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Abstract: We explore the Carleman linearization of the collision term of the lattice Boltzmann formu-
lation, as a first step towards formulating a quantum lattice Boltzmann algorithm. Specifically, we
deal with the case of a single, incompressible fluid with the Bhatnagar Gross and Krook equilibrium
function. Under this assumption, the error in the velocities is proportional to the square of the Mach
number. Then, we showcase the Carleman linearization technique for the system under study. We
compute an upper bound to the number of variables as a function of the order of the Carleman
linearization. We study both collision and streaming steps of the lattice Boltzmann formulation
under Carleman linearization. We analytically show why linearizing the collision step sacrifices the
exactness of streaming in lattice Boltzmann, while also contributing to the blow up in the number of
Carleman variables in the classical algorithm. The error arising from Carleman linearization has been
shown analytically and numerically to improve exponentially with the Carleman linearization order.
This bodes well for the development of a corresponding quantum computing algorithm based on the
lattice Boltzmann equation.

Keywords: lattice Boltzmann; Carleman; linearization

1. Introduction

Computational Fluid Dynamics (CFD) has accompanied computers as an application
since their infancy, starting with von Neumann’s program to simulate the weather on the
ENIAC machine around the 1950s. Even earlier, in 1922, Richardson described “human”
computers computing the weather by hand, estimating that 64,000 of them, each calculating
at a speed of 0.01 Flops/s, would be sufficient to predict the weather in real time [1].
Leaving aside human calculators, electronic ones have made a spectacular trek so far,
from the few hundred Flops of ENIAC to the exaflop peak performance of the Sunway
Oceanlite supercomputer [2]. This has spanned sixteen orders of magnitude in 70 years,
close to a sustained Moore’s law rate, doubling every 1.5 years! Amazingly, CFD has
been consistently on the forefront of the journey, and it continues to be to the present day.
However, when it comes to quantum computing, CFD is yet to capture the limelight it
deserves. In this paper, we present a brief survey of current ongoing research work in
this direction and a preparatory technique, known as Carleman linearization, aimed at
the development of a quantum computing algorithm for the lattice Boltzmann method for
fluid flows.

1.1. Early Attempts for Quantum Simulation of Fluids

The earliest attempts at quantum simulation of fluids have been based on the lattice
gas or lattice Boltzmann algorithms. The first quantum lattice Boltzmann scheme dates back
to the 1990s [3,4]. Around the turn of the millenium, Yepez demonstrated fluid dynamic
simulations on a special-purpose quantum computer based on nuclear magnetic resonance
(NMR) [5], using the quantum lattice gas algorithm [6,7]. Leading the trail, Yepez has also
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investigated Burger’s equation [8,9], and entropic lattice Boltzmann models [10]. The latter
has found its use in simulation of quantum fluid dynamics and other quantum systems [6].
We have recently seen a divergence towards citing Navier-Stokes as a future direction for
papers discussing solving nonlinear differential equations on quantum computers, away
from the early physically-motivated algorithms for fluid simulation, as the quantum lattice
gas one mentioned above [5,7–9]. However, the attempts to revive the physically-motivated
algorithms beyond quantum systems [11], by [12–15] and others, are promising. The work
of [13] stands out as it presents itself as a method not of quantum computation per se,
but of quantum simulation. The latter leverages the correspondence between the Dirac
and lattice Boltzmann equations. We, thus, find a compelling reason [16] to explore lattice
Boltzmann as the basis for quantum simulation of fluids, starting with its linearization,
explored classically in this paper.

1.2. Carleman Linearization

Carleman linearization appears to cast linearization of a function through Taylor series
expansion into matrix form, suitable for use in defining state estimator of a non-linear
system of known dynamics as part of the Koopman operator approach, in what is known as
Carleman-Koopman operator. The basic idea of Carleman linearization is to introduce pow-
ers of the original variable as a variables in the system. The recurrence through which the
new equations in the system is defined leads to an infinite dimensional system. The latter
is prone to admitting solutions different than those of the original system [17]. The lin-
earization is achieved at the cost of infinite-dimensions. Upon truncation of the resulting
infinite-dimensional upper-triangular matrix [18], the accuracy of the approximation also
suffers, deteriorating with time, making the truncated system most suitable for asymptoti-
cally stable stationary solutions [19]. The error bound for a Carleman-linearized polynomial
ODE reduced to quadratic form has been shown, through a power series approach [18],
to depend on the initial condition as well as exponentially on time. They recommend dis-
cretizing the solution in time, and evaluating other basis functions. Their work has readily
been extended by [20] for a quantum algorithm. Apart from discussing the complexity and
error bounds of a quantum Carleman algorithm, [20] presented the results for a classical
Carleman linearization of Burger’s equation.

