written as follows [11,16]:

∂

∂t
ρ +

∂

∂xi
(ρŨi) = 0, (1)

∂

∂t
(ρŨi) +

∂

∂xi
(ρŨi Ũj) =

∂

∂xj
(τ̃ij + τ′′ ij −

∂

∂xj
ρu′′ iu′′ j − pδij), (2)



Fluids 2022, 7, 34 3 of 20

∂

∂t
ρcvT̃ +

∂

∂xj
ρcvT̃Ũj = −φe + πd −

∂

∂xj
(cvρu′′ jT′′ ) . (3)

where φe = p ∂
∂xi

(Ũi + u′′ i ) + ∂
∂xi

(κ ∂
∂xi

T) + τijui,j , τ̃ij = 2µS̃ij − 2
3 µŨk,kδij

3. Turbulence Models

The turbulence models used in this work are closely related to the standard Reynolds
stress model from which the Favre averaged Reynolds stress, ρu′′ iu′′ j/ρ, is described by
the following equations [11,16]:

∂

∂t
(ρRij) +

∂

∂xm
(ρŨmRij) = Prij + Dij + Pij + εij + Vij. (4)

where the symbols Prij, Dij, Pij, εij, and Vij represent the turbulent production, turbulent
diffusion, pressure-strain correlation, turbulent dissipation, and the mass flux
variation, respectively.

Prij = −ρRjmŨi,m − ρRimŨj,m,

Dij = −(ρu′′ iu′′ ju′′m + p′u′′ jδim + p′u′′ iδjm − τ′′ imu′′ j − τ′′ jmu′′ i),m,

Pij = p′(u′′ i,j + u′′ j,i) = P∗ij + 2/3p′u′′ k,kδij,

εij = τ′′ imu′′ j,m − τ′′ jmu′′ i,m ,

Vij = −p,ju′′ i +−p,iu′′ j + τ̃im,mu′′ j + τ̃jm,mu′′ i .

The turbulent dissipation in the compressible turbulence was proposed in [2,17],
as follows:

ε = εs + εc. (5)

where, for homogeneous shear flow turbulence, ρεs = µω′ iω′ i (ω′ i is the fluctuating vortic-

ity) and εc = 4/3µd′2 are the incompressible and dilatational (or compressible) parts of the
turbulent dissipation rate, respectively. The authors argued that the incompressible part of
the dissipation can be modeled by using the incompressible equation model [16], namely:

∂

∂t
(ρεs) +

∂

∂xk
(ρεsŨk) = ρ

εs

K
(Cε1Rkm

∂

∂xm
Ũk − Cε2εs)−

∂

∂xk
(Cε3ρ

K
εs

Rkm
∂

∂xm
εs) (6)

