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Abstract: A flight device for insect-inspired flapping wing nano air vehicles (FWNAVs), which
consists of the micro wings, the actuator, and the transmission, can use the fluid-structure interaction
(FSI) to create the characteristic motions of the flapping wings. This design will be essential for
further miniaturization of FWNAVs, since it will reduce the mechanical and electrical complexities of
the flight device. Computational approaches will be necessary for this biomimetic concept because
of the complexity of the FSI. Hence, in this study, a computational approach for the FSI design
of insect-inspired micro flapping wings is proposed. This approach consists of a direct numerical
modeling of the strongly coupled FSI, the dynamic similarity framework, and the design window
(DW) search. The present numerical examples demonstrated that the dynamic similarity framework
works well to make different two FSI systems with the strong coupling dynamically similar to each
other, and this framework works as the guideline for the systematic investigation of the effect of
characteristic parameters on the FSI system. Finally, an insect-inspired micro flapping wing with the
2.5-dimensional structure was designed using the proposed approach such that it can create the lift
sufficient to support the weight of small insects. The existing area of satisfactory design solutions
or the DW increases the fabricability of this wing using micromachining techniques based on the
photolithography in the micro-electro-mechanical systems (MEMS) technology. Hence, the proposed
approach will contribute to the further miniaturization of FWNAVs.

Keywords: insect flapping flight; fluid-structure interaction design; flapping wing nano air vehicle
(FWNAV); computational biomimetics; finite element method

1. Introduction

The advantages of flight over other forms of locomotion have resulted in the dispersal
of insects on Earth [1]. They can perform extreme aerial maneuvers with robustness using
flapping wings [2]. Their flight abilities have become increasingly refined through a long
period of natural selection [3]. Hence, emulating nature’s time-tested forms, functions,
and strategies in flying insects with understanding their underlying mechanisms leads to
finding sustainable solutions [4,5], which are engineering alternatives to nature’s solutions.
This biomimetic concept is multidisciplinary. Hence, computational approaches for this
biomimetic concept will be essential because of their interdisciplinary feature, leading to
the computational biomimetics.

This study focuses on insect-inspired flapping wing nano air vehicles (FWNAVs)
whose sizes range from approximately 1 to 10 cm [6], on which various research groups are
working as one of most popular topics in the biomimetic research area. One engineering
concern in the development of FWNAVs is the reduction of their size [7,8], potentially
down to the size scale of very small insects, of which wingspan length is less than 1 mm as
the result of the evolution [9].

Similar to the structural design of micro-electro-mechanical systems [10], the concep-
tual, basic, and detailed design processes of FWNAVs will be indistinguishable from each
other, because of the novelty of the biomimetic concept, and the formulation as a single
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design problem is difficult in each design process. Furthermore, the feasibility of the design
solution is strongly constrained by the manufacturability, which is hardly formulated as
the design problem.

The flight ability of the insects seems to be determined by the characteristic motions
of their flapping wings such as the pitching, the cambering, and the wing’s tip path [11].
In particular, the pitching motion will be the kinematical basis of the aerodynamics of
the insect flapping flight [12]. The insect wings and their base are flexible [13–19]. Hence,
their flapping motion with the large stroke angle [20] causes their deformation due to the
aerodynamic force from the surrounding air, and their deformation causes the change of the
surrounding air flow, which results in the change of the aerodynamic force. Recent advances
on this topic are given mainly by the computational approaches using the computational
fluid dynamics [21–25] and the numerical fluid-structure interaction (FSI) analysis [26–33].
Some studies used the experimental approaches [22,29,34]. Some of them have shown that
the wing’s characteristic motions can be caused by the strong coupling between the wing
and the surrounding air [26,28–30,32,34].

In the FSI design [35], a flight device for FWNAVs, which consists of the micro wings,
the actuator, and the transmission [6], actively uses the FSI to create the characteristic
wing’s motions. It can reduce the mechanical and electrical complexities of this device [36].
Hence, it is essential for further miniaturization of FWNAVs. Computational approaches
are necessary for this biomimetic concept because of the complexity of the FSI. However,
there are few studies focusing on this topic.

Hence, in this study, a computational approach for the FSI design of insect-inspired
micro flapping wings is proposed. This approach consists of a direct numerical modeling
of the strongly coupled FSI, the dynamic similarity framework, and the design window
(DW) search. Here, the term “direct” means that, prior to the finite element discretization,
the governing equations are not transformed into a different form [37].

The key of the FSI design is the accurate prediction for three-dimensional (3-D) strong
coupling of a thin flexible flapping wing and the surrounding air flow. Here, a projection
method using the algebraic splitting [38,39] is used to solve this problem directly.

The dynamic similarity law for the FSI [26,29,30,32,34] is used as the framework for the
systematic treatment of FSI complexities. The validity of this framework is demonstrated
in the first numerical example. As shown in the second numerical example, the simulation
based on the direct numerical modeling for the strong coupling of the lumped flexibility
model [26,32] and the surrounding fluid is guided by this framework, and the underlying
mechanism is effectively investigated, which is the basis of the FSI design.