2. Lattice Boltzmann

Between the Navier-Stokes equations which model the flow at a continuum level,
and molecular dynamics which treat the microscale, LB stands out, representing the fluid
as an ensemble of particles at the mesoscale. It stems from the minimal discretization of the
Boltzmann kinetic equation. The lattice Boltzmann formulation is readily extensible for a
range of physics, from the quantum to the relativistic, giving the method a versatility about
which books could be written [21].

d f
dt

=
∂ f
∂t

+~v · ~∇ f = Ω (1)

The Boltzmann Equation (1) describes the probability density f of the fluid in the
position-momentum space, driven by advection due to continuum particle velocity ~v and
collision Ω across space spanned by ~x, and time t. To arrive at the lattice Boltzmann formu-
lation, the probability density f from the Boltzmann equation Equation (1) is discretized
into Q density distributions, each describing the fraction of fictitious particles: moving
in a given D-dimensional lattice, with ~v restricted to speeds ~ci, ~ci = ci~ei, defined in the
directions of the lattice vectors~eis.

The discretized lattice Botlzmann equation takes the form

1
∆t

( fi(~x +~ci∆t, t + ∆t)− fi(~x, t)) = − 1
τ
( fi(~x, t)− f eq

i (~x, t)) (2)
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for the simple case of a single-phase fluid, which components are permeable to each other
such that they can be considered well-mixed and homogeneous [22]. The discrete probabil-
ity density is the fundamental variable of the lattice Boltzmann approach. It describes the
probability of finding a fictitious fluid particle at a given point defined by the position vector
~x, at a given instant of time t, with a particular speed [23]. Implicit, in the discretization of
the Boltzmann equation, is the discretization of the phase-space, involving discrete position
and velocity values. The lattice Boltzmann proceeds by updating the discrete probability
densities at each cell in two steps: collision and advection/streaming shown in Figure 1.
This is the collision step:

fi(~x, t + ∆t) = fi(~x, t)− ∆t
τ
( fi(~x, t)− f eq

i (~x, t)) (3)

The streaming step is:

fi(~x, t + ∆t) −→ fi(~x +~ci∆t, t + ∆t) (4)

Collision is practically a relaxation towards equilibrium, a nonlinear operation depen-
dent on terms local to each cell. On the other hand, streaming involves the transfer of the
discrete densities to nearby cells, a nonlocal linear operation. The equilibrium distribution
f eq
i is written as a function of ci = c the lattice speeds, the fluid density ρ, the lattice vectors

~ei, and the flow velocity ~u.
ρ = ΣQ

i=1 fi (5)

flow velocity ~u:

~u =
c
ρ

ΣQ
i=1 fi~ei (6)

weights w which sum to unity. A common model for the equilibrium function is:

f eq
i (~x, t) = wiρ(1 + (

3
c
~ei · ~u +

9
2c2 (~ei · ~u)2 − 3

2c2~u · ~u)) (7)

Replacing the expression for the equilibrium expression for the incompressible case,
we have:

( fi(~x +~ci∆t, t + ∆t) =(1− ∆t
τ
) fi(~x, t))

+
∆twi

τ
(1 + 3~ei · f j~ej +

9
2
(~ei · f j~ej)

2 − 3
2

f j fk~ej ·~ek)

(8)

We note that the lattice vectors~ei, do not correspond to unit vectors, and are generally
not orthonormal. In a single dimension, the left and right vectors have nonzero inner
product of −1. In higher dimensions, we can identify such a pair for each direction,
in addition to nonzero inner products with and between diagonal lattice vectors shown in
Figure 2. For example, in D1Q3, we have:

ei =


−1 i = 1
0 i = 2
1 i = 3

(9)

thereby:

~Ω = −dt
τ

 1
2 ( f1 + f3 − ( f1 − f3)

2 − 1
3 )

( f2 + ( f1 − f3)
2 − 2

3 )
1
2 ( f1 + f3 − ( f1 − f3)

2 − 1
3 )

 (10)
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(a) Pre-Collision (b) Post-Collision (c) Streaming

Figure 1. An illustration of the D1Q3 lattice Boltzmann scheme showing how the collision step is
a relaxation of the discrete densities towards their equilibrium values whereas streaming involves
assigning their values to neighboring cells in the respective directions.

(a) D3Q27 (b) D2Q9 (c) D1Q3

Figure 2. Different lattice configurations in three (a), two (b) and one (c) dimensions.

Continuing with the consideration of the D1Q3 case, by introducing the vectors of
first-order and second-order products of the discrete densities appearing in the lattice
Boltzmann formulation, denoted ~f (1) and ~f (2) respectively:

~f (1) =
(

f1 f2 f3
)T

~f (2) =
(

f 2
1 f 2

3 f3 f1
)T

(11)

we may write ~Ω as a second-order “polynomial” with matrix-valued coefficients, similar to
the form introduced by [18].

