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Abstract: One of the most important and complex effects in compressible fluid flow simulation is a
shock-capturing mechanism. Numerous high-resolution Euler-type methods have been proposed
to resolve smooth flow scales accurately and to capture the discontinuities simultaneously. One
of the disadvantages of these methods is a numerical viscosity for shocks. In the shock, the flow
parameters change abruptly at a distance equal to the mean free path of a gas molecule, which
is much smaller than the cell size of the computational grid. Due to the numerical viscosity, the
aforementioned Euler-type methods stretch the parameter change in the shock over few grid cells. We
introduce a semi-Lagrangian Godunov-type method without numerical viscosity for shocks. Another
well-known approach is a method of characteristics that has no numerical viscosity and uses the
Riemann invariants or solvers for water hammer phenomenon modeling, but in its formulation the
convective terms are typically neglected. We use a similar approach to solve the one-dimensional
adiabatic gas dynamics equations, but we split the equations into parts describing convection and
acoustic processes separately, with corresponding different time steps. When we are looking for the
solution to the one-dimensional problem of the scalar hyperbolic conservation law by the proposed
method, we additionally use the iterative Godunov exact solver, because the Riemann invariants are
non-conserved for moderate and strong shocks in an ideal gas. The proposed method belongs to a
group of particle-in-cell (PIC) methods; to the best of the author’s knowledge, there are no similar PIC
numerical schemes using the Riemann invariants or the iterative Godunov exact solver. This article
describes the application of the aforementioned method for the inviscid Burgers’ equation, adiabatic
gas dynamics equations, and the one-dimensional scalar hyperbolic conservation law. The numerical
analysis results for several test cases (e.g., the standard shock-tube problem of Sod, the Riemann
problem of Lax, the double expansion wave problem, the Shu–Osher shock-tube problem) are
compared with the exact solution and Harten’s data. In the shock for the proposed method, the flow
properties change instantaneously (with an accuracy dependent on the grid cell size). The iterative
Godunov exact solver determines the accuracy of the proposed method for flow discontinuities. In
calculations, we use the iteration termination condition less than 10−5 to find the pressure difference
between the current and previous iterations.

Keywords: gas; shock; Riemann problem; Godunov method; Lagrangian approach; numerical viscosity

1. Introduction

Simulating compressible flows is challenging owing to the presence of discontinuities
in fluid flow, such as shocks, contact waves, and broad-band continuous flow scales.
Numerous high-resolution schemes have been proposed to resolve smooth flow scales
accurately and to capture the discontinuities simultaneously, e.g., the artificial viscosity
method [1,2], total variation diminishing (TVD) method [3], essentially non-oscillatory
(ENO) scheme [4], and weighted essentially non-oscillatory (WENO) scheme [5].

Harten et al. studied the ENO scheme [4,6–8], which was the first successful high-order
method to enable the spatial discretization of hyperbolic conservation laws that had the
ENO property. This property is considered to be very useful in the numerical simulation
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of hyperbolic conservation laws, because high-order numerical methods often produce
spurious oscillations—especially near shocks or other discontinuities. The finite-volume
ENO spatial discretization has been studied [4], where it was shown to have uniform high-
order accuracy in capturing the location of any discontinuity in fluid flow. Subsequently,
Shu and Osher [9,10] developed the finite-difference ENO scheme. The main idea of the
ENO scheme is to choose a stencil of interpolation points that suppresses oscillations, i.e.,
one chooses the stencil on which the solution varies the smoothest and approximates the
flux at the cell boundaries with high-order accuracy, thus avoiding the large, spurious
oscillations caused by interpolating data across discontinuities.

WENO schemes have been introduced [5,11,12] to address potential numerical insta-
bilities when choosing ENO stencils. WENO methods use a convex combination of all of
the ENO stencils; they achieve a higher order of accuracy than ENO methods in smooth
regions, while retaining the ENO property at discontinuities.

The aforementioned methods follow the Eulerian approach. One disadvantage of these
methods [1–24] is the presence of a numerical viscosity for shocks. Additionally, there are
methods [25–28] using the exact Riemann solver; however, they too are Eulerian methods;
moreover, these methods have numerical viscosity for shocks. Godunov et al. [25] proposed
using moving grids to eliminate this disadvantage, but this dramatically complicates the
problem, particularly in two- or three-dimensional cases. In this paper, we use a Lagrangian
Godunov-type method and a fixed homogeneous grid to eliminate the disadvantage
of numerical viscosity for shocks via a simplified approach. Additionally, we describe
wall conditions. As discussed in the following sections, the proposed method has no
numerical viscosity for shocks, as a well-known method of characteristics (MOC) [29–31].
In particular [30,31], the water hammer phenomenon modelling by the MOC using the
Riemann invariants or solvers is considered. In the MOC, the convective terms are typically
neglected, because the Riemann invariants in the water hammer problem are only weakly
interdependent [30,31]. We use a similar approach to solve the one-dimensional adiabatic
gas dynamics equations [29], but we split the equations into parts describing convection and
acoustic processes separately. Different time steps are used to solve these equations because
the local acoustic velocity (speed of sound) can differ many times from the convective
velocity of the flow. When we are looking for the solution to the one-dimensional problem
of the scalar hyperbolic conservation law via the proposed method, we additionally use
the iterative Godunov exact solver [25], because the Riemann invariants are non-conserved
for moderate and strong shocks. On the other hand, the proposed method is similar to
particle-in-cell (PIC) methods. PIC methods are readily available in the literature [32–35];
to the best of the author’s knowledge, there are no similar PIC numerical schemes using the
Riemann invariants or the iterative Godunov exact solver. Finally, it should be mentioned
that besides the Eulerian and Lagrangian approaches to the description of shocks, there is
another approach based on the variational principle [36]; however, for this approach, when
modeling flows, a numerical scheme of Eulerian or Lagrangian type is still needed.