4. Compressible Turbulence Model for the Pressure—Strain

Compressible turbulence modeling of the pressure-strain correlation is well known as
an important problem in many interesting engineering applications related to environment,
combustion flows, and hypersonic flights. During the last decade, different experiments
and numerical simulations have been developed to understand the compressibility effects
on pressure-strain. Despite the complexity of these problems, the last few years have
been marked by an abundance of numerical results and a lot of advancement in second
order closure. At first, researchers concentrated on the roles of the dilatational terms:
pressure dilatation and the compressible part of the turbulent dissipation. In this context,
Sarkar [3], Simone et al. [4], Hamba [5], and Blaisdell [18], using their DNS results, showed
that the dilatational terms represent nearly 12% of turbulent kinetic energy production.
They concluded that the notable decrease inthe growth rate of the turbulent kinetic energy
arising from compressibility was due to the inhibited turbulent production and not to the
dilatational terms. In addition, these conclusions were confirmed by Adumitroaie et al. [11],
Huang et al. [12], Goebel et al. [7], Foysi et al. [10], and Pantano et al. [9], who reported
that the dilatational terms did not affect the compressible mixing layers. On the other
hand, based on their research, they insisted that compressibility has a significant effect on
the pressure-strain correlation via the pressure field. Consequently, the pressure-strain
correlation requires a topic motivation in the second order model, which based on the
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averaged Navier−Stokes (RANS) equations. Sarkar [3] performed two series of DNS, cases
A1 to A4, for varying the initial gradient Mach number Mg0 at a constant initial turbulent
Mach number, Mt0 = 0.4, and cases B1 to B3 for constant Mg0, (Mg0 = 0.22) with varying
Mt0. The reason behind the variety of DNS cases is to intercept the source changes in the
turbulence structure at different compressibility levels, which are necessary for accurate
modeling. The primary remarks coming from these DNS concern the behavior of the
turbulent Mach number and the gradient Mach number in relation to the strong changes
of the turbulent anisotropy. One can see that when the initial gradient Mach number
is low, after an initial slight increase with the dimensionless time, St(St ≤ 5), and Mg
shows a trend to become asymptotically constant, contrary to Mt, which grows constantly
with St. In the case of A4, where it increases very highly, similar results are found for
DNS [4]. Obviously, this gives a reason for several researchers, such as Huang et al. [12],
Hamba [5], and Park et al. [19], to distinguish the DNS results [3] into three levels of
compressibility: low, moderate, and high compressibility. In addition, the DNS results
show that the behavior of Mg seems to be similar to the turbulence anisotropy, as it can
be clearly seen for the shear stress anisotropy component b12. Consequently, the authors
concluded that Mg is an appropriate parameter to measure the strength of the structural
compressibility, and it should be added to Mt in order to study the homogeneous highly
sheared effects on the structural compressibility. So, a major challenge is to develop a model
for the pressure-strain that is able to correctly capture the different compressibility levels.
Thus, some compressible models have been derived for the pressure-strain correlation,
most of which are derived from a simple extension of the incompressible LRR model [14],
which reads as below:

P∗ij = −C1ρεsbij + C2ρK (S̃ij − 1
3 S̃llδij) + C3ρK[bikS̃jk + bjkS̃ik − 2

3 bml S̃mlδij]

+C4ρK[bikΩ̃jk + bjkΩ̃ik]
(7)

S̃ij = 0.5(Ũi,j + Ũj,i), Ω̃ij = 0.5(Ũi,j − Ũj,i) and bij = Rij/2K− δij/3.
The coefficients models are: C1 = 3, C2 = 0.8, C3 = 1.75 and C4 = 1.31.
In this study, three compressible models for the pressure-strain correlation are con-

sidered. The models were developed by Adumitroaie et al. [11], Huang et al. [12], and
Marzougui et al. [13]. The authors used different modeling approaches to modify the LRR
incompressible model of the pressure-strain, making the coefficients Ci (i = 1, 2, 3, and 4) in
Equation (7) a function of the turbulent Mach number, as seen in Table 1.

Table 1. Numerical coefficients of the pressure-strain model.

Model C1 C2 C3 C4

Adumitroaie [11] 3 0.8 1.75 + 0.15Mt 1.3− 0.15Mt
Huang [12] 3.6 0.8 1.2 + 0.25 exp(−0.05/M3

t ) 1.2− 0.25 exp(−0.05/Mt3)
Marzougui [13] 3 (1.0− 0.8M2

t ) 0.8 1.75 (1− 1.4M2
t ) 1.31 (1− 0.5Mt)

Adumitroaie et al. [11] derived a compressible model taking into account the com-
pressibility effects. Their model for the pressure-strain is given by the following:

p∗ij = −C1ρεsbij + ( 4
5 + 2

5 d1)ρK (S̃ij − 1
3 S̃llδij) + 2ρK(1− C3 + 2d2)

[bikS̃jk + bjkS̃ik − 2
3 bml S̃mlδij]− ρK(1− C4 − 2d2)[bikΩ̃jk+

bjkΩ̃ik − 4
3 d2S̃kkbij]

(8)

The compressible coefficients d1 and d2 are determined from some compressible
closures for the pressure-dilatation correlation. Here, we use the model of Sarkar et al. [2]
to determine the coefficients d2 = 0.15Mt and d1 = 0.

Huang et al. [12] assumed that the incompressible modeling approach of the pressure-
strain can be used to develop turbulent models taking into account compressibility effects.
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The authors used a damping function to modify the LRR model for the pressure-strain
as follows:

P∗ij = −C1ρεsbij + C2ρK (S̃ij − 1
3 S̃llδij) + C3ρK[bikS̃jk + bjkS̃ik − 2

3 bml S̃mlδij]

+C4ρK[bikΩ̃jk + bjkΩ̃ik]
(9)

C1 = 3.6, C2 = 0.8, C3 = 1.2+0.25 exp(−0.05/M3
t ) and C4 = 1.2−0.25 exp(−0.05/M3

t ).
Marzougui et al. [13] used the concept of the turbulent kinetic energy growth rate to

introduce a compressibility correction on the LRR model coefficients [14], which became a
polynomial functions of the turbulent Mach number.