~Ω = F1~f (1) + F2~f (2) + ~F0 (12)

where F1 and F2, for the D1Q3 are:

F1 = −∆t
τ

 1
2 0 1

2
0 1 0
1
2 0 1

2

 (13)

and:

F2 = −∆t
τ

− 1
2 − 1

2 1
1 1 −2
− 1

2 − 1
2 1

 (14)

The constant vector ~F0 appearing could be absorbed with a fixed variable, say f4 = 1
to account for constants. It could easily be defined with a zero derivative adding an empty
row to the bottom of F1 and F2. The constants appearing in any polynomial entry of the
vector could be, thus, defined as 1 or 12 multiplied by some coefficient. Therefore, they
should not affect the norm of F1 or F2 considered below.

~F0 =
∆t
τ

 1
6
2
3
1
6

 (15)

The fact that the rows and columns of F1 sum up to unity, whereas those F2 sum to
zero is at heart of the favourable error bounds obtained in Section 3.4, and that in presence
of uniform initial conditions or absence of streaming, the method becomes exact. It is
well-known that Equation (8) is inconsistent with the incompressible assumption, ρ = 1,
and density fluctuations around unity are expected to arise during evolution [24]. Neglect-
ing these fluctuations amounts to an error in the velocity components ||~u|| proportional to
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the square of the Mach number O(Ma2). This is due to the fact that this standard lattice
Boltzmann formulation recovers the compressible Navier-Stokes upon expansion. More
sophisticated formulations have been developed for incompressible and nearly incompress-
ible flows [25]. The particles with random motion, are restricted to the lattice nodes with
microscopic velocities ci defined over lattice directions, allowing us to model the collision of
particles and their streaming in seperate, uncoupled steps. The latter forces the nonlinearity
of fluid flow, captured in the collision term, to be local, whereas the non-local streaming
terms remain linear. Moreover, streaming is exact.

Nonlinearity Ratio

We define the nonlinearity ratio R as a measure of how much Equation (8) deviates
from a complete linear behavior. It is defined as

R = || f (t = 0)|| ||F2||
|Real(λMAX(F1))|

, (16)

where F1 is the matrix of linear coefficients of Equation (8) and F2 is the matrix of the second
order terms. Here we have considered the supremum norm of a matrix ||A|| or a vector
||~x|| as

||A|| = max
ij
|Aij|, ||~x|| = max

i
|xi| (17)

and λMAX(F1) as the largest eigenvalue in modulo of F1. Note that for a linear system
||F2|| = 0 such that one has no nonlinearity. This makes R “qualitatively” similar to the
Reynolds number which is a ratio of nonlinear convective forces to linear viscous forces.
When we rescale a matrix by a constant, its eigenvalues get rescaled as well as the norm.
As such, we see that the ∆t

τ factor cancels out from the nonlinearity ratio. This is not
surprising given that R is practically a measure of the relative weight of nonlinear terms to
linear terms. However, this independence of R on a critical parameter, τ, should be taken
with cautiously, as the it role is more nuanced in the lattice Boltzmann formulation.

We may proceed by calculating it for the case of ∆t
τ = 1, and it remains valid otherwise.

In the case of D1Q3, the two different norms taken for F1 and F2 both give unity,
such that:

RD1Q3 = || f (t = 0)|| ≤ 1 (18)

where it is less than or equal to 1 by definition of a probability distribution, and where
the equality holds in the unlikely case that the distribution is initialized such that a single
discrete density is unity. The fact that lattice Boltzmann’s variables are formulated as
probability densities is indeed advantageous. While a similar feat could be achieved by
rescaling variables for a well-posed problem, as suggested by [20], their relative values
and numerical accuracy used limit the effectiveness of such an approach. Moreover,
Re(λMAX) = −1 < 0, this means that both conditions set by [20] for arbitrary time-
convergence are met. Another advantage of the lattice Boltzmann method is that it is by
definition discretized, such that the error arising from discretizing the equation, the forward
Euler for time derivative for example as discussed in [20], is irrelevant.

3. Carleman Linearization for Lattice Boltzmann

The basic tenant of Carleman linearization is a change of variables done such that the
variables of the original nonlinear system, ~f (t), are replaced by a larger set of variables ~V(t).
The original variables form a subset of the larger set of Carleman variables. The additional
variables are monomials up to order Oc of the original fi.

Denoting the vector of Carlemann variables of kth order as V(k), and P(k) a vector
of some polynomial functions of kth order in Carlemann variables, using the numbering
scheme shown in Figure 3, we may write:
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~V(1) =
(

f1 f2 f3
)T , ∂t~V(1) = ~P(2)(~V(1), ~V(2))

~V(2) =
(

f 2
1 f1 f2 f 2

2 f2 f3 f 2
3 f3 f1

)T , ∂t~V(2) = ~P(3)(~V(1), ~V(2), ~V(3))

. . .

(19)

For lattice Boltzmann with the BGK equilibrium function, we see that the time evolu-
tion of each set of monomial of discrete density variables of given order could be written as
a function of variables of same order, all preceding orders, and an order above. In Equa-
tion (19), we see that those of first order monomials are written in terms of first and second
order monomials, and those of second order monomials are written in terms of first, second
and third order monomials.