2. Materials and Methods
2.1. A Methodological Concept for the Inviscid Burgers’ Equation

For a better understanding of an idea of the proposed method, we describe an algo-
rithm of the method for the inviscid Burgers’ equation [37]. The inviscid Burgers’ equation
is a scalar nonlinear equation given as follows:

∂ u
∂ t

+ u
∂ u
∂ x

= 0, (1)

where u is the convective velocity of flow, x is the direction, and t is the time. Equation (1)
can be solved using the proposed Lagrangian scheme. The cells are considered in pairs. We



Fluids 2022, 7, 16 3 of 39

will use two fundamental solutions of the inviscid Burgers’ equation: shock, and rarefaction
wave. The cells’ coordinates after transferring are determined as follows:

x1 = xi + uk−1
i ∆t,

x2 = xi+1 + uk−1
i+1 ∆t,

(2)

where ∆t is the time step. Furthermore, we use the following parameters: e1 = 10−4, which
is the tolerance associated with the comparison of the flow variables; and e2 = 10−8, which
is the machine arithmetic tolerance associated with the comparison of the x coordinates.

The solution is sought in the following form:

(1) If the conditions

|ui+1 − ui| < e1, (3)

are satisfied, then for all grid cells for which the conditions are satisfied, the solution at the
next time moment k is trivial:

uk
j =

1
2
(uk−1

i + uk−1
i+1 ). (4)

(2) If the conditions

(ui+1 − ui) < −e1 (5)

are satisfied, then we have the shock.
(2.1) if

(x2 − x1) > e2, (6)

then the solution is defined as

(2.1 a) if x1 ≤ xj ≤ (x1 + x2)/2 then uk
j = uk−1

i ,

(2.1 b) if (x1 + x2)/2 < xj ≤ x2 then uk
j = uk−1

i+1 .
(7)

(2.2) If
(x2 − x1) ≤ e2, (8)

then the discontinuity boundary is first determined as

x = xi + h/2 + 0.5(uk−1
i + uk−1

i+1 ) ∆t, (9)

and the solution is assigned to cell j to the left of the discontinuity boundary

uk
j = uk−1

i , (10)

and in cell j+ 1 to the right of the discontinuity boundary, the following values are assigned:

uk
j = uk−1

i+1 . (11)

(3) If

(ui+1 − ui) ≥ e1, (12)

then we have the rarefaction wave, and the solution for x1 ≤ xj ≤ x2 is determined
as follows:

uk
j = uk−1

i +
uk−1

i+1 − uk−1
i

x2 − x1
(xj − x1). (13)
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In this case, the loop over all xi is performed twice: first, for all ui ≥ e1 from n− 1 to
1, and second, for all ui ≤ −e1 from 1 to n− 1. Here, n is the number of grid cells. When
conditions (1)–(3) are satisfied, if it turns out that the solution has already been assigned
to the grid cell, then it is replaced by a new one. When assigning the solution to the grid
cells, the condition is separately checked so that the propagation of this solution at the
convection velocity does not overtake (does not overwrite) the solution of the forward
shock, if one exists. For this, at the beginning, the positions of all of the shock boundaries
at the next moment in time are determined.

The modeling area is taken to be x ∈ [a, b]. The grid contains n cells, and the grid step
h is

h =
b− a

n
, (14)

as shown in Figure 1. The time step was chosen similar to the Courant criterion.

∆t = ku
h
us

, (15)

where us is the convective velocity of the shock, and ku is an integer. For example, if ku = 4,
then the shock propagates to the four grid cells.
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Figure 1. The modeling area and the grid of the proposed method.

2.2. Basic Terms and a Methodological Concept for Adiabatic Gas Dynamics Equations

Consider the one-dimensional adiabatic gas dynamics equations [37]:

∂ρ
∂ t + u ∂ ρ

∂ x + ρ ∂ u
∂ x = 0,

∂ u
∂ t + u ∂ u

∂ x + 1
ρ

∂ p
∂ x = 0.

(16)

Here, ρ is the density and p is the pressure.
The pressure is related to the adiabatic law

p
ρκ

=
p0
ρκ0

= A = const, (17)

where κ is the ratio of specific heat coefficients at constant pressure and volume. For air,
κ = 1.4. Values ρ0 and p0 can be chosen from initial conditions of a considered problem.

As previously shown [38], the system of Equation (16) can be represented as a system
of wave equations as follows:

∂ w1
∂ t + (u− c) ∂ w1

∂ x = 0,
∂ w2
∂ t + (u + c) ∂ w2

∂ x = 0,
(18)
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where c is the sound velocity, and wi represents variables that are determined as follows:

w1 = u− P̃,

w2 = u + P̃.
(19)

Here, the function P̃ is

P̃ =
2c0

κ− 1

((
ρ

ρ0

) κ−1
2
− 1

)
, (20)

where c0 is the sound velocity, which is determined from the initial conditions as follows:

c0 =

√
κ

p0
ρ0

. (21)

Equation (18) describes a movement of two waves with velocities u− c and u + c, and
their respective transfer values w1 and w2. The system of Equation (18) can be solved using
the Lagrangian approach. In this paper, the following method is proposed: The stages of
convection and acoustics are considered separately, and splitting into physical processes is
performed because the local acoustic velocity (speed of sound) can differ greatly from the
convective velocity of the flow. Thus, at the acoustic stage we solve the system

∂ ρ
∂ t + ρ ∂ u

∂ x = 0,

∂ u
∂ t +

1
ρ

∂ p
∂ x = 0,

(22)

obtained from (16) by discarding the convective terms; its corresponding system of wave
equations is

∂ w1
∂ t − c ∂ w1

∂ x = 0,
∂ w2
∂ t + c ∂ w2

∂ x = 0,
(23)

The system (23) is obtained from (22) with help of (19).
At the convection stage, we solve the system with the convective terms only:

∂ ρ
∂ t + u ∂ ρ

∂ x = 0,
∂ u
∂ t + u ∂ u

∂ x = 0.
(24)

We apply the numerical scheme principle described above for the inviscid Burgers’
equation to find the solution of the systems (23) and (24); for more details, see Appendix A.

The time step at the acoustics stage was chosen according to the Courant criterion.

∆tc = kc
h
cs

, (25)

where cs is the acoustic velocity of the shock. For example, if kc = 3, then the shock
propagates through three grid cells at the acoustics stage.

The time step at the convection stage was chosen similar to that of (25):

∆tu = ku
h
us

, (26)
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where us is the convective velocity of the shock. For example, if ku = 2, then the shock
propagates to two grid cells at the convection stage. If ∆tc 6= ∆tu, then the marching time
step ∆t is chosen so that

∆tc = nc∆t,

∆tu = nu∆t,
(27)

where nc and nu are integers.