DWs are the existing areas of satisfactory solutions in a design parameter space. They
can adapt to changes in the design problem. Hence, the DW search is effective for the
above-mentioned issues in the design of FWNAVs.

Finally, in the last numerical example, an insect-inspired micro flapping wing with
the 2.5-dimensional (2.5-D) structure is designed using the proposed approach. The 2.5-D
structure is multi-layered, and each layer is given by laminating the membrane or the thin
plate on the flat layer already developed and etching it to form the in-plane shape. This
structure can be fabricated using the micromachining based on the photolithography in the
micro-electro-mechanical systems (MEMS) technology. However, there exists the strong
restriction on the shape in the out-of-plane direction. The DW is determined such that each
solution in the DW can create the lift sufficient to support the weight of small insects. This
wing can be fabricated using the micromachining based on the photolithography [7,8,40,41].
Hence, the proposed approach will contribute to the further miniaturization of FWNAVs.

2. Fluid-Structure Interaction Design Approach
2.1. Model Wing for the Fluid–Structure Interaction Design

In the FSI design [35], a flight device for FWNAVs consisting of the micro flapping
wings, the actuator, and the transmission [6] actively uses the FSI to create the characteristic



Fluids 2022, 7, 26 3 of 20

motions of the wings. This concept will reduce the mechanical and electrical complexities
of this device [36], which leads to further miniaturization of FWNAVs.

The wings of actual insects consist of multiple and multilayered structures spanning
a wide range of length scale [13,42–45]. The wing’s veins and membranes keep enough
strength against loads during the flight [13], while these structures allow their characteristic
deformations such as the twisting and the cambering [11,46], which improve the aerody-
namic performance [22–25,27,31]. Recent advances on this topic such as References [18,19]
will improve the understanding for the material mechanics of the insects’ wings.

The wing base consists of steering muscles and tendons with both flexible and rigid
parts that work together as a transmission to redirect power from the main flight muscles
to the wing’s flapping while to allow the fine-tuned wing’s control [47–50].

It seems that there exist two approaches for modeling these structures [51]. One is the
reduced-order modeling [26,27,29,32,52–54], and the other is the realistic modeling [55–57].
In References [26,29,32], the lumped flexibility model is used, where the spring encapsu-
lates the detailed structures as the macroscopic constitutive relationship that describes
their elastic mechanism. In Reference [29], the continuous constitutive relationship like
anisotropic materials is used. In References [52–54], the structural elements such as beam,
membrane, and shell are used. The reduced-order modeling can be incorporated in the
computational FSI analysis using the current computer resources [26,27,29,32]. Hence, in
this study, the lumped flexibility model is used.

The basic model wing for the FSI design is shown in Figure 1, where the spring
for the torsion corresponds to the torsional flexibility that generates the wing’s pitching
motion [26,29], the spring for the elevation corresponds to the elevation flexibility that
generates the wing’s tip path [32], and the spring for the flapping corresponds to the
transmission for the wing’s flapping. Furthermore, the veins are represented by three
beams according to their functions to form the camber [52–54]. This model wing emulates
the characteristic wing’s motions with their elastic mechanisms and leads to the engineering
alternatives to the nature’s solution.
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Figure 1. Modeling of the insect flapping wing: (a) Schematic view of the insect flapping wing;
(b) The basic model wing for the FSI design with the springs of flapping, torsion, and elevation,
which correspond to the axes of flapping, torsion, and elevation, respectively. Φ is the stroke angle,
ϕ is the stroke angular displacement, θ is the pitching angular displacement, and χ is the elevation
angular displacement.

2.2. Fluid–Structure Interaction Analysis

The key of the FSI design is the accurate prediction for the 3-D strong coupling of the
thin flexible flapping wing and the surrounding air flow. Here, a projection method using
the algebraic splitting [38,39] solves this problem directly. This method was validated using
the benchmarks in References [38,39]. The computer program used in this study was also



Fluids 2022, 7, 26 4 of 20

validated in Reference [29] using the actual experiment of the dynamically scaled model,
which is similar to the FSI problem in this study.

2.2.1. Governing Equations for the FSI

The equilibrium equation for the elastic wing can be expressed as

ρs dvs
i

dt
=

∂σs
ij

∂xj
(1)

where d/dt in the left-hand side is the Lagrangian time derivative, the superscript s
indicates a quantity corresponding to the structure, ρs is the mass density of the structure,
vs

i is the i-th component of the structural velocity vector, and σs
ij is the ij-th component of

the Cauchy stress tensor of the structure. Note that i equals 1, 2, or 3, and corresponds to
the x, y, or z direction, respectively, in the Cartesian coordinate system.