~V(1) =
(

f1 f2 f3
)T , ∂t~V(1) = ~P(2)(~V(1), ~V(2))

~V(2) =
(

f 2
1 f1 f2 f 2

2 f2 f3 f 2
3 f3 f1

)T , ∂t~V(2) = ~P(3)(~V(1), ~V(2), ~V(3))
(20)

Carleman embedding involves, then, choosing an order of linearization and neglecting
higher-order terms from the driving functions of ODEs. This is what we refer to as
truncation, and it is demonstrated in Equation (20) to second order, where third-order terms
otherwise required for the time evolution of second order terms are dropped.

~V =

(
~V(1)

~V(2)

)
=



f1
f2
f3
f 2
1

f1 f2
f 2
2

f2 f3
f 2
3

f3 f1


=



V1
V2
V3
V4
V5
V6
V7
V8
V9


(21)

The Carlemann variables ~V are then introduced to replace the remaining monomials,
as shown in Equation (21).

An example of additional variables of second order is shown in Table 1 for a D1Q3
lattice, taking into account the model in Equation (8).

Table 1. Example of D1Q3 expanded to a second order truncation in Carleman linearization, with
N = 9 Carleman variables. Note that the dummy variable V1 = 1 is defined to simplify the form
of Equation (23).

Carleman Variables Lattice Variables

V1 1
V2 f 2

1
V3 f 2

3
V4 f1 f2
V5 f1 f3
V6 f2 f3
V7 f1
V8 f2
V9 f3

f2f1 f3

Figure 3. Numbering convention used for the discrete densities of the D1Q3 lattice Boltzmann
scheme. In 1D, the lattice vectors correspond to the respective scalars −1, 0, 1.



Fluids 2022, 7, 24 7 of 18

The dynamics of the extended system are then derived from the original system of a
single phase, homogeneous, fluid, with terms beyond a chosen order Oc dropped.

∂ fi(t)
∂t

= Ωi(~f (t)) (22)

which is linearized into the total derivative of the Carleman variables vector ~V(t) equating a
constant coefficient matrix, the Carleman linearization matrix C, multiplying the Carleman
variables vector:

∂~V(t)
∂t

= C~V(t) (23)

where the Carleman linearization matrix C is obtained by deriving the following system
of equations:

∂Vn

∂t
= ΣQ

i=1
∂Vn(t)

∂ fi
Ωi( f (t)) (24)

and identifying the variables Vi on the right hand side of Equation (24).

3.1. Number of Variables

An upper bound for the number of Carleman variables for a desired order Oc, when
considering N original lattice variables, is

N =
(Oc + (Q + 1)− 1)!
(Oc)!((Q + 1)− 1)!

=

(
Oc + Q
Q + 1

)
(25)

This is an upper bound to the number of Carleman variables used in the linearized
system because in practice some terms of order Oc do not appear in the linearized equations.
For example, from Table 1 f 2

2 , the second order term for the rest particles density, does not
appear in the D1Q3 formulation. In general, the exact number of variables is given after
specifying a lattice structure and an equilibrium function.

3.2. Carleman Linearization of Collision Step

The collision operator Equation (3) can be expressed as a function of the Carleman
variables, Vis. To do that, we go back to Equation (1), and consider collision sans streaming.
The total derivative of the discrete densities is described by the nonlinear collision operator
on the right-hand side.

This assumes that the obtained solution for the discrete density distribution at each
site is streamed exactly, and the nonlinear terms recalculated to evolve the system. While
this allows us to isolate the error from the linearization of the collision step, it is undesirable
in practice. On another note, the linearization of the collision step allows one to explore
other discretization scheme to arrive at the LB formulation from the Boltzmann equation
Equation (1). In particular, we conjecture that an implicit scheme for the time discretization
would improve the error bounds at the cost of the sparsity of the resulting matrix.

3.3. Carleman Linearization of Streaming Step

Instead, we need to consider Equation (1). Another limitation of considering only a
traditional one-dimensional model, such as Burger’s is that the problem of streaming the
coupled terms of the Carleman linearization is avoided [20]. The forward and backward
directions of the velocity are accounted for in one velocity variable with its negative and
positive values, and derivatives of the velocity are discretized in terms of that one variable
as well.
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We have thus far considered linearization of the collision step solely. However, for a
self-contained quantum fluid simulation algorithm, Carleman streaming must be consid-
ered, which leads us to a modified Boltzmann equation for the Carleman variables:

dV(~x, t)
dt

=
∂V(~x, t)

∂t
+~ci · ΣQ

i=1
∂V(~x, t)

∂xi
= CV (26)

If the partial derivatives are left undiscretized, we have to include additional variables
to account for the new terms appearing, contributing to the blowup of variables, and sub-
jecting a description of streaming to truncation. On the other hand, following the same
discretization scheme typical of LB, in similarity to the derivation of Equation (2), we arrive
at the a modified LB equation where the coefficients of the partial derivatives of the original
variables ~f now show dependence on the variables themselves after replacing the expres-
sions of the Carleman variables ~V and computing their partial derivatives. Equation (27)
shows an example:

∂Vn(~x, t)
∂ f j(~x, t)

∂ f j(~x, t)
∂t

+~ci · (
∂Vn(~x, t)
∂ f j(~x, t)

∂ f j(~x, t)
∂xi

) = CnV (27)

For D1Q3 second order linearization, with n = 4, we have V4 = f1 f2:

f2(~x, t)( f1(~x + ∆~x1, t)− f1(~x, t)) + f1(~x, t)( f2(~x + ∆~x2, t)− f2(~x, t)) = 0

f2(~x, t) f1(~x + ∆~x1, t)− f2(~x, t) f1(~x, t) + f1(~x, t) f2(~x + ∆~x2, t)− f1(~x, t) f2(~x, t) = 0

f2(~x, t) f1(~x + ∆~x1, t)− 2V4(~x, t) + f1(~x, t) f2(~x + ∆~x2, t) = 0

(28)

where we see new terms unaccounted for in the Carleman variables appear combining
both nonlocality, and nonlinearity.

Another way to explain the above is that the discrete densities of the particles are
weighted by their contribution to the Carleman variables, the new variables of the system ~V,
when streamed. When discretizing the equation describing the evolution of the Carleman
variables, a coupling between terms at different locations appears due to the different
partial derivatives appearing in the term. Therefore, classical Carleman linearization of
the lattice Boltzmann formulation exchanges the local nonlinearity of the collision step,
with nonlocal linearity of the streaming step to which the linearized collision term is
coupled. We note that additional V variables must introduced for the nonlocal coupled
terms, i.e., f1(~x1 + ∆~x1, t) f2(~x2, t) to keep the system linear. This is indeed used for the
Burger’s equation in previous literature [20]. However, this further exacerbates the blowup
in variable count for the classical Carleman scheme.

This leads to the fact that streaming is also described by an infinite differential system
that must also be truncated. That is, the exactness of streaming, a major advantage of the
lattice Boltzmann method, is lost. On a classical computer, to study the collision step, it is
possible to recalculate the nonlinear terms to achieve exact streaming. Remarkably, while
Carleman linearization slashes out the exact streaming advantage of lattice Boltzmann,
we are able to retrieve it by going into the quantum paradigm Itani et al. [26].

3.4. Error Bound

In Equation (8), we see that LB fits into a generalized quadratic ODE considered
by [18,20], and it is a multi-population extension of the logistic equation suggested by [20]
for treatment.

For a given system of differential equations in terms of a set of variables represented
by a vector ~f , of which LB is an example, we denote the solution of the exact system as ~f ,
and that of the Carleman linearized system as ~fC. We use the same definition of the error ε
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from [18,20], in terms of the max supremum over time of the vector difference of exact and
approximate solution normalized by their respective supremum norms:

ε(t) =

∥∥∥∥∥∥
~f (t)∥∥∥~f (t)∥∥∥ −

~fC(t)∥∥∥~fC(t)
∥∥∥
∥∥∥∥∥∥ (29)

As we integrate the system of equations, we define the maximum error made as

εmax = max
t∈T

ε(t) (30)

When using Carleman linearization and the Euler time discretization as in Equation (2),
they require [20] the minimum number of Carleman variables N will be a function of εmax
as be:

N = d− log2(R)
log2(2(1 + 1

εmax
))
e (31)

and the largest time-step ∆t:

∆t =
1

N‖F1‖
= (d− log2(R)

log2(2(1 + 1
ε ))
e)‖F1‖)−1 (32)

given that all the eigenvalues of F1 are negative real, and R < 1.
The above formulas are derived for a single variable quadratic ODE system, ~f ∈ R1,

for which Q = 1 and N = Oc + 1. Furthermore, in [20], it is shown that the dependence of
N and ∆t with the error εmax is of the form Equations (31) and (32) even when R > 1 for the
Burgers equation. Note that for the LB problem the bounds of Equations (2), (31) and (32)
are not valid as the quadratic system is always multivariate-Q > 1-and R > 1 for typical
choices of the equilibrium function, as for a single-phase fluid in Equation (8).

Now we prove that the leading order in the error improves exponentially with the
Carleman order, for 1,2 and 3D systems.