2.3. Basic Terms and a Methodological Concept for the One-Dimensional Scalar Hyperbolic
Conservation Law

Consider the one-dimensional scalar hyperbolic conservation law [13]:

∂ ρ
∂ t + u ∂ ρ

∂ x + ρ ∂ u
∂ x = 0,

∂ u
∂ t + u ∂ u

∂ x + 1
ρ

∂ p
∂ x = 0,

∂ ε
∂ t + u ∂ ε

∂ x +
p
ρ

∂ u
∂ x = 0.

(28)

Here, ε is the internal specific energy.
The pressure is related to thermodynamic state variables ρ and ε through the following

state equation:
p = (κ− 1) ρ ε. (29)

Godunov et al. [25] proposed the iterative exact Riemann solver implemented in a
finite-difference scheme. Instead of this method, other researchers later used a control
volume method, while we used the Lagrangian approach. In this paper, the following
method is proposed: The stages of convection and acoustics are considered separately, and
splitting into physical processes is performed because the local acoustic velocity (speed
of sound) can differ greatly from the convective velocity of the flow. Thus, at the acoustic
stage we solve the system

∂ ρ
∂ t + ρ ∂ u

∂ x = 0,

∂ u
∂ t +

1
ρ

∂ p
∂ x = 0,

∂ ε
∂ t +

p
ρ

∂ u
∂ x = 0.

(30)

and the Equation (29). The system (30) is obtained from (28) by discarding the convective
terms, and it can be represented in a matrix form as follows:

∂ ρ
∂ t
∂ u
∂ t
∂ ε
∂ t

 = [A]


∂ ρ
∂ x
∂ u
∂ x
∂ ε
∂ x

 (31)

where [A] is the Jacobian matrix

[A] =

 0 ρ 0
(κ−1)ε
ρ 0 κ− 1
0 (κ− 1)ε 0

. (32)

The matrix [A] can be expressed as

[A] = [R][Λ][L] (33)
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in terms of a diagonal matrix [Λ] of eigenvalues of the Jacobian matrix

[Λ] =

 −c 0 0
0 0 0
0 0 c

, (34)

a matrix of corresponding left eigenvectors [L], determined as

[L] =


− c
κρ 1 −κ−1

c

1 0 −ρκc2

c
κρ 1 κ−1

c

, (35)

and a matrix of corresponding right eigenvectors [R], defined as

[R] =


− ρ2c

κ−1
κ

ρ
2c

1
2 0 1

2

− c
2κ − (κ−1)ε

κρ
c

2κ

. (36)

Since
[L][R] = [E], (37)

where [E] is a diagonal identity matrix, the multiplication of Equation (31) from the left by
[L] and the use of (37) gives

[L]


∂ ρ
∂ t
∂ u
∂ t
∂ ε
∂ t

 = [Λ][L]


∂ ρ
∂ x
∂ u
∂ x
∂ ε
∂ x

. (38)

If [L] = [const], we can obtain from (38) the characteristic form

∂ w1
∂ t − c ∂ w1

∂ x = 0,
∂ w2
∂ t = 0,

∂ w3
∂ t + c ∂ w3

∂ x = 0,

(39)

where
w1 = − c∗

κρ∗ρ+ u− κ−1
c∗ ε,

w2 = ρ− κρ∗
c∗2 ε,

w3 = c∗
κρ∗ρ+ u + κ−1

c∗ ε.

(40)

Here, an asterisk indicates constant values. Equation (39) describes the movement of
two waves with velocities −c and c, and their respective transfer values, w1 and w3 (40).

The system of Equation (39) can be solved using the proposed Lagrangian approach.
However, in this paper, we use the Godunov exact solver for the solution of the full
nonlinear system (28), (29), and then subtract the convective velocity from the solution to
obtain the solution of the Equation (30). For more details, see Appendix B.

At the convection stage, we solve the system with the convective terms only:

∂ ρ
∂ t + u ∂ ρ

∂ x = 0,
∂ u
∂ t + u ∂ u

∂ x = 0,
∂ ε
∂ t + u ∂ ε

∂ x = 0,

(41)



Fluids 2022, 7, 16 8 of 39

as well as Equation (29).
The time step ∆tc at the acoustics stage was chosen according to the Courant criterion (25).

The time step ∆tu at the convection stage was chosen as (26).

3. Results

In this section, we apply the proposed method to solve several problems with different
initial and boundary conditions.

3.1. Results for the Inviscid Burgers’ Equation

Firstly, we considered the initial value problem [39] for the inviscid Burgers’ equation
with the initial conditions

u0
j = 0, if xj < 0,

u0
j = 1, if 0 ≤ xj ≤ 1,

u0
j = 0, if xj > 1.

(42)

The exact solution of the shock–rarefaction wave problem (42) was determined
as follows:

u(t, x) =


0, if x < 0

x
t , if 0 ≤ x ≤ t

1, if t < x ≤ t
2 + 1

0, if x > t
2 + 1

, for t ≤ 2, (43)

and

u(t, x) =


0, if x < 0

x
t , if 0 ≤ x ≤

√
2t

0, if x >
√

2t
, for t > 2. (44)

The modeling area was taken to be x ∈ [−1, 4]. The grid contained 50 cells, and the
grid step was h = 0.1. The time step was chosen according to the Courant criterion (15),
where us = 0.5 is the convective velocity of the shock in (42), where ku = 4, i.e., the shock
propagates to the four grid cells. The time step was ∆t = 0.8. It should be noted that the
rarefaction wave (at its right boundary) has the convective velocity ur = 1.0 in (43), and
propagates to the eight grid cells. At the time t = 2, the rarefaction wave catches up with
the shock, but is not able to overtake it (44).

The results after two and five time steps are shown in Figures 2 and 3 in comparison
to the exact solutions (43) and (44), respectively. We can see the good agreement between
the numerical and exact solutions, and that the proposed method does not have numerical
viscosity for shocks. However, owing to the accumulation of the roundoff error, the shock
in Figure 3 overtakes the exact solution by one grid cell at the shown moment in time.

Secondly, we considered the well-known test problem [40] with the periodic initial function

u0
j = 0.5 sin(−π x). (45)

The modeling area was taken to be x ∈ [−1, 1]. The grid contained 80 cells, and the
grid step was h = 0.025. The time step was chosen according to the Courant criterion (15),
where us = 0.5 is the convective velocity of the shock in (45), where ku = 2, i.e., the shock
propagates to the two grid cells. The time step was ∆t = 0.1.