The incompressible Navier–Stokes (NS) equations for the fluid can be expressed as

ρf ∂vf
i

∂t
+ ρf(vf

j − vm
j)

∂vf
i

∂xj
=

∂σf
ij

∂xj
(2)

∂vf
i

∂xi
= 0 (3)

where the arbitrary Lagrangian–Eulerian (ALE) method is used, ∂/∂t in the left-hand side
is the ALE time derivative, the superscript f indicates a quantity corresponding to the fluid,
ρf is the mass density of the fluid, vf

i is the i-th component of the fluid velocity vector,
vm

i is the i-th component of the velocity vector of the ALE coordinate, and σf
ij is the ij-th

component of the Cauchy stress tensor of the fluid.
The interface conditions describing the interaction between the wing and the sur-

rounding fluid can be expressed as

σf
ijnf

j + σs
ijns

j = 0 (4)

vf
i = vs

i (5)

where nf
i and ns

i are the i-th components of the outward unit normal vectors on the
fluid–structure interface corresponding to the fluid and the structure, respectively.

2.2.2. Monolithic Equation System for the FSI

Applying finite element discretization to the total Lagrangian formulation of Equation (1),
the nonlinear equilibrium equation system is obtained in matrix form. Similarly, applying
finite element discretization to Equations (2) and (3), the nonlinear equation system is
obtained in matrix form. Applying the fluid–structure interface conditions (4) and (5) to
the spatially discretized governing equations, the monolithic equilibrium equations and
the incompressibility constraint for the fluid can be obtained as follows:

LMa + Cv + N + q(u)−Gp = g (6)

τGv = 0 (7)

where M is the mass matrix, C is the diffusive matrix, G is the divergence operator matrix,
N is the convective term vector, q is the elastic internal force vector, g is the external force
vector, a is the acceleration vector, v is the velocity vector, u is the displacement vector, p is
the pressure vector, the subscript L indicates the lumping of the matrix, and the subscript τ
indicates the transpose of the matrix.

The monolithic Equations (6) and (7) are linearized using the increments of the state
variables as follows:

M∗∆a−G∆p = ∆g (8)
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γ∆tτG∆a + Gε∆p = ∆h (9)

where the pressure term and the elastic interior force term are evaluated implicitly, M* is
the generalized mass matrix, ∆t denotes the time increment, ∆g and ∆h are the residual
vectors of the equilibrium Equation (6) and the incompressibility constraint (7), respectively,
Gε comes from the pressure stabilization term of the PSPG method. The relations between
the increments of the state variables are given as ∆u = β∆t2∆a and ∆v = γ∆t∆a using the
Newmark’s β method.

The fluid convection and diffusion terms are evaluated explicitly to reduce the com-
putational cost. Therefore, M* is given as LM + β∆t2K, while the Courant’s and diffusion
number conditions are imposed on the time increment ∆t for the stability of the time
integration. The predictor–multicorrector algorithm (PMA) is used for the time integration.

2.2.3. Projection Method Using the Algebraic Splitting

The monolithic method solves the linearized monolithic Equations (8) and (9) simul-
taneously. Hence, this method can satisfy the interface conditions (4) and (5) to avoid
spurious numerical power on the fluid–structure interface, which yields numerical in-
stability. However, the formulation might lead to ill-conditioned coefficient matrices. In
this study, the projection method using the algebraic splitting [38,39] is used to avoid this
difficulty. This method is briefly described as follows:

The state variables are predicted as the intermediate state variables from the equilib-
rium Equation (6) for the known pressure, which can be linearized as

M∗∆a∗ = ∆g (10)

where a* is the intermediate acceleration or the acceleration predictor, and ∆ is the increment
from the known variable. Subtracting both sides of Equation (10) from those of Equation (8)
gives, after suitable rearrangement,

γ∆tG∆p = M∗(v− v∗) (11)

where v* is the intermediate velocity or the velocity predictor. The relations between the
increments of the intermediate state variables are given as ∆u* = β∆t2∆a* and ∆v* = γ∆t∆a*
using the Newmark’s β method.

Left multiplying both sides of Equation (11) by τGLM−1, the following equation is
obtained:

γ∆tτGLM−1G∆p = τGv− τGv∗ + τGLM−1 ¯
M
∗
(v− v∗) (12)

where
¯
M
∗

is defined as M∗ − LM. If the following pressure Poisson equation (PPE)

γ∆tτGLM−1G∆p = −τGv∗ (13)

is solved, then Equation (12) is reduced as

τGv + τGLM−1 ¯
M
∗
(v− v∗) = 0 (14)

If the linear convergence of the state variables is assumed, v* agrees with v asymptoti-
cally in the nonlinear iterations. Therefore, the second term of Equation (14) will vanish
asymptotically, and the incompressibility constraint for the unknown fluid velocity will
be satisfied.

It follows from the above formulation that the monolithic equation system is split into
the two equilibrium Equations (8) and (10), and the PPE (13). In the nonlinear iterations,
the linearized equilibrium equation for the previous pressure (10) is solved to derive the
intermediate velocity, the PPE (13) is solved to determine the current pressure such that
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the current velocity field satisfies the incompressibility constraint (7), and the linearized
equilibrium equation for the current pressure (8) is solved to derive the current velocity.