Let (r) denote a Carleman variable Vi of rth order, V(r)
i , such that C(r)(k)

ij describes the

matrix coefficient describing the contribution of V(k)
j to V(r)

i . We have:

V(1)
i (~x, t) =V(1)

i (~x, t− ∆t) + ΣjC
(1)(1)
ij V(1)

j (~x, t− ∆t)

+ ΣkC(1)(2)
ik V(2)

k (~x, t− ∆t)
(33)

and:

V(2)
i (~x, t) =V(2)

i (~x, t− ∆t) + ΣjC
(2)(1)
ij V(1)

j (~x + ∆~xj, t− ∆t)

+ ΣkC(2)(2)
ik V(2)

k (~x + ∆~xk, t− ∆t)

+ ΣlC
(2)(3)
il V(3)

l (~x + ∆~xl , t− ∆t)

=E(3)
i (~x, t− ∆t) + V(2)

i (~x, t− ∆t)

(34)

such that when streaming is considered:

V(1)
i (~x, t) =V(1)

i (~x, t− ∆t)

+ ΣjC
(1)(1)
ij V(1)

j (~x + ∆~xj, t− ∆t)

+ ΣkC(1)(2)
ik V(2)

k (~x + ∆~xk, t− ∆t)

(35)
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Replacing Equation (34) into Equation (35), we have:

V(1)
i (~x, t) =V(1)

i (~x, t− ∆t) + ΣjC
(1)(1)
ij V(1)

j (~x + ∆~xj, t− ∆t)

+ ΣkC(1)(2)
ik (E(3)

k (~x + ∆~xk, t− 2∆t) + V(2)
k (~x + ∆~xk, t− 2∆t))

(36)

For the collision-only setup considered for the classically linearized collision term,
∆xi = 0, such that one is able to verify:

ΣjC
(1)(2)
ij E(2)

j (~x, t) = 0 (37)

for D1Q3, D2Q9 and D3Q27, “full” lattices, for which the expressions become linear in
Carleman variables up to second order. Equation (35) then reduces to:

V(1)
i (~x, t) =V(1)

i (~x, t− ∆t) + ΣjC
(1)(1)
ij V(1)

j (~x + ∆~xj, t− ∆t)

+ ΣkC(1)(2)
ik (V(2)

k (~x + ∆~xk, t− 2∆t))
(38)

Dropping the E term, and with further replacements similar to above, one can see that
the first order terms depend only on the initial conditions of the second order terms in the
whole domain, not only neighbouring cells, and no third order terms are needed. This is to
say that turning off streaming resolves the nonlinearity of the problem, as expected.

With streaming, a simple Taylor expansion of Equation (35) shows that Carleman
linearization of order yields a solution with error of the order:

εmax = O(∆t∆xOc). (39)

If we initialize the flow to be uniform, the inclusion of streaming does not introduce
errors as above, as Equation (37) still holds for the initial conditions at the cells are identical,
and so is the collision step, such that E(~x, t) = E(~x + ∆~x1, t) = . . . = E(~x + ∆~xQ, t). At the
boundaries, this still holds if they were periodic, but the latter amounts to the trivial case
where the kinetic energy of the flow relaxes to zero. The argument for identical evolution
for a uniform initial field under periodic boundaries is visualized in Figure 4. Periodic
boundaries refer to a fully periodic domain, in all its dimensions, i.e., triply periodic in 3D,
which is typically useful for fundamental studies of homogeneous turbulence.

If (one of) boundaries are not periodic, the error is first generated in the collision step
at the boundary, and propagated to the interior of the domain. As illustrated in Figure 5,
with each time cycle, the error grows, and it propagates further inside, such that we may
speak of a numerical error boundary layer. For example, in a pipe with periodic flow, where
the error is first generated at the walls of the pipe, rather than the periodic inlet and outlet.

(a) (b) (c)

Figure 4. Illustration of how the streaming step preserves uniformity under periodic bound-
aries only, using D1Q2. The uniform initial flow with periodic boundaries coincides with the
error-free case of collision without streaming while errors form at the boundaries when non-
periodic boundary conditions are applied. We see that with the same initial conditions and
periodic boundary, local and neighboring information of discrete densities are interchangeable.
(a) Uniform initial flow field, (b) Periodic boundary conditions, (c) Non-periodic boundary condi-
tions.
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(a) (b) (c)

Figure 5. Illustration of the propagation of Carleman linearization error with timestep in a two-
dimensional domain with uniform initial flow and non-periodic boundaries. Lattice cells with no fill
have discrete exact discrete densities whereas ones with red fill have discrete densities with error.
(a) Initial condition, at t = 0, (b) After one timestep, at t = ∆t. (c) After two timesteps, at t = 2∆t.

4. Numerical Results
4.1. Logistic Equation

To demonstrate the utility of Carleman linearization, we consider the logistic equation,
as suggested by [20].

d f
dt = K f (1− f ) ∀ f ∈ [0, 1] (40)

We note that the K factor appears for both first and second order terms, and, thus,
cancels out in the calculation of R which remains dependent on the initial conditions solely.
In the results, we take K = 1. We still see an abrupt cut-off in the utility of the linearization
for the resulting analytical solution. This is explained by the fact that even though R ≤ 1,
the coefficient of the first-order term is definite positive, unity, thereby fulfilling neither
Re(λ1) < 0 [20] nor µ(F1) < 0 [18], the conditions set to gurantee error convergence.
According to [18,20], this explains the blow-up in the error shown in the analytical solution.
Namely, we restate upper-bounds for time T using the power-series method of [18]:

T =
1
‖F1‖

ln
(

1 +
‖F1‖

‖ f (t = 0)‖‖F2‖

)
= ln

(
1 +

1
‖ f (t = 0)‖

)
(41)

which predicts the time of validity for the linearization as shown in Table 2, and with which
the results agree, as the analytical solutions presented in Figure 6.