The result after 11 time steps is shown in Figure 4 in comparison to the exact solution [40].
We can see the good agreement between numerical and exact solutions, and that the
proposed method does not have numerical viscosity for shocks.
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Figure 3. Velocity plot for the shock–rarefaction wave problem for the inviscid Burgers’ equation at
the time t = 4.0: the exact solution (line), and the present method (cross).

3.2. Results for the Adiabatic Gas Dynamics Equations

The first example for the adiabatic gas dynamics equations is the standard shock-tube
problem with the following initial conditions:

p0
j = 1, u0

j = 0, ρ0
j = 1, if xj < 0,

p0
j = 0.378929142, u0

j = 0, ρ0
j = 0.5, if xj ≥ 0.

(46)
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Figure 4. Velocity plot for the problem (45) for the inviscid Burgers’ equation (t = 1.1): the exact
solution [40] (line), and the present method (cross).

The modeling area was taken to be x ∈ [−1, 1]. The grid contained 200 cells, and
the grid step was h = 0.01. The time step at the acoustics stage ∆tc = 0.054218535053
was chosen according to the Courant criterion (25), where kc = 6, i.e., the shock propa-
gates through six grid cells at the acoustics stage. The time step at the convection stage
∆tu = 0.052230695168 was chosen according to a similar criterion (26), where ku = 2,
i.e., the shock propagates to two grid cells at the convection stage. The marching time step
was chosen as ∆t =∆ tc =∆ tu = 0.052230695168.

The results after 10 marching time steps t = 0.52230695168 are shown in Figures 5–7 in
comparison to the exact solution. Figures 5–7 show the absence of the numerical viscosity
for the shock. However, owing to the accumulation of the roundoff error, the shock
overtakes the exact solution by two grid cells at the shown moment in time.
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The second example for the adiabatic gas dynamics equations is the double expansion
wave problem [41] with the following initial conditions:

p0
j = 105, u0

j = −100, ρ0
j = 1.2, if xj < 0,

p0
j = 105, u0

j = 100, ρ0
j = 1.2, if xj ≥ 0.

(47)

The modeling area was taken to be x ∈ [−0.5, 0.5]. The grid contained 100 cells, and
the grid step was h = 0.01. The time step at the acoustics stage ∆tu = 0.000204939017 was
chosen according to the Courant criterion (25), where kc = 7, i.e., the shock propagates
through seven grid cells at the acoustics stage. The time step at the convection stage
∆tu = 0.0002 was chosen according to a similar criterion (26), where ku = 2, i.e., the shock
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propagates to two grid cells at the convection stage. The marching time step was chosen as
∆t =∆ tc =∆ tu = 0.0002.

The results after four marching time steps t = 0.0008 are shown in Figures 8–10 in
comparison to the exact solution. Figures 8–10 show a good agreement between the exact
and numerical solutions for the double expansion wave problem.
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3.3. Results for the One-Dimensional Scalar Hyperbolic Conservation Law

The first example is the standard shock-tube problem of Sod [42], with the following
initial conditions:

p0
j = 1, u0

j = 0, ρ0
j = 1, if xj < 0,

p0
j = 0.1, u0

j = 0, ρ0
j = 0.125, if xj ≥ 0.

(48)

The modeling area was taken to be x ∈ [−4.5, 5.5]. The grid contained 100 cells, and
the grid step was h = 0.1. The time step at the acoustics stage was chosen according to
the Courant criterion (25), where kc = 1, i.e., the shock propagates through one grid cell
at the acoustics stage. The time step at the convection stage was chosen according to (26),
where ku = 2, i.e., the shock propagates to two grid cells at the convection stage. The
marching time step was ∆tu = 0.02020929. The acoustics stage was performed in 6 time
steps ∆tc = 6∆t, and the convection stage was performed after 10 steps ∆tu = 10∆t.

The results after 110 marching time steps are shown in Figures 11–13 in comparison
to the exact solution and the data obtained by Harten [3] via the ULT1C scheme. Note
that more modern numerical schemes, such as WENO [14,24], have even higher numerical
viscosity for shocks. Therefore, we chose the ULT1C scheme for comparison. Figures 11–13
show the absence of the numerical viscosity for the shock, in contrast to the Harten method.
However, owing to the accumulation of the roundoff error, the shock is delayed by one
grid cell at the shown moment in time.

The second example is the Riemann problem of Lax [43], with the following initial conditions:

p0
j = 3.52773, u0

j = 0.69888, ρ0
j = 0.445, if xj < 0,

p0
j = 0.571, u0

j = 0, ρ0
j = 0.5, if xj ≥ 0.

(49)

The modeling area was taken as x ∈ [−8, 6]. The grid contained 140 cells, and the
grid step was h = 0.1. The time step at the acoustics stage was chosen according to the
Courant criterion (25), where kc = 2, i.e., the shock propagates through two grid cells at
the acoustics stage. The time step at the convection stage was chosen according to (26),
where ku = 3, i.e., the shock propagates through three grid cells at the convection stage.
The marching time step was ∆t = 0.2. The acoustics and convection stages were performed
at each marching time step, i.e., ∆tc = ∆tu = ∆t.
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Figure 13. Pressure plot for the shock-tube problem of Sod: the exact solution (line), the ULT1C
scheme of Harten (circle), and the present method (cross).

The results are shown in Figures 14–16 in comparison with the exact solution and the
data obtained by Harten [3] using the ULT1C scheme at the time t = 2.0. Figures 14–16
show the absence of the numerical viscosity for the shock, in contrast to the Harten method.
However, owing to the accumulation of the roundoff error, the shear wave is delayed by
one grid cell at the shown moment in time.
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Figure 14. Density plot for the Riemann problem of Lax: the exact solution (line), the ULT1C scheme
of Harten (circle), and the present method (cross).



Fluids 2022, 7, 16 16 of 39

Fluids 2022, 6, x FOR PEER REVIEW 19 of 47 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-8 -6 -4 -2 0 2 4 6

x



 

Figure 14. Density plot for the Riemann problem of Lax: the exact solution (line), the ULT1C 

scheme of Harten (circle), and the present method (cross). 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

-8 -6 -4 -2 0 2 4 6

x

u

 

Figure 15. Velocity plot for the Riemann problem of Lax: the exact solution (line), the ULT1C 

scheme of Harten (circle), and the present method (cross). 