2.2.4. Parallel Computation

The following matrix–vector product is considered, since it is most expensive compu-
tation in the iterative solvers for Equations (8), (10) and (13):

τGLM−1G∆p (15)

Assuming that the number of degrees of freedoms (DOFs) of the shell structure is far
smaller than that of the fluid, the following parallel solution procedure is used based on
the mesh decomposition. The mesh is decomposed as shown in Figure 2. The symbols
ΩS and ΩF denote the structural and fluid meshes, respectively, and ΩFi (i = 1, 2, . . . , Nd)
denotes i-th submesh of ΩF. Note that ΩS is set inside ΩF1 as shown in Figure 2 under
the above-mentioned assumption. In this case, the matrix–vector product concerning the
fluid–structure interface can be computed at one computational node, and the complexity
of the computer implementation is reduced. The computation concerning ΩFi is executed
at the computational node Pi (i = 1, 2, . . . , Nd), while the computation concerning ΩS
is executed at P1. Using the above setup, the matrix–vector product (15) is computed
as follows:

• Step 1. The matrix–vector product (15) is independently computed at Pi (i = 1, 2, . . . ,
Nd) using the element-by-element method as

Ap = ∑
e

A(e)p(e) =∑
e

q(e) =q (16)

where A denotes the global matrix, p denotes the global vector, q denotes their matrix–
vector product, A(e) and p(e) are their elemental counterparts, respectively, and e
denotes the element number.

• Step 2. The nodal data of the matrix–vector product (16) on the interface between
ΩFi and ΩFj (j 6= i) computed at Pj is transferred to Pi and added to complete the
corresponding nodal data computed in Step 1.

Fluids 2022, 7, x  6 of 20 
 

1 * *

L ( ) 

−+ − =Gv G M M v v 0   (14) 

If the linear convergence of the state variables is assumed, v* agrees with v asymp-

totically in the nonlinear iterations. Therefore, the second term of Equation (14) will vanish 

asymptotically, and the incompressibility constraint for the unknown fluid velocity will 

be satisfied. 

It follows from the above formulation that the monolithic equation system is split 

into the two equilibrium Equations (8) and (10), and the PPE (13). In the nonlinear itera-

tions, the linearized equilibrium equation for the previous pressure (10) is solved to derive 

the intermediate velocity, the PPE (13) is solved to determine the current pressure such 

that the current velocity field satisfies the incompressibility constraint (7), and the linear-

ized equilibrium equation for the current pressure (8) is solved to derive the current ve-

locity. 

2.2.4. Parallel Computation 

The following matrix–vector product is considered, since it is most expensive com-

putation in the iterative solvers for Equation (8), (10) and (13): 

pGMG −1

L
  (15) 

Assuming that the number of degrees of freedoms (DOFs) of the shell structure is far 

smaller than that of the fluid, the following parallel solution procedure is used based on 

the mesh decomposition. The mesh is decomposed as shown in Figure 2. The symbols ΩS 

and ΩF denote the structural and fluid meshes, respectively, and ΩFi (i = 1, 2, …, Nd) de-

notes i-th submesh of ΩF. Note that ΩS is set inside ΩF1 as shown in Figure 2 under the 

above-mentioned assumption. In this case, the matrix–vector product concerning the 

fluid–structure interface can be computed at one computational node, and the complexity 

of the computer implementation is reduced. The computation concerning ΩFi is executed 

at the computational node Pi (i = 1, 2, …, Nd), while the computation concerning ΩS is 

executed at P1. Using the above setup, the matrix–vector product (15) is computed as fol-

lows: 

• Step 1. The matrix–vector product (15) is independently computed at Pi (i = 1, 2, …, 

Nd) using the element-by-element method as 

qqpAAp  ===
e

e

e

ee )()()(   
(16) 

where A denotes the global matrix, p denotes the global vector, q denotes their matrix–

vector product, A(e) and p(e) are their elemental counterparts, respectively, and e denotes 

the element number. 

• Step 2. The nodal data of the matrix–vector product (16) on the interface between ΩFi 

and ΩFj (j ≠ i) computed at Pj is transferred to Pi and added to complete the corre-

sponding nodal data computed in Step 1. 

 

Figure 2. Mesh decomposition. 

 

ΩF5

ΩF2

ΩF4

ΩF3fluid

structure

ΩS

ΩF

ΩF1

ΩS

Figure 2. Mesh decomposition.

2.2.5. Shell Modeling of the Thin Elastic Wing

In this study, mixed interpolation of tensorial components (MITC) shell elements [58,59]
are used for a thin elastic wing, while linear equal-order-interpolation velocity–pressure
elements [60] are used for the fluid. The same arrangements of the fluid and shell nodes
on the fluid–structure interface [61] are used. Hence, a pair of two overlapping fluid
nodes per one shell node on the fluid–structure interface is necessary to describe the
pressure discontinuity between the obverse and reverse of the shell structure. The interface
conditions (4) and (5) are rewritten in matrix form as

vf
c = τTvs

c (17)

TQf
c + Qs

c = gfs
c (18)
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where Q is the internal force vector including all effects of the fluid or the structure, T
is the interpolation matrix, and the subscript c indicates the coupled DOFs. The nodal
expressions of these equations are{

ovf
c

rvf
c

}
=

[
1
1

]
vs

c (19)

[
1 1

]{ oQf
c

rQf
c

}
+ Qs

c = gfs
c (20)

where v, Q, and g are the nodal components of the velocity, and the internal and external
force vectors, respectively, and the subscripts o and r indicate the obverse and reverse sides
of the shell structure, respectively.