P∗ij = −C1ρεsbij + C2ρK (S̃ij − 1
3 S̃llδij) + C3ρK[bikS̃jk + bjkS̃ik − 2

3 bml S̃mlδij]

+C4ρK[bikΩ̃jk + bjkΩ̃ik]
(10)

C1 = 3 (1.0− 0.8M2
t ), C2 = 0.8, C3 = 1.75 (1− 1.4M2

t ) and C4 = 1.31 (1− 0.5Mt).
The application of these models on compressible homogeneous shear flow has shown

predictions that are in acceptable agreement with the DNS of Sarkar [3] for cases A1, A2
and A3, who did not report the case A4. Particularly, in this case, the model [13] predictions
deviated excessively from the DNS results for all of the Reynolds stress anisotropy com-
ponents, and the shear stress anisotropy b12 predictions were opposite to the DNS results.
This can be attributed to the excessive reduction observed in the predicted behavior of the
pressure-strain shear component. On the other hand, the model gave a high pressure-strain
contribution in the normal stress anisotropy.

Proposal Model

The starting point of the proposed compressibility model is from some analyses and de-
velopments concerning the models developed by Adumitroaie et al. [11], Huang et al. [12],
and Marzougui et al. [13]. They adopted different modeling approaches to modify the
coefficients of the LRR model, which became a function of the turbulent Mach number
(see Table 1). However, as can be seen, this modification is solely concerned with the
coefficients C3 and C4, which affect the polynomial linear term of the Reynolds stress
anisotropy and the mean strain rate; the other coefficients, C2, which affects the mean strain
rate, and C1 of the return to isotropy model, are conserved as in the LRR model, without
any compressibility correction. On the other hand, different analyses have been carried
to show the influence of the pressure-strain on the Reynolds stress behavior. Hamba [5]
presented a fine analysis for the compressible homogeneous shear flow case, and confirmed
that the reduction of the transverse component P22 of the pressure-strain correlation princi-
pally caused the reduction of the transverse Reynolds stress R22, which in turn induced
a systematic reduction of the shear Reynolds stress, the streamwise component P11 of
the pressure-strain, and then the growth rate of the turbulent kinetic energy. Thus, the
compressibility correction of the coefficients C3 and C4 seem to be sufficient to capture
compressibility effects. In this context, according to Park et al. [18] and Huang et al. [12], in
addition to the compressibility correction of the coefficients C3 and C4, the coefficient C2
should be corrected with compressible parameters, such as Mt and Mg, or others. One can
see that C2 directly affects the shear component P12 of the pressure-strain, which has an
evident contribution in the transport equation for the Reynolds shear stress, R12 . On the
other hand, the reduction of P12, which works as a sink term in the transport equation for
R12, leads to an increase in the growth rate of the turbulent kinetic energy via the growth
of R12. This is not suitable using model. So, more attention should be paid to the modeling
for P12. Khlifi et al. [20] considered an equation of the dilatation fluctuation to modify the
incompressible C2 and the retour to isotropy C1-coefficients [14], as follows:

C2 = 0.8(1 + 0.45M4
t ) exp(−0.015Mg), (11)
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C1 = 3(10.7M2
t ) (12)

This is the first point on which the present study is based in order to revise the previous
models. For this revision, the Khlifi et al. [20] model was chosen to modify the C1 and C2
coefficients in [11–13]. The reason behind this choice is that model [20] involves Mt and
Mg, as suggested by different studies cited previously, and it is linked to M4

t to distinguish
between low-Mt and high-Mt regimes. Thus, all of the coefficients of models [11–13] are
expressed as a function of the turbulent Mach number and the gradient Mach number.
Considering Equations (11) and (12), the proposal coefficients models are summarized in
Table 2.

Table 2. Numerical coefficients of the pressure-strain model.