Figure 15. Velocity plot for the Riemann problem of Lax: the exact solution (line), the ULT1C scheme
of Harten (circle), and the present method (cross).

Fluids 2022, 6, x FOR PEER REVIEW 20 of 47 
 

0

0.5

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6

x

p

 

Figure 16. Pressure plot for the Riemann problem of Lax: the exact solution (line), the ULT1C 

scheme of Harten (circle), and the present method (cross). 

The third example for the one-dimensional scalar hyperbolic conservation law is the 

double expansion wave problem [41] with the initial conditions given by (47). 

The modeling area was taken to be  x 0.5,0.5 − . Two kinds of grids were used: 

a coarse grid (100 grid points), and a finer grid (1000 grid points); the grid step was 

h 0.01=  and h 0.001= , respectively. The time step at the acoustics stage was chosen 

according to the Courant criterion (25), where ck 7= —i.e., the shock propagates 

through seven grid cells at the acoustics stage—for both the coarse grid and the finer 

grid. The time step at the convection stage was chosen according to (26), where uk 2=

—i.e., the shock propagates through two grid cells at the convection stage—for both 

grids. The marching time step was t 0.0002 =  for the coarse grid and t 0.00002 =  

for the finer grid. The acoustics and convection stages were performed at each marching 

time step, i.e., c ut t t  = = . 

The results after 4 marching time steps for the coarse grid and after 40 marching 

time steps for the finer grid ( t 0.0008= ) are shown in Figures 17–22 in comparison to 

the exact solution. Figures 17–19 show a good agreement and Figures 20–22 show a better 

agreement between the exact and numerical solutions for the double expansion wave 

problem. 

Figure 16. Pressure plot for the Riemann problem of Lax: the exact solution (line), the ULT1C scheme
of Harten (circle), and the present method (cross).

The third example for the one-dimensional scalar hyperbolic conservation law is the
double expansion wave problem [41] with the initial conditions given by (47).

The modeling area was taken to be x ∈ [−0.5, 0.5]. Two kinds of grids were used: a
coarse grid (100 grid points), and a finer grid (1000 grid points); the grid step was h = 0.01
and h = 0.001, respectively. The time step at the acoustics stage was chosen according to
the Courant criterion (25), where kc = 7—i.e., the shock propagates through seven grid
cells at the acoustics stage—for both the coarse grid and the finer grid. The time step at the
convection stage was chosen according to (26), where ku = 2—i.e., the shock propagates
through two grid cells at the convection stage—for both grids. The marching time step
was ∆t = 0.0002 for the coarse grid and ∆t = 0.00002 for the finer grid. The acoustics and
convection stages were performed at each marching time step, i.e., ∆tc = ∆tu = ∆t.
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The results after 4 marching time steps for the coarse grid and after 40 marching time
steps for the finer grid (t = 0.0008) are shown in Figures 17–22 in comparison to the exact
solution. Figures 17–19 show a good agreement and Figures 20–22 show a better agreement
between the exact and numerical solutions for the double expansion wave problem.
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Figure 21. Velocity plot for the double expansion wave problem (47) for the one-dimensional scalar
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and the present method (dotted line).
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Figure 22. Pressure plot for the double expansion wave problem (47) for the one-dimensional scalar
hyperbolic conservation law, using the finer grid (1000 grid points): the exact solution (solid line),
and the present method (dotted line).

The fourth example is the Shu–Osher shock-tube problem.
The Shu–Osher problem [44] simulates a normal shock front moving inside a one-

dimensional inviscid flow with artificial density fluctuations. The initial conditions for the
simulation are

p0
j = 10.3333, u0

j = 2.629369, ρ0
j = 3.857143, if xj < 1/8,

p0
j = 1.0, u0

j = 0, ρ0
j = 1 + 0.2 sin(16πx), if xj ≥ 1/8.

(50)
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The modeling area was taken to be x ∈ [0, 1]. Three kinds of grids were used: a coarse
grid (192 grid points), a fine grid (384 grid points), and a finer grid (1000 grid points). The
time step at the acoustics stage was chosen according to the Courant criterion (25), where
kc = 2—i.e., the shock propagates through two grid cells at the acoustics stage—for all grids.
The time step at the convection stage was chosen according to (26), where ku = 5—i.e., the
shock propagates through five grid cells at the convection stage—for all grids. The marching
time step was ∆t = 0.010270978683 for the coarse grid, ∆t = 0.005135489341 for the fine
grid, and ∆t = 0.001972027907 for the finer grid. The acoustics and convection stages were
performed at each marching time step, i.e., ∆tc = ∆tu = ∆t. To avoid additional fluctuations
in the solution, we calculated the rarefaction wave at the acoustics stage instead of (A50) as

UR
k
j = UR

k−1
i +

UR
k−1
i+1 −UR

k−1
i

x2−x1
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ER
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j = ER

k−1
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i

x2−x1
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i+1 −RR

k−1
i

x2−x1
(xj − x1),
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k
j = (κ− 1)RR

k
j ER

k
j ,

(51)

and at the convection stage instead of (A67) as

uk
j = uk−1

i +
uk−1

i+1 −uk−1
i

x2−x1
(xj − x1),

εk
j = εk−1

i +
εk−1

i+1 −ε
k−1
i

x2−x1
(xj − x1),

ρk
j = ρk−1

i +
ρk−1

i+1 −ρ
k−1
i

x2−x1
(xj − x1),

pk
j = (κ− 1)ρk

j ε
k
j .

(52)

The results are shown in Figures 23–25 in comparison with the “exact” solution [44]
at the time t = 0.178. The results show that the fine grid and the finer grid are better than
the coarse grid. However, owing to the accumulation of the roundoff error, the shock is
delayed by a few grid cells for the coarse grid results at the shown moment in time.
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The fifth example is a one-dimensional problem with initial conditions

p0
j = 101325.0, u0

j = 100.0, ρ0
j = 1.25. (53)

In this case, at the time moment t = 0, a thin wall was lowered in the channel section
x = 0.

The modeling area was taken to be x ∈ [−5, 6]. The grid contained 110 cells, and
the grid step was h = 0.1. The time step at the acoustics stage was chosen according to
the Courant criterion (25), where kc = 7, i.e., the shock propagates through seven grid
cells at the acoustics stage. The time step at the convection stage was chosen according
to (26), where ku = 6, i.e., the shock propagates through six grid cells at the convection
stage. The marching time step was ∆t = 0.002. The acoustics stage was performed at each
marching time step, i.e., ∆tc = ∆t; the convection stage was performed after three steps,
i.e., ∆tu = 3∆t.