2.3. Dynamic Similarity Framework for the FSI

The dynamic similarity law can be used to correctly incorporate morphological and
kinematical data from actual insects into model wings. Initially, the dynamic similarity law
for the fluid dynamics was used for the experimental model [12,62]. The dynamic similarity
law for the FSI was first introduced in the numerical model [26], and then it was used for
the experimental model [34]. In this study, it is used as the framework for the systematic
treatment for the complexities of the FSI.

The nondimensional parameter α, the Reynolds number Re, the Cauchy number Ca,
which represents the ratio of the fluid dynamic pressure to the structural elastic force,
and the mass ratio MR are obtained from the dimensional analysis for the governing
Equations (1)–(4) with respect to the characteristic length L, the characteristic velocity V,
and the characteristic time T as follows:

α = L/(TV) (21)

Re = ρf LV/ µf (22)

Ca = ρf V2 L3 C (23)

MR = mw/
(

ρf L3
)

(24)

where µf is the fluid viscosity, C is the wing’s compliance, and mw is the wing’s mass. The
parameter (21) is the ratio of the inertial force due to the local acceleration to that due to
the convective acceleration. As shown in Figure 3, these four nondimensional parameters
determine all ratios among all force terms appear in each FSI system. Hence, each FSI
system can be specified using these four nondimensional parameters, and the dynamic
similarity between two different FSI systems can be measured as their distance in the
nondimensional parameter space.
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2.4. Design Window (DW) Search

Similar to the structural design of micro-electro-mechanical systems [10], the con-
ceptual, basic, and detailed design processes of FWNAVs will be indistinguishable from
each other. Hence, the formulation as a single design problem is difficult in each design
process. Furthermore, the feasibility of the design solution is strongly constrained by the
manufacturability, which is hardly formulated as the design problem.

In this study, DWs are searched in the design parameter space using the simulation
based on the direct numerical modeling of the FSI. The DW is an existing area of satisfactory
solutions in a design parameter space. The final solution can be adaptively chosen from the
DWs taking into account other conditions such as the change given to the design problem
and the manufacturability.

3. Numerical Test for Dynamic Similarity Framework
3.1. Problem Setup

The lumped torsional flexibility model is used in this study. The concept of this model
is illustrated in Figure 4. In this model, the characteristic quantities L, T, V, and C in
Section 2.3 are given as the mean chord length cw, the mean flapping velocity Vm, the
inverse of the flapping frequency 1/f ϕ, and the wing’s torsional compliance Cθ , respectively.
Vm can be expressed as 2r2ΦLwf ϕ, where r2 is the nondimensional radius of the second
moment of the wing’s area, Φ is the stroke angle, and Lw is the wing’s longitudinal length.
Then, Equations (21)–(24) are reduced to
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α = fϕ cw/Vm = 1/(r2 rA Φ) (25)

Re = ρf cwVm/µf (26)

Ca = ρf V2
m c3

w Cθ (27)

MR = mw/
(

ρf c3
w

)
(28)

where rA is the wing’s aspect ratio defined as 2Lw/cw. As an implementation of the lumped
torsional flexibility model, the rectangular wing and the plate spring are used as shown
in Figure 5a. r2 of the rectangular wing is 1/30.5, which is close to that of many insect
wings [63]. Hence, this shape is used for the purpose of simplicity. The finite element model
is shown in Figure 5b, where MITC shell elements [58,59] are used. The fluid domain is
rectangular as shown in Figure 6a. The no-slip condition is imposed to all boundaries on
the wall. The finite element mesh for the fluid domain is shown in Figure 6b,d, where
linear equal-order-interpolation velocity–pressure elements [60] are used. Based on the
observation of actual insects [11], the time history of the flapping angular velocity is given
using the trapezoidal function. Following this time history, the time history of the flapping
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angular displacement is given as shown in Figure 7, which is close to the sinusoidal motion
after the initial transient phase.
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Figure 6. Geometry of the fluid domain and the employed mesh: (a) The geometry of the fluid
domain (dynamically scaled); (b) The xz—plane view; (c) The yz—plane view, where the colored
domain shows the wing’s mesh; (d) The xy—plane view. The number of fluid elements is 1,578,960
and the number of fluid nodes is 276,138.
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Figure 7. Time histories of the flapping angular displacement. The history during the first one cycle
is for the initial transient phase.