Model C1 C2 C3 C4

Adumitroaie modified 3 (1.0− 0.7M2
t ) 0.8 (1 + 0.45M4

t )e
−0.015Mg 1.75 + 0.15Mt 1.3− 0.15Mt

Huang modified 3 (1.0− 0.7M2
t ) 0.8 (1 + 0.45M4

t )e
−0.015Mg 1.2 + 0.25e−0.05Mt 1.2− 0.25e−0.05Mt

Marzougui modified 3 (1.0− 0.7M2
t ) 0.8 (1 + 0.45M4

t )e
−0.015Mg C3 = 1.75 (1− 1.4M2

t ) C4 = 1.31 (1− 0.5Mt)

5. Applications
5.1. Simulation of Compressible Homogeneous Shear Flow

For compressible homogeneous shear flow, the mean velocity gradient is given by
the following:

Ũi,j = Sδi1 δj2 . (13)

For homogeneous shear flow, ρ = cte and T̃ = T̃(t) is related to the Reynolds-average
of the pressure using the state equation for ideal gas:

P = ρRT̃. (14)

The Favre averaged basic second order model equations are as follows:

ρ
d
dt

Rij = Prij + P∗ij −
2
3

ρ(εs + εc)δij +
2
3

p′d′δij, (15)

ρ
d
dt

εs = Cε1ρ
εs

K
Rkm

∂

∂xm
Ũk − Cε2ρ

ε2
s

K
. (16)

Assuming that the mean specific heat is constant, the equivalently temperature equa-
tion for the Reynolds averaged energy may be written in a simplified form [21], namely:

ρCv
d
dt

T̃ = ρ(εs + εc)− πd. (17)

Contraction i = j in Equation (12) leads to an equation for the Favre-averaged turbu-
lent kinetic energy, K = 0.5ρu′′i u′′i /ρ,as follows:

ρ
d
dt

K = P− ρ(εs + εc) + p′d′. (18)

where P = −ρRijŨi,j is the turbulent production.

The transport equation for the turbulent Mach number, Mt =
√

2K/γRT̃, can be
obtained from combining Equations (17) and (18) as follows [21]:

d
dt

Mt =
Mt

2ρK
(1 + 0.5γ(γ− 1)M2

t )(p′d′ − ρε) +
Mt

2K
P. (19)

where γ = cp/cv.
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5.2. Simulation of Compressible Mixing Layers

The flow is governed by the averaged Navier-Stokes equations associated with those
that describe the energy, Reynolds stress, and turbulent dissipation. The simplest resulting
continuity, momentum, and energy equation for stationary mixing layers can be written as
follows [16]:

∂

∂xi
ρŨi = 0, (20)

∂

∂xi
(ρŨi Ũj) = −

∂

∂xj
(ρu′′i u′′j ), (21)

∂

∂xj
(ρCvT̃Ũj) = −

∂

∂xj
(Cvρu′′j T′′ ) + ρ(εs + εc)− p′u′ i,i. (22)

The Reynolds stress is the solution of the follow equation
∂

∂xm
(ρŨmRij) = −(RimŨj,m + RjmŨi,m) +

∂

∂xm
( ρu′′i

′u′′j u′′m) + ϕ∗ij +
2
3

p′u′ i,iδij −
2
3

εδij. (23)

The turbulent solenoidal dissipation rate shall is calculated from the classical model
equation, namely:

∂

∂xk
(ρεsŨk) = ρ

εs

K
(Cε1Rkm

∂

∂xm
Ũk − Cε2εs)−

∂

∂xk
(Cε3ρ

K
εs

Rkm
∂

∂xm
εs). (24)

In the above mentioned transport equations, different terms should be modeled, and
the gradient diffusion hypothesis is used to represent the following:

• The turbulent heat flux [16]:

ρu′′i T′′ = −CT
K
ε

ρu′′i u′′m
∂

∂xm
T̃. (25)

• The diffusion term [16]

ρu′′i u′′j u′′m = −Cs
K
ρε

ρu′′i u′′m
∂

∂xm
ρu′′j u′′m. (26)

6. Results and Discussion

The ability of the models of Adumitroaie et al. [11], Huang et al. [12], and
Marzougui et al. [13] models, as well as their proposal modified forms, called the Ad-
umitroaie modified, Huang modified, and Marzougui modified models, respectively, for
the pressure-strain correlation (see Tables 1 and 2), in order to predict compressible homo-
geneous turbulent shear and planar mixing layer turbulent flows will now be considered.