The results are shown in Figures 26–28 in comparison with the exact solution at the
time t = 0.012. Figures 26–28 show the absence of numerical viscosity for the shock. In this
case, there is no delay caused by the shock.
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The sixth example is a one-dimensional problem with the initial conditions

p0
j = 101325.0, u0

j = 600.0, ρ0
j = 1.25. (54)

In this case, as in the third problem, at the time t = 0, a thin wall was lowered in the
channel section x = 0.

The modeling area was taken to be x ∈ [−5, 5]. The grid contained 100 cells, and the
grid step was h = 0.1. The time step at the acoustics stage was chosen according to the
Courant criterion (25), where kc = 2, i.e., the shock propagates through two grid cells at
the acoustics stage. The time step at the convection stage was chosen according to (26),
where ku = 5, i.e., the shock propagates through five grid cells at the convection stage. The
marching time step was ∆t = 0.00079. The acoustics and convection stages were performed
at each marching time step, i.e., ∆tc = ∆tu = ∆t.

The results are shown in Figures 29–31 in comparison with the exact solution at the
time t = 0.00474. Figures 29–31 show the absence of numerical viscosity for the shock. In
this case, there is no delay caused by the shock.
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4. Discussion

The numerical solution results for the aforementioned well-known test cases were
compared with the exact solutions and Harten’s data. Based on the results obtained, the
following conclusions can be drawn:

(1) The advantage of the proposed method in comparison with the known methods of
TVD, ENO, and WENO is the absence of numerical viscosity (diffusion) for shocks;

(2) The convective terms are not neglected in comparison with the MOC methods, which
is important in gas flow modeling;

(3) Over time, shocks or rarefaction waves can propagate somewhat slower or faster
than in the exact solution. This can be attributed to the rounding off of the position
of the wave fronts to the accuracy of the grid cell, owing to the use of the fixed
homogeneous grid.
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The iterative Godunov exact solver determines the accuracy of the proposed method
for flow discontinuities. In calculations, we use the iteration termination condition less
than 10−5 to find the pressure difference between the current and previous iterations.

The directions for further research are connected with two-dimensional modeling and
the study of complex flow structures caused by fluid–solid interactions.
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Nomenclature

Symbol Meaning
u Convective velocity of flow
x Direction
t Time
∆t Time step, marching time step
e1 Tolerance associated with the comparison of the flow variables
e2 Machine arithmetic tolerance associated with the comparison of the x coordinates
h Grid step
n Number of grid cells
us Convective velocity of a shock
ku Integer coefficient in the formula for the time step at the convection stage
a Left boundary of a modeling area
b Right boundary of the modeling area
ρ Density
p Pressure
κ Ratio of specific heat coefficients
c Sound velocity
wi Transfer variables of wave equations
wi Transfer vector variables
i Coordinate index
j Coordinate index
k Time index
P̃ Pressure function for adiabatic law
∆tc time step at the acoustics stage
cs Acoustic velocity of a shock
kc Integer coefficient in the formula for the time step at the acoustics stage
∆tu Time step at the convection stage
nc An integer showing how many times the time step at the acoustics stage is greater than

the marching time step
nu An integer showing how many times the time step at the convection stage is greater

than the marching time step
ε Internal specific energy
[A] Jacobian matrix
[Λ] Diagonal matrix of eigenvalues of the Jacobian matrix
[L] Matrix of corresponding left eigenvectors
[R] Matrix of corresponding right eigenvectors
[E] Diagonal identity matrix
c∗ Constant sound velocity
ρ∗ Constant density
RL Density of the exact solution of the Riemann problem on the left
RR Density of the exact solution of the Riemann problem on the right
UL Velocity of the exact solution of the Riemann problem on the left
UR Velocity of the exact solution of the Riemann problem on the right
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EL Internal specific energy of the Riemann problem on the left
ER Internal specific energy of the Riemann problem on the right
PL Pressure of the Riemann problem on the left
PR Pressure of the Riemann problem on the right
DL Velocity of the propagation of a shock or rarefaction wave of the Riemann problem

on the left
DR Velocity of the propagation of a shock or rarefaction wave of the Riemann problem

on the right
CL Local acoustic velocity of the Riemann problem on the left
CR Local acoustic velocity of the Riemann problem on the right
ρc Density after the acoustics stage
pc Pressure after the acoustics stage
uc Velocity after the acoustics stage
εc Internal specific energy after the acoustics stage
ρu Density after the convection stage
pu Pressure after the convection stage
uu Velocity after the convection stage
εu Internal specific energy after the convection stage
ur Velocity on the right
ρ0 Density for the initial conditions
p0 Pressure for the initial conditions
u0 Velocity for the initial conditions
π Pi

Appendix A. The Methodological Scheme for the Adiabatic Gas Dynamics Equations

Appendix A.1. A Scheme of the Method for the Acoustics Stage

At the acoustics stage, the system of Equation (23) is solved. These equations describe
the movement of two waves with velocities −c and c, and their respective transfer values,
w1 and w2 (19). In the proposed method, we replace variables w1 and w2 with variables
w1= {w 1 , u} and w2= {w 2 , u}, which are transferred with local acoustic velocities −c
and c, respectively.

Consider a wave propagating along the positive direction of the x-axis (to the right).
The grid cells are considered in pairs. The cells’ coordinates after transferring at the
acoustics stage for the right wave w2 are determined as follows:

x1 = xi + ck−1
i ∆tc,

x2 = xi+1 + ck−1
i+1 ∆tc.