Two different FSI systems are considered here. One is the insect wing, and the
other is the dynamically scaled wing. The characteristic length of the dynamically scaled
wing is 20 times larger than that of the insect wing. Following this, the values of the
characteristic parameters are converted from the insect wing to the dynamically scaled
wing using Equations (25)–(28). The values of the characteristic parameters for these wings
are summarized in Table 1.

Table 1. Summary of the model parameters for the insect and dynamically scaled wings.

Parameters Insect Dynamically Scaled

Wing length Lw [m] 0.0113 0.226
Wing chord length cw [m] 0.00311 0.0622

Density of the fluid ρf [kg/m3] 1.205 955
Viscosity of the fluid µf [Pa s] 1.80 × 10−5 2.87 × 10−2

Flapping frequency f ϕ [Hz] 160.5 0.809
Wing mass mw [kg] 4.0332 × 10−9 2.5577 × 10−2

Torsional compliance Cθ [1/(N m)] 432 × 103 6.71
Stroke angle Φ [deg] 107.5

α 0.127
Re 824
Ca 0.244
MR 0.111

3.2. Results and Discussion

The purpose of this test is to demonstrate that the present dynamic similarity frame-
work can make two different FSI systems dynamically similar to each other. For this
purpose, the pitching angular displacement and the nondimensional lift are used, since the
former is the representative characteristic quantity of the structure in the passive pitching
motion, and the latter is the representative characteristic quantity of the surrounding fluid.
Here, the lift force is defined as the total fluid force acting on the wing in the direction
perpendicular to the stroke plane.

The present FSI system is geometrically similar to that in Reference [29], and their
nondimensional parameters (α, Re, Ca, and MR) are close to those in Reference [29]. The
mesh used in Reference [29] had the sufficient resolution for the lift force. The mesh used
in this study has the finer resolution.

Figure 8a,b show the time histories of the pitching angle and the nondimensional lift,
respectively. As shown in Figure 8a, the transient large deformations in the insect wing and
the dynamically scaled wing agree well with each other. Similarly, as shown in Figure 8b,
the surrounding flow dynamics of these two wings agree well with each other. That is,
these wings strongly coupled with the surrounding fluid flows are dynamically similar to
each other. Ca represents the ratio of the fluid dynamic pressure to the structural elastic
force. In Figure 8a, Ca contributes the equivalence of the pitching angles, since they are
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determined by the equilibrium between the wing and the surrounding fluid. It follows
from these results that the present dynamic similarity framework works well to make two
different FSI systems dynamically similar to each other.
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4. Effect of Flapping Frequency on Passive Wing Motion

One of key parameters in insect flapping wings will be the flapping frequency. How-
ever, multiple material and kinematical properties, and complicated fluid and structural
forces might prevent us from systematic understanding of its effect on the wing’s passive
pitching motion. The dynamic similarity law can reduce these properties and forces to only
four nondimensional parameters. Hence, the framework using this law will work as the
guideline for the systematic investigation of the effect of the flapping frequency on the
passive pitching motion.

4.1. Problem Setup

The basic setup is the same as that in Section 3.1. The mesh used here is the same one
as Reference [29]. The nondimensional parameters for the cranefly are used as the reference
values, which are α = 0.073, Re = 254, Ca = 0.19, MR = 16, Φ = 123◦, and rA = 10.7 [29]. Here,
the following dynamic similarity framework is used for the systematic investigation of the
effect of the flapping frequency f ϕ on the passive pitching motion:

The frequency ratio Fr is used as the control parameter, which is defined as f n/f ϕ,
where f n is the natural frequency of the wing’s torsion. Fr is changed such that the product
αFr is kept constant (Φ and fϕ are changed to change α and Fr, respectively), while Re, Ca,
and MR are kept constant. The four cases shown in Table 2 are investigated.

Table 2. The dynamic similarity framework for the systematic investigation of the effect of the
flapping frequency on the passive pitching motion.

Case Fr α fϕ [Hz] Φ [◦] MR Re Ca

1 3.32 0.112 0.801 80

16 254 0.19
2 4.14 0.0892 0.641 100
3 5.10 0.0726 0.521 123
4 5.80 0.0637 0.458 140

4.2. Results and Discussion

Figure 9a,b show the time histories of the pitching angular displacement and the
nondimensional lift, respectively. In the middle of each half stroke in insect flapping wings,
the dynamic pressure and the elastic force are dominant or the fluid and structural inertial
forces are significantly damped [30]. Here, Ca values are same among different Fr. Hence,
in Figure 9a, the pitch angles in the middle of each half stroke are almost equivalent among
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different Fr. On the contrary, the first peak of the pitch angle in each half stroke increases
following the decrease of Fr. This can be explained as follows:
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Figure 9. Time histories of (a) the pitching angular displacement, and (b) the nondimensional lift for
the various frequency ratios.

As shown in Table 2, α increases as Fr decreases. The increase of α corresponds to the
increase of the ratio of the inertial force to the convective and elastic forces, since MR, Re,
and Ca are kept constant. The inertial effect for the pitching motion is most significant just
after the stroke reversal [30]. Hence, the first peak of the pitch angle in each half stroke
increases following the decrease of Fr.