6.1. Homogeneous Shear Flow

The averaged transport for compressible homogeneous turbulence, given by
Equations (15)–(19), is solved numerically using a fourth-order Runge−Kutta numeri-
cal scheme. Figures presented in this paper show the comparisons between the predictions
obtained by the proposed models, called the Adumitroaie modified, Huang modified, and
Marzougui modified models, and those from their corresponding original models, devel-
oped by Adumitroaie et al. [11], Huang et al. [12], and Marzougui et al. [13], respectively,
and with the DNS results [3]. The reason for considering various models tests is to verify
the proposal modifications validation and its added value in the prediction of the compress-
ibility effects; especially when the proposed corrections are applied to three models build
on different approaches, as shown in the indicated Section 4. In the same context, the DNS
results considered here correspond to the different initial conditions listed in Table 3, from a
low compressibility in case A1, to case A4, for which the compressibility is higher. From all
of the figures, it is clear that both models provide a qualitative performance to reproduce
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the DNS results for all cases. However, one can see the accuracy of the proposal models for
the prediction of the major characteristic parameters for compressible homogeneous shear
flow, which can be expected from the model’s revision.

Table 3. Initial conditions for homogeneous shear flow: DNS [3].

Case Mt0 (εs/SK)0 Mg0 b11 b22 b12

A1 0.4 1.8 0.22 0 0 0
A2 0.4 3.6 0.44 0 0 0
A3 0.4 5.4 0.66 0 0 0
A4 0.4 10.8 1.32 0 0 0
B1 0.13 5.4 0.22 0 0 0
B2 0.2 3.6 0.22 0 0 0
B3 0.4 1.8 0.22 0 0 0

Figure 1 shows the normalized dissipation esk (esk = εs/SK) for cases A1 to A4
from DNS [3]. The results show that the proposal models better predict the trend of
the decrease of εs/SK when Mg0 increases, as compressibility effects cause a significant
reduction in the turbulent production from numerical simulation cases A1 to A4. In
fact,(εs/SK = −2b12(εs/P), according to DNS [3], (εs/P) appeared to be insensitive to
compressibility effects and showed little differences between cases A1 to A4. This implies
that the strong reduction in the shear stress anisotropy, b12, is responsible for the lowered
gradient Mach number increases.

Figure 2 presents the behavior of the turbulent Mach number for cases A1 to A4. It
is clearly seen that for both models, the original models and their modified versions are
similar in their prediction of the correct trend of, an increase with creasing initial Mg0
for little dimensionless time (St ≤ 5). For (St ≥ 10), the difference between both models
predictions are smaller in cases A1 and A2. On the other hand, in case A3 and particularly
in case A4, the models become different; this can be seen in Figure 2d, which corresponds
to case A4. One can see that the modified models predict the asymptotic trend of Mt better
than the original models.

Figures 3–5 show the non-dimensional time St variation of the Reynolds stress
anisotropies of b11, b12, and b22, respectively, for cases A1 to A4. For case A1, which
corresponds to low compressibility, the results are shown in Figures 3a, 4a and 5a, with
both models being nearly similar, and the difference between their predictions being smaller.
The models provide an acceptable performance for reproducing the DNS [3] results of
this case. The results for case A2 and A3 are shown in Figures 3b,c, 4b,c and 5b,c. The
Adumitroaie et al. [11] and Huang et al. [12] models appear to be insensitive to the increase
of the streamwise b11 and the transverse b22 of the Reynolds stress anisotropies when
the compressibility increases; the models’ results are in disagreement with the DNS data.
However, these models have an acceptable performance for the prediction of the correct
behavior of the reduced shear stress anisotropy b12. For the Marzougui et al. [13] model,
the results are in good agreement with the DNS data, the model predicts the asymptotic
behaviors of the shear stress anisotropy and the normal components b11 and b22 well.