However, for the numerical solution computed through time-discretization of the
equation, we note the error shows slower evolution, giving a longer effective time-period
to work with, as could be seen with the numerical solutions extending well-beyond their
analytical counterparts before blowing up in Figure 6. Namely, we note that ||F2|| =
|Re(λMAX(F1))| = K such that their ratio is independent of K, but when the equation is
discretized f (T + ∆t) becomes dependent on f (t) and the original driving function scaled
by ∆t, ∆K( f (1− f )). Thus, the choice of K and ∆t weigh on the contribution of nonlinear
terms in the discretized equation, such that we expect more accurate solutions for smaller
∆t and/or K. This is in line with the findings for the validity of the linearization of the
Burger’s equation with R ≈ 40, and an invitation for more applied, rather than analytical,
work in the field. In terms of lattice Boltzmann, which is defined as a discretized problem,
this reveals a shortcoming of using the analytical bounds presented for a general quadratic
equation. However, given that Carlemann linearization is exact for a collision-only scheme,
and the exacerbation of the blowup of variables when streaming is considerd, as discussed
in Section 3.3, this is not investigated on a classical computer, and the results presented for
a D1Q3 lattice are limited to a collision-only scheme.
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Figure 6. The analytical (left) (analytical integration) and numerical (right) (discrete time-stepping)
solutions of the Carleman-linearized logistic equation are shown with their corresponding errors (bot-
tom) as a function of time, varying initial conditions and Carleman linearization orders. The predicted
time of validity is shown as a vertical asymptote in each plot.

Table 2. The maximum endtime validity for Carleman linearization of the logistic equation as
predicted by Equation (41).

f (t = 0) T

0 ∞
0.1 2.40
0.2 1.79
0.3 1.47
0.4 1.25
0.5 1.10
0.6 0.98
0.7 0.89
0.8 0.81
0.9 0.75
1 0.69

4.2. D1Q3

We now concern ourselves with the results of linearizing the collision term of a D1Q3
lattice Boltzmann formulation. As mentioned in methodology section, exact streaming of
the linearized system is only possible on a classical computer with the explicit computation
of the nonlinear terms, which defies the purpose of a linearization scheme. Therefore,
we restrict ourselves to the collision step only. The test case involves two steps, the first
is initializing the discrete densities of a single cell, and the second is performing succes-
sive collisions.

~f (1)(t + ∆t) = (I + F1)~f (1) + F2~f (2) + ~F0 (42)

where τ plays a role since we have the contribution of the identity matrix arising from the
discretization which does not scale by ∆t

τ whereas F2, as well as F1 and ~F0 do for that matter.

The discrete densities are initialized to differ from the weights of the model
( 1

6
2
3

1
6

)T

by the velocity, chosen to be u = 0.1. In the results shown in Figure 7, the difference has
been distributed amongst the left and right discrete densities, such that their difference is u,( 1

6 −
u
2

2
3

1
6 + u

2

)T . We note that this symmetric initialization yields the constant first-

order solution shown in blue, but it is not necessary, choosing
( 1

6
2
3

1
6 + u

)T , for example,
has also yielded exact solution from second order during our runs. Apart from the initial
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velocity, we also experiment with different timestep-relaxation time ratios, varying them
between 0.1 and 2, and we see that the exactness holds. The choice of 2 as a maximum ratio
is due to the limitations of the lattice Boltzmann scheme under considerations, as would be
discussed below. In the absence of streaming, we see in Figure 7 that the solution is exact
for all orders of linearization starting from the second.

(a) ∆t
τ = 0.1

(b) ∆t
τ = 0.5

(c) ∆t
τ = 1

Figure 7. Cont.
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(d) ∆t
τ = 1.5

(e) ∆t
τ = 1.9

(f) ∆t
τ = 2

Figure 7. The solution of the discrete densities of the fluid in D1Q3 for successive collisions is
shown for different ∆t

τ , for the exact and Carleman-linearized formulations as a function of time
and Carleman linearization order. The bottom figures show the normalized errors for each discrete
density. Note that the solution is exact beyond the first linearization order.
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In terms of computing the Carleman linearization matrices, a different approach is used
for the lattice Boltzmann scheme than for the logistic equation. In the presence of a single
variable, we know apriori the variables that would appear in the linearization, and their
derivatives are easily defined either recursively, in relation to one another, or explictly.
However, in the case of the lattice Boltzmann formulation, we have found it more efficient
to symbolically express the derivatives of each order, starting with the first, identify the
variables that do appear in the expression, and then compute the derivatives of the new
ones amongst them. As such, we avoid calculating the derivatives of all monomials, some
of which never appear in the formulations, such that we have been able to compute the
linearization up to 25th order within a handful of minutes on a regular Intel i7-8750H laptop.
Apart from the details of the implementation, setting up the Carlemann linearization
matrices allows for parallel in time computation, such that one is able to exploit algorithms
to calculate powers of matrices, to precompute the matrix for each timestep, irrespective of
the initial data.