As shown in Figure 9b, the first peak of the nondimensional lift in each half stroke
increases as Fr decreases. Figure 10a,b show the flow fields for Fr = 3.3 and 5.1, respectively,
at the time instant of 6.65 cycle when the nondimensional lift takes the first peak in the
second half stroke. Note that the flow fields are considered on the cylindrical planes, of
which normal direction coincides with the wing’s longitudinal direction. The objectives of
these figures are to show the present analysis captured the most important flow structure
and to explain why the first lift peak during each half stroke in the case of Fr = 3.3 is
larger than that in the case of Fr = 5.1. The characteristic vortex on the leading edge or
the leading-edge vortex, which is one of most important flow structures in insect flapping
wings [62], was formed clearly in each figure. The large translational lift in the middle of
each half stroke is given by the stable attachment of this vortex on the wing.
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Figure 10. Flow fields on the cylindrical plane crossing the flapping wing at the time instant of
6.65 cycle when the nondimensional lift takes the first peak in the second half stroke: (a) Φ = 123◦,
Fr = 5.1, α = 0.073; (b) Φ = 80◦, Fr = 3.3, α = 0.11. In each cylindrical plane, the color contour shows
the magnitude of the vorticity in the wing’s longitudinal direction, the arrows show the fluid velocity
field, and the color of each arrow shows the magnitude of the velocity.
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As shown in these figures, the magnitude of the downflow in front of the wing in the
case of Fr = 3.3 is larger than that in the case of Fr = 5.1. That is, the downward momentum
given to the fluid from the wing’s flapping motion in the case of Fr = 3.3 is larger than that
for Fr = 5.1 at this time instant. As the reaction from the fluid, the first lift peak during each
half stroke in the case of Fr = 3.3 is larger than that in the case of Fr = 5.1.

5. Micro Flapping Wing with 2.5-D Structure

In this section, the possibility of the micro flapping wing for FWNAVs is demonstrated
using the proposed approach. Figure 11 shows the concept of the proposed micro flapping
wing using the FSI design. As shown in this figure, the pitching motion is caused by the
FSI. Furthermore, the base excitation given by a micro actuator is amplified to obtain the
sufficient amplitude of the flapping motion using the resonance. Here, the flapping fre-
quency is chosen as the design parameter since it is a key parameter for the passive pitching
motion as shown in the previous section. As illustrated in Figure 12a as well as Figure 11,
the most significant feature of the proposed wing is the 2.5-D structure. This structure
is the engineering alternative of the nature’s solution such that it can be fabricated using
the micromachining technique based on the photolithography in the MEMS technology.
Figure 12b shows the prototyping of this wing using a polymer micromachining [7,8,40].
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Figure 12. Detailed view of the 2.5-dimensional wing: (a) In-plane view and the dimensional
parameters; (b) an example of prototyping of this wing using the micromachining technique. In this
example, the wing chord length is cw = 2.8 mm.

5.1. Problem Setup

The wing membrane is made of the polyimide (the mass density ρs = 1.43 g/cm3, the
Young’s modulus E = 3 GPa, and the Poisson’s ratio ν = 0.4), the span length Lw = 2.5 mm,
the chord length cw = 0.8 mm, and the thickness tw = 1.6 µm, which are comparable to
those of small flies. The leading edge is made of the single crystal silicon (the mass density
ρs = 2.383 g/cm3, the Young’s modulus E = 180 GPa, and the Poisson’s ratio ν = 0.3), and
the cross section is 100 µm width and 50 µm thickness. The plate spring is made of
the same material of the wing membrane, and the spring length ls is set as 50 µm. The
surrounding fluid is considered as air (the mass density ρf = 1.18 × 10−3 g/cm3, the
viscosity µ = 1.82 × 10−4 g/(cm × s)).
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The amplitude and flapping frequency of the micro actuator are assumed as follows:
The amplitude of the base excitation displacement in the x-direction u0 (see Figure 11) is set
as 80 µm, which should be smaller than 100 µm taking into account the available micro
actuator [7,8], and the flapping frequency fϕ is chosen from 100 Hz to 1000 Hz based on
actual insects. The objective of the design is to find the solution that can generate the mean
lift FL larger than 7 µN, which is equivalent to the weight of small flies.

MITC shell elements [58,59] are used for a thin elastic structure, which consists of the
beam of the leading edge, the plate spring, and the wing membrane (number of nodes: 225,
number of elements: 196). As shown in Figure 13b, the plate spring is modeled as a part of
the beam of the leading edge at its base. In this modeling, the Young’s modulus is used to
keep the spring constant.
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Figure 13. Geometry of the fluid domain and the employed meshes: (a) The geometry of the fluid
domain; (b) The yz-plane view of the wing’s mesh, where the domain colored by yellow is the plate
spring; (c) The yz-plane view of the fluid domain; (d) The xy-plane view of the fluid domain.