Figures 3d, 4d and 5d show the result predictions for case A4, which corresponds to
a high compressibility. The DNS data show that there is a strong amplification of energy
arising from the compressibility and then the normal stress components become stronger.
The Adumitroaie et al. [11] and Huang et al. [12] models predicted the same anisotropy
levels as in previous cases; these models were still unable to predict the changes in the
magnitude of the normal Reynolds stress anisotropy when the compressibility was higher.
As can be seen in the previous figures, the models [11,12] appear to be insensitive to the
increase of the streamwise b11 and the transverse b22 Reynolds stress anisotropies when
the compressibility increases. However, these models are in qualitative agreement with the
DNS data for the shear stress anisotropy b12.
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Figure 1. Time evolution of the normalized dissipation, (esk = εs/SK in the following cases: (a) A1;
(b) A2; (c) A3; (d) A4.

The Marzougui et al. [13] model predictions deviated from the DNS data for the all of
the Reynolds stress anisotropies components. The authors attributed the deficiency of their
model to the fact that A4 falls within the rapid distortion limited for which the non-linear
effects of the pressure-strain are unimportant, and they recommend an eventual revision of
the model; this is what has been investigated by Khlifi et al. [20]. On the other hand, from
Figures 3–5, one can see the improvements brought about by the proposed modifications
of the existent models [11–13] for the pressure-strain correlation in the prediction of the
changes in the magnitude of the compressible Reynolds stress anisotropies. The modified
models give results for the normal components b11 and b22, which are in reasonable
agreement with the DNS data and predict the asymptotic shear stress anisotropy well for
all cases.

Figures 6–8 present the behavior of the pressure-strain correlation Pij = P∗ij/2SK,
(i, j = 1, 2) for cases A1 to A4 from DNS [3].The results for case A1 are shown in
Figrues 6a, 7a and 8a; all of the models are in qualitative acceptable agreement with the
DNS results. The results for cases A2 to A4 are shown in Figrues 6b–d, 7b–d and 8b–d; the
modified models yielded reasonable agreement with the DNS data, and clearly predicted
the reduced pressure-strain components better than their original versions. This was con-
cluded from the DNS results [3,4], in which it is argued that the pressure fluctuations and
all components of the pressure-strain correlation showed a monotone decrease with the
increasing gradient Mach number.
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Figure 2. Time evolution of the turbulent Mach number, in the following cases: (a) A1; (b) A2; (c) A3;
(d) A4.

Figure 3. Cont.
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Figure 3. Time evolution of the streamwise Reynolds stress anisotropy, in the following cases: (a) 1;
(b) A2; (c) A3; (d) A4.

Figure 4. Time evolution of the shear Reynolds stress anisotropy, b12, in the following cases: (a) A1;
(b) A2; (c) A3; (d) A4.
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Figure 5. Time evolution of the transverse Reynolds stress anisotropy, in the following cases: (a) A1;
(b) A2; (c) A3; (d) A4.

Figure 6. Cont.



Fluids 2022, 7, 34 13 of 20

Figure 6. Time evolution of the pressure-strain component, in the following cases: (a) A1; (b) A2;
(c) A3; (d) A4.

Figure 7. Time evolution of the pressure-strain component, P22 in the following cases: (a) A1; (b) A2;
(c) A3; (d) A4.
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Figure 8. Time evolution of the pressure-strain component in the following cases: (a) A1, (b) A2;
(c) A3; (d) A4.

6.2. Mixing Layers

In this study, thecomputation of two free streams of a fully developed compressible
mixing layer (see Figure 9) is examined. The flows are characterized typically by the pa-
rameters s = ρ2 /ρ1 and r = U2/U1, which are the density and velocity ratios, respectively.
The experiment conditions of Goebel et al. [7] are listed in Table 4.

Figure 9. Turbulent mixing layer.
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Table 4. Experiment of Goebel and Dutton.

Mc r=
U2
U1

s=
ρ2
ρ1

0.2 0.76 0.78
0.46 0 0
0.69 0 0
0.86 0.16 0.6

The basic Equations (20)–(26) on which the second order model for the stationary
compressible mixing layers is based are solved using a finite difference scheme. The grid of
the computational physical domain, which is a rectangular box defined by the set of point
(x, y), has 6666 × 41 points. The initial profiles for εs, ρ and, T̃ which are not available in
the experiment of Goebel et al. [7], are generated as follows:

• The initial profile of the turbulent dissipation is determined from the turbulent viscos-
ity model.