Moreover, as could be inferred from Figure 8, with increasing linearization order, the
Carleman matrix increases in sparsity and approaches a diagonal matrix, becoming more
desirable in terms of numerical stability, and even quantum matrix-inversion algorithms.

Figure 8. Visualization of the sparsity of the Carleman matrix for the collision term at various orders.

Dynamic similarity holds for the lattice Boltzmann model of flow under consideration,
such that the Reynold’s number is equal in lattice and physical units. In lattice units, we
may write it as:

Re =
LU
ν

(43)

For the single cell considered, without streaming, there is no characteristic length scale.
We may instead define it using the characteristic velocity U and the relaxation constant
time τ. The problem setup is that of a flow of decaying velocity, such that we may use
the initial velocity u as the characteristic velocity U. Moreover, the kinematic viscosity is
defined in lattice units as:

ν = c2
S(τ −

1
2
) (44)

It becomes immediately obvious that τ > 1
2 is a limitation of the model, or in lattice

units, ∆t
τ < 2. Even in the vicinity of 2, the model is considered unstable . However, we note

that the Carleman linearized system still tracks the original system exactly beyond the
range of stability of the lattice Boltzmann model . If we define the Reynolds number for the
grid [27]:

Reg =
U∆x

c2
S(τ −

1
2 )

=
U

c2
S(τ −

1
2 )
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and consider the low-Mach number requirement for the incompressibility assumption,
typically Ma < 0.3, we may arrive at the fact that the grid Reynolds number should be
of order O(10), which in fact, for a given τ, is another way of saying that ∆x should be
chosen in physical units as small enough to capture the long-range structure that arises [27].
As for τ, the recommendation is that it is slightly larger than unity. Put together, they
indicate that the lattice Boltzmann scheme under consideration is fit for Re O(10− 100).
We take the chance here to reiterate the findings that Carleman linearization still exactly
tracks the unstable lattice Boltzmann system. Therefore, the limitations on Reynolds
number arise from the inherent limitations of the lattice Boltzmann scheme considered.
While we expect our findings to extend to other lattice Boltzmann models, this is conditional
upon the equations of the extended models and the resulting structure of the coefficient
matrices. This paper should be taken as a motivation to investigate other flavours of the
lattice Boltzmann method beyond the vanilla flavour considered here.

In terms of Carleman linearization, a τ larger than unity in lattice units spells good
news for the method. It means that the nonlinearity ratio remains bounded by unity even
when considering the time discretization:

5. Conclusions

The classical algorithm suffers from a blowup in variable count and sacrifices the
exactness of streaming. However, we have shown that the error of the classical Carleman
technique could be mitigated, even effaced, in specific applications. On the bright side,
we have shown that, at least for the case explored in this paper, the error of the Carleman
linearization decreases exponentially with the order of the linearization. This bodes well
for the development of a quantum LB algorithm based on Carleman linearization [26].
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Nomenclature

~v Continuum particle velocity
~ci Discrete velocity in the ith direction
Q Number of discrete velocities number of modes at each lattice site, indexed by i
D Number of dimensions of the lattice
x Dimensions of the lattice, indexed by d, independent position vector variable
N Number of Carleman variables
Nxd Number of sites across the dth dimension xd of the lattice
G Volume of the lattice in the units obtained by the product of the number of sites in each

dimension ΠD
d=1Nxd

fi Discrete density distribution weight

Ω Collision operator defined by d~f
dt = Ω(~f )

https://github.com/waelitani/Carleman-linearization-lattice-boltzmann
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wi Weight of the ith discrete density
Oc Truncation order in Carleman linearization
R Ratio providing measure of nonlinearity parametrizing the error bound of the Carleman

technique
F0 Coefficient vector of zero-order terms in a quadratic ODE
F1 Coefficient matrix of first-order terms in a quadratic ODE
F2 Coefficient matrix of second-order terms in a quadratic ODE
t Independent time variable
~u Flow velocity
ρ Local fluid density in lattice units
c Lattice speed
C Carleman linearization matrix
ε Norm of the solution error
fC Approximated solution of the system
∆t Discrete timestep
V Vector of Carleman variables
~e Lattice vectors
Ma Mach number
K Scaling factor of the logistic equation
T Total integration time
p Order of the polynomial describing the driving function Ω
~P(k) a vector of polynomial functions of kth order in Carlemann variables
Re Reynold’s number
L Characteristic length scale defined in units of ∆x
U Characteristic velocity in lattice units
ν Kinematic viscosity in lattice units
cs Speed of sound in lattice units
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