The fluid domain is rectangular as shown in Figure 13a. The no-slip condition is
imposed to all boundaries on the wall. Stabilized linear equal-order-interpolation velocity–
pressure elements [60] are used for the fluid. The fluid mesh is shown in Figure 13c,d. In
this mesh, the number of nodes is 46,911 and the number of elements is 254,352. Note that
the resolution of the fluid mesh is almost equivalent to that in Reference [29]. The time
increment ∆t is set as Tϕ/5000, where Tϕ is the flapping period. For the parametric study,
the parallel computation in Section 2.2.4 is executed in a multiple core processor (10-core
Xeon 2.8 GHz × 2 CPUs, 32 GB memory).

5.2. Results and Discussion

In the time histories of the x-displacement of the wing’s tip and base in the case of
fϕ = 428 Hz, the wing tip displacement was 19 times larger than the wing base displacement
because of the resonance as shown in Figure 14a. Figure 14b shows the time history of
the flapping angular displacement. The stroke angle reaches about 73◦ at the quasi-steady
state, which is comparable to the stroke angle in actual insects.
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Figure 14. Time histories of (a) the tip displacement (solid line) and the base displacement (dotted
line) in the x-direction and (b) the flapping angular displacement.

Figure 15a shows the time history of the pitching angular displacement. As shown
in this figure, the passive pitching motion is caused by the FSI periodically following the
flapping motion, and the pitch angle reaches 62◦, which is comparable to the pitch angle in
actual insects. Figure 15b shows the time history of the lift from a pair of the wings. As
shown in this figure, the average lift is larger than the weight of the small fly (7 µN).
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Figure 15. Time histories of (a) the pitching angular displacement, and (b) the lift.

Figure 16 shows the wing’s motion and the surrounding flow. In the left column of
this figure, during the upstroke, the wing flaps from right to left. In the right column of this
figure, during the downstroke, the wing flaps from left to right. As shown in these figures,
the passive pitching motion similar to that observed in actual insects is given by the FSI
adequately. That is, the wing keeps a high angle of attack in the middle of each half stroke,
and it rotates quickly during the stroke reversals. The leading-edge vortex, which is one of
most important flow structures in insect flapping wings [62], was formed clearly in each
figure. These figures also show the stable attachment of this vortex on the wing. This stable
attachment contributes the large translational lift in the middle of each half stroke.

Finally, the DW search was done based on the frequency response functions (FRFs).
Using the FRF for the mean lift, which is shown in Figure 17a, the DW is given as the
flapping frequency area ranging from 410Hz to 460Hz approximately. That is, the proposed
wing using any frequency in this DW generates the sufficient lift to support the weight of
the small fly (7 µN). Figure 17b shows the FRF for the stroke angle. As shown in this figure,
the stroke angle is larger than 50◦ approximately in the DW, which is comparable to the
stroke angle in actual insects. It follows from these results that the possibility of the micro
flapping wing for FWNAVs is demonstrated.
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Figure 16. Wing’s flapping motion and the surrounding flow during the upstroke, where the wing
flaps from right to left in the left column, and the wing flaps from left to right in the right column:
(a) The time instant of 8.48 cycle; (b) The time instant of 8.60 cycle; (c) The time instant of 8.72 cycle;
(d) The time instant of 8.84 cycle; (e) The time instant of 8.96 cycle; (f) The time instant of 9.08 cycle;
(g) The time instant of 9.20 cycle; (h) The time instant of 9.32 cycle.
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Figure 17. Frequency response functions of (a) the mean lift and (b) the stroke angle.

6. Conclusions

In this study, the computational approach for the FSI design of insect-inspired micro
flapping wings was developed. This approach consists of the simulation based on the
direct numerical modeling of the strongly coupled FSI, the dynamic similarity framework,
and the design window search. The key of the FSI design is the accurate prediction for the
3-D strong coupling of the thin flexible flapping wing and the surrounding air flow. Here,
a projection method using the algebraic splitting was used to solve this problem directly.
It seems that there are few studies about computational approaches for the FSI design of
FWNAVs, where a flight device actively uses the FSI to create the characteristic wing’s
motions to reduce the mechanical and electrical complexities of this device.

In the first numerical example, it was demonstrated that the dynamic similarity law
for the FSI makes two different lumped torsional flexibility models strongly coupled with
the surrounding fluids dynamically similar with each other.

In the second numerical example, the effect of the flapping frequency on the passive
pitching motion was systematically investigated using the dynamic similarity framework,
which worked as the guide for the complexities of this FSI.

Finally, in the last numerical example, an insect-inspired micro flapping wing with the
2.5-D structure was designed using the proposed approach. The proposed wing was the
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engineering alterative for the nature’s solution in actual insects such that it can be fabricated
using the microfabrication based on the photolithography in the MEMS technology. Here,
the flapping frequency was taken as the design parameter. The DW was found such that
each solution in the DW can generate the lift sufficient to support the weight of small insects.

In future work, this wing will be fabricated using the micromachining. Hence, the
proposed approach will contribute to the further miniaturization of FWNAVs.
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