εs = −Cµρ
K2

ρu′′ v′′
∂

∂y
ŨCµ = 0.09, (27)

• The initial profile of the temperature is obtained from the following similarity

Ũ −U2

(U1 −U2)
=

T̃ − T2

(T1 − T2)
, (28)

• The state equation of perfect gas is used to determine the initial profile of the density.

The values of the constant models used in the present simulation are as follows:

Cε1 = 1.4, Cε2 = 1.8, Cµ = 0.09, Cε = 0.25, CT = 0.26.

According to Sarkar [3], homogeneous shear flow is closely related to the mixing
layers, this allows Mg to be connected to Mc. Thus, according to Khlifi et al. [20], the
coefficients Ci of the Adumitroaie et al. [11] model are expressed as a function of the
turbulent Mach number and the convective Mach number, as shown in Table 5.

Table 5. Numerical coefficients of the pressure-strain model.

Model C1 C2 C3 C4

Adumitroaie modified 3(1.0− 2.5M2
t ) 0.8(1 + 4.5M4

t ) exp(−0.00022Mc) 1.75 + 0.15Mt 1.3− 0.15Mt

In this work, the simulation was limited to the Adumitroaie et al. [11] and Adumitroaie
modified (referred to presently) models, as listed in Tables 1 and 5. Figures 10–13 compare
the computed results from the Adumitroaie et al. model and the present models with
the experiments of Goebel et al. [7] for three cases: Mc = 0.2, Mc = 0.69, and Mc = 0.86,
for which the important characteristic parameter of the developed planar mixing layers
is represented in relation to the similarity variable y∗ = (y− yc)/δ, where y is the local
cross stream coordinate and yc is the cross-stream coordinate corresponding to U∗ = 0.5.
The normalized stream mean velocity U∗ = (Ũ −U2)/(U1 −U2), is plotted in Figure 10,
the calculated profiles for both of the two models are in good agreement with the exper-
iment results for a low convective Mach number Mc = 0.2, and the largest convective
Mach number Mc = 0.86, as shown in Figure 10a,b, respectively. The expected effects
of the two Mach numbers Mt and Mc on the changes in pressure-strain correlation are
clearly seen in Figures 11–13, which compare the Reynolds similarity intensity profiles

as follows: the streamwise intensity R11 =
√

ρu′′ 2/ρ(U1 −U2)
2, the transverse intensity
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R22 =
√

ρv′′ 2/ρ(U1−U2)2, and the shear stress R12 = ρu′′ 2v′′ 2/ρ(U1 −U2)
2 obtained

by the present model and by Adumitroaie et al. [11] model with the experiment results
of Goebel et al. [7]. The two models have nearly similar behaviors for small values of
convective Mach numbers (Mc = 0.2), as observed in Figures 11a,b, 12a,b and 13a,b. When
the compressibility is more significant, Mc = 0.86, Figures 11c, 12c and 13c show that
the present model results are in reasonable agreement with the experiment data com-
pared with those obtained by the Adumitroaie et al. [11]. The compressibility effects via
the Mc-influence on the mixing layers anisotropy can be more clearly seen in Figure 14,
which compares the variation of the maximum values of the Reynolds intensities:(R11)max,
(R22)max, and (R12)max versus the convective Mach number with different experiment
and DNS data [7,9,10]. We found that the present model better predicts the decrease in the
maximum values of all Reynolds stress intensities with increasing the initial value of Mc.
However, the influence of Mc on the variation of (R11)max is not significant (Figure 14a)
as can be seen for the other components in Figure 14b,c. This behavior can be found in the
analysis of [19], who concluded that the reduction of the pressure-strain directly caused a
reduction of R22. However, the reduction of R11 involved turbulent production and the
pressure-strain terms.

Figure 10. Similarity profiles of the mean velocity, in the following cases: (a,b).

Figure 11. Similarity profiles of R11 in the cases: (a) Mc = 0.2, (b) Mc = 0.69, and (c) Mc = 0.86.
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Figure 12. Similarity profiles of in the cases: (a–c).

Figure 13. Similarity profiles of R12 in the cases: (a) Mc = 0.2, (b) Mc = 0.69, and (c) Mc = 0.86.