(A1)

The solution to the problem is sought in the following form:

(1) If conditions ∣∣∣w2
k−1
i+1 −w2

k−1
i

∣∣∣ < e1,
∣∣∣ck−1

i+1 − ck−1
i

∣∣∣ < e1 (A2)

are satisfied, then for all grid cells for which the condition x1 ≤ xj ≤ x2 is satisfied, the
solution at the next time instant k is trivial, and can be given as follows:

w2
k
j =

1
2
(w2

k−1
i + w2

k−1
i+1 ), uk

j =
1
2
(uk−1

i + uk−1
i+1 ). (A3)

(2) If condition

(
ck−1

i+1 − ck−1
i

)
< −e1 (A4)

is satisfied, and
(2.1) if

(x2 − x1) > e2, (A5)



Fluids 2022, 7, 16 27 of 39

then we have a weak shock, which does not overtake the solution from the cell in front.
Hence, the solution is given as follows:

w2
k
j = w2

k−1
i , uk

j = uk−1
i , if x1 ≤ xj ≤ (x1 + x2)/2,

w2
k
j = w2

k−1
i+1 , uk

j = uk−1
i+1 , if (x1 + x2)/2 < xj ≤ x2;

(A6)

(2.2) if
(x2 − x1) ≤ e2, (A7)

(2.2 a) and if(
uk−1

i+1 − uk−1
i

)
≤ 0 and (x1 − h/2) ≤ xj ≤ (x1 + h/2),

then the solution can be given as follows:

w2
k
j = w2

k−1
i , uk

j = uk−1
i , (A8)

because we have the shock, and
(2.2 b) if (

uk−1
i+1 − uk−1

i

)
> 0 and (x2 − h/2) ≤ xj ≤ (x2 + h/2),

then
w2

k
j = w2

k−1
i+1 , uk

j = uk−1
i+1 , (A9)

because we have a rarefaction wave.

(3) If

(
ck−1

i+1 − ck−1
i

)
≥ e1,

and
(3.1) if (

uk−1
i+1 − uk−1

i

)
< e1,

then we have the shock.
(3.1 a) If

(x1 − h/2) ≤ xj ≤ (x1 + h/2),

then
w2

k
j = w2

k−1
i , uk

j = uk−1
i . (A10)

(3.1 b) If
(x1 + h/2) < xj ≤ x2,

then
w2

k
j = w2

k−1
i+1 , uk

j = uk−1
i+1 . (A11)

(3.2) If (
uk−1

i+1 − uk−1
i

)
≥ e1,

then we have a rarefaction wave, and the solution for x1 ≤ xj ≤ x2 is determined as follows:

w2
k
j = w2

k−1
i +

w2
k−1
i+1 −w2

k−1
i

x2−x1
(xj − x1),

uk
j = uk−1

i +
uk−1

i+1 −uk−1
i

x2−x1
(xj − x1).

(A12)
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Under conditions (1)–(3), if it turns out that the solution has already been assigned to
the grid cell at the given substep, then it is replaced by a new one when the pressure of the
new solution is greater than the pressure of the solution already in the grid cell. The pressure
can be obtained by subtracting u from w2; see (19). This is why for each Lagrangian cell we
assigned not only w2, but also u; thus, we replaced w2 with w2= {w 2 , u}. Additionally,
when assigning a solution to the grid cell, the condition is checked so that the propagation
of these solutions with a local acoustic velocity does not overtake (or overwrite) the solution
of the forward shock, if such a shock exists.

For the wave propagating along the negative direction of the x-axis (to the left),
and with transfer values w1= {w 1 , u}, the conditions and expressions are obtained in a
similar way.

After simulating the wave propagations along the left and right directions, we have
sets of transfer values w1= {w 1 , u} and w2= {w 2 , u}, respectively, in each cell of the
grid. Hence, we can find the solution after the acoustic substep as follows:

uk
i = 0.5(w1

k
i −w2

k
i ),

P̃
k
i = 0.5(w2

k
i −w1

k
i ),

(A13)

where the density is determined from (20) as follows:

ρk
i = ρ0

(
1 + P̃

k
i
κ− 1
2c0

) 2
κ−1

, (A14)

and the pressure pk
i can be found from the adiabatic law (17). The solution to the acoustics

stage is {p k
c , uk

c , ρk
c

}
.

Appendix A.2. A Methodological Scheme for the Convection Stage

At the convection stage, the system of Equation (24) is solved. We can replace this
system with

∂ w
∂ t

+ u
∂w
∂ x

= 0, (A15)

where w = {ρ, u}. The solution of the acoustics stage
{
ρk

c , uk
c
}

gives the initial conditions
for the convection stage w= {ρk−1

u , uk−1
u } = { ρk

c , uk
c
}

, which are transferred with local
convective velocity uk−1

u . Additionally, the cells are considered in pairs at the convection
stage. The cells’ coordinates after transferring at the convection stage are determined
as follows:

x1 = xi + uk−1
ui ∆tu,

x2 = xi+1 + uk−1
ui+1 ∆tu.

(A16)

Furthermore, after we omit subscript u, the variables here refer to the convection stage.
The solution at the convection stage is sought in the following form:

(1) if the conditions

|ui+1 − ui| < e1, |ρi+1 − ρi| < e1 (A17)

are satisfied, then for all grid cells for which the condition is satisfied, the solution at the
next time moment k is trivial:

ρk
j =

1
2
(ρk−1

i + ρk−1
i+1 ), uk

j =
1
2
(uk−1

i + uk−1
i+1 ). (A18)

When assigning the solution (A18) to the grid cells, the condition is separately checked so
that the propagation of this solution at the convection velocity does not overtake (does not
overwrite) the solution of the forward shock, if one exists. For this, at the beginning of the
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convection stage, the positions of all of the shock boundaries at the next moment in time
are determined.

(2) If the conditions

(ui+1 − ui) < e1 (A19)

are satisfied, then we have the shock.
(2.1) If

(x2 − x1) > e2, (A20)

then the solution is defined as follows:
(2.1 a) if

x1 ≤ xj ≤ (x1 + x2)/2,

then
ρk

j = ρk−1
i , uk

j = uk−1
i ; (A21)

(2.1 b) if
(x1 + x2)/2 < xj ≤ x2,

then
ρk

j = ρk−1
i+1 , uk

j = uk−1
i+1 ; (A22)

(2.2) if
(x2 − x1) ≤ e2, (A23)

then
(2.2 a) if ∣∣∣pk−1

i+1 − pk−1
i

∣∣∣ < e1,

and the discontinuity boundary is first determined as follows:

x = xi + h/2 + (uk−1
i + uk−1

i+1 ) ∆tu, (A24)

then the solution is assigned to cell j to the left of the discontinuity boundary

ρk
j = ρk−1

i , uk
j = uk−1

i , (A25)

and in cell j+ 1 to the right of the discontinuity boundary, the values are assigned as follows:

ρk
j = ρk−1

i+1 , uk
j = uk−1

i+1 . (A26)