Figure 14. The influence of the convective Mach number on the maximum Reynolds stress:
(a) (R11)max, (b) (R22)max and, (c) (R12)max.

Figure 15 compares the centerline values of the Reynolds stress anisotropy compo-
nents: (b11)max, (b22)max and (b12)max versus convective Mach number computed by
the present model and those given by Adumitroaie et al. model with the DNS datas of
Freund et al. [22]. It is found that the present model predicts the decreasing trend of shear
stress anisotropy b12 and the increasing trend of all the normal stress anisotropies b11 and
b22 with increasing convective Mach number well. The Adumitroaie et al. model shows
that such trends occurred, but incorrectely followed the DNS data; thus, the peaks of bij
were not relatively affected by Mc. This gives reason to imply Mc in addition to Mt for
the eventual modeling of the pressure-strain correlation, which controls the anisotropy
changes arising from the compressibility effects. Regarding Figure 14a, one can remark
that both models give nearly similar peaks for R11, which decrease less than the other
components R22 and R12 when increasing Mc. This leads to a monotone increase of all the
normal stress anisotropies with Mc, as can be seen in Figure 15a,c; this behavior was found
by the DNS of Vreman et al. [6] and Freund et al. [22]. Obviously, this act comes from
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compressibility via a reduction in the magnitude of all components of the pressure-strain
correlation with Mc.

Figure 15. The influence of the convective Mach number on the maximum Reynolds stress
anisotropies: (a) (b11)max, (b) (b22)max, and (c) (b12)max.

From the previous results, one can conclude that the pressure-strain closure involving
the parameter Mg appears to be suited to study compressibility effects on highly sheared
homogeneous turbulence. In addition, the convective Mach number Mc seems to be an
appropriate parameter to study such effects on mixing layers. There are differences in
the accuracy between the models in the prediction compressibility effects on homoge-
neous shear flow and mixing layers. These differences can be attributed to the modeling
approaches on which the previous models are built.

7. Conclusions

In this study, the Favre Reynolds stress model is used for the prediction compress-
ibility effects in two important turbulent flow cases—homogeneous shear flow and the
spatially planar mixing layers. Evaluation of the density extension turbulence models of
Adumitroaie et al. [11], Huang et al. [12], and Marzougui et al. [13] for the pressure-strain
correlation were examined. A revision of these models by considering the Khlifi et al. [20]
model, lead to expressing all of the coefficients models [11–13] in function of the gradient
and convective Mach numbers, in addition to the turbulent Mach number. The applica-
tion of the proposed models referred to as Adumitroaie modified, Huang modified, and
Marzougui modified models, to predict the previous flows shows satisfactory agreement
with the available DNS data and the experiment results. The proposed models appear
to be able to accurately predict the structural compressibility effects on homogeneous
shear flow as a significant decrease in the magnitude of the Reynolds shear stress and a
reduction in the pressure-strain components with increasing initial values of the gradient
Mach number. In addition, the proposed model, referred to as the Adumitroaie modified
model, successfully predicted the changes in the similarity of the Reynolds shear stress
arising from the compressibility effects on the mixing layers. From the previous results, it is
clear that the proposed models’ predictions are better than those obtained by their original
models. Therefore, as a priority, the blending between different compressible models is
seen as an important issue in the modeling of the pressure-strain correlation.
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Nomenclature

p Pressure
T Temperature
t Time
a Speed of sound
bij Reynolds stress anisotropy
cp Specific heat at constant pressure
cv Specific heat at constant volume
R Ideal gas constant
Rij Reynolds stress
Mt Turbulent mach number
Mg Gradient mach number
Mc Convective mach number
K Turbulent kinetic energy
ui Velocity in the direction xi
d’ Fluctuation of the dilatation
(.),i Xi-derivative
Greek symbols
γ Specific heat ratio
ε Turbulent dissipation
εs Solenoidal dissipation
εc Compressible dissipation
ρ Density
µ Viscosity coefficient
κ Thermal conductivity coefficient
πd = p′d′ Pressure−dilatation correlation
P∗ij Deviator of the pressure-strain tensor
δi j Kronecker delta
τij Viscous stress tensor
Statistic symbols
(.)” Favre fluctuation
(.)′ Reynolds fluctuation
( ) Favre averaged
( .) Reynolds averaged
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