(2.2 b) If ∣∣∣pk−1
i+1 − pk−1

i

∣∣∣ ≥ e1,

then the solution is defined as follows:

- if

pk−1
i > pk−1

i+1 and (x1 − h/2) ≤ xj ≤ (x1 + h/2),

then
ρk

j = ρk−1
i , uk

j = uk−1
i ; (A27)

- if

pk−1
i < pk−1

i+1 and (x2 − h/2) ≤ xj ≤ (x2 + h/2),

then
ρk

j = ρk−1
i+1 , uk

j = uk−1
i+1 . (A28)
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(3) If

(ui+1 − ui) ≥ e1, (A29)

then we have the rarefaction wave, and the solution for x1 ≤ xj ≤ x2 is determined from
the conservation condition of the Riemann invariants as follows:

uk
j = uk−1

i +
uk−1

i+1 −uk−1
i

x2−x1
(xj − x1),

ρk
j =

((
ρk−1

i

) κ−1
2

+
(ρk−1

i+1 )
κ−1

2 −(ρk−1
i )

κ−1
2

x2−x1
(xj − x1)

) 2
κ−1

.
(A30)

When conditions (1)–(3) are satisfied, if it turns out that the solution has already been
assigned to the grid cell at this substep, then it is replaced by a new one when the pressure
of the new solution is greater than the pressure of the solution already in the grid cell.

Appendix B. The Scheme of the Method for the One-Dimensional Scalar Hyperbolic
Conservation Law

Appendix B.1. A Methodological Scheme for the Acoustics Stage of the One-Dimensional Scalar
Hyperbolic Conservation Law

At the acoustics stage, the system of Equation (30) is solved. Although we cannot
obtain the system of wave Equation (39) for nonlinear cases, the fundamental properties
of the solution of the linear system (39) are conserved for the solution of the nonlinear
system (30). The solutions for the nonlinear system are a shock wave or a rarefaction
wave [37], just like for the linear system. Unfortunately, we do not know the variables
w1 and w3 for the nonlinear system (30), but we know the exact solution of the Riemann
problem using the Godunov method [25] for the nonlinear system (28), (29). We denote
this solution with the large variables: RL and RR—density, UL = UR—velocity, EL and
ER—internal specific energy, PL = PR—pressure, and DL and DR—velocity of propagation
of a shock or rarefaction wave, where the subscripts L and R denote the left and right
regions of an edge between the cells, respectively.

In the proposed method, we replace the variables w1 and w3 (40) with the vari-
ables w1= {P L, UL, RL, EL} and w3= {P R, UR, RR, ER}, which are transferred with lo-
cal acoustic velocities CL = DL −UL and CR = DR −UR, respectively.

We first need to solve the Riemann problem using the Godunov method [25] for every
pair of cells (i and i + 1) with data ({pi, ui, ρi, εi} and

{
pi+1, ui+1, ρi+1, εi+1

}
), respectively.

As a result, the values of the large variables {P, U, RL, EL, DL, RR, ER, DR} are obtained,
which are assigned to the grid cells as follows:

PL
k−1
i+1 = P, UL

k−1
i+1 = U, RL

k−1
i+1 = RL, EL

k−1
i+1 = EL, CL

k−1
i+1 = DL −U, (A31)

which constitute the vector w1 of the wave propagating along the negative direction of the
x-axis (to the left); and:

PR
k−1
i = P, UR

k−1
i = U, RR

k−1
i = RR, ER

k−1
i = ER, CR

k−1
i = DR −U, (A32)

which constitute the vector w3 of the wave propagating along the positive direction of the
x-axis (to the right). In the case of a rarefaction wave, the variable D assigns the velocity
of the slower characteristic of the rarefaction wave. For example, for the right rarefaction
wave, DR is given as follows:

DR = U + ci+1 −
(κ− 1)

2
(ui+1 −U), (A33)



Fluids 2022, 7, 16 31 of 39

where

ci+1 =

√
κ

pi+1
ρi+1

, (A34)

and for the left rarefaction wave DL is determined as

DL = U− ci −
(κ− 1)

2
(ui −U).DL = U− ci −

(κ− 1)
2

(ui −U). (A35)

Consider a wave propagating along the positive direction of the x-axis (to the right).
The grid cells are considered in pairs. The cells’ coordinates after transferring at the
acoustics stage for the right wave w3 are determined as follows:

x1 = xi + CR
k−1
i ∆tc, .

x2 = xi+1 + CR
k−1
i+1 ∆tc

(A36)

The solution to the problem is sought in the following form:

(1) If the conditions ∣∣∣PR
k−1
i+1 − PR

k−1
i

∣∣∣ < e1,
∣∣∣CR

k−1
i+1 −CR

k−1
i

∣∣∣ < e1 (A37)

are satisfied, then for all grid cells for which the condition x1 ≤ xj ≤ x2 is satisfied, the
solution at the next time instant k is trivial, and can be given as follows:

PR
k
j = 1

2 (PR
k−1
i + PR

k−1
i+1 ), UR

k
j = 1

2 (UR
k−1
i + UR

k−1
i+1 ),

RR
k
j = 1

2 (RR
k−1
i + RR

k−1
i+1 ), ER

k
j = 1

2 (ER
k−1
i + ER

k−1
i+1 ).

(A38)

(2) If the condition

(
CR

k−1
i+1 −CR

k−1
i

)
< −e1 (A39)

is satisfied, and
(2.1) if

(x2 − x1) > e2, (A40)

then we have a weak shock, which does not overtake the solution from the cell in front.
Hence, the solution is given as follows:

PR
k
j = PR

k−1
i , UR

k
j = UR

k−1
i , RR

k
j = RR

k−1
i , ER

k
j = ER

k−1
i , if x1 ≤ xj ≤ (x1 + x2)/2,

PR
k
j = PR

k−1
i+1 , UR

k
j = UR

k−1
i+1 , RR

k
j = RR

k−1
i+1 , ER

k
j = ER

k−1
i+1 , if (x1 + x2)/2 < xj ≤ x2;

(A41)

(2.2) if
(x2 − x1) ≤ e2, (A42)

(2.2 a) if (
UR

k−1
i+1 −UR

k−1
i

)
≤ 0 and (x1 − h/2) ≤ xj ≤ (x1 + h/2),

then the solution can be given as follows:

PR
k
j = PR

k−1
i , UR

k
j = UR

k−1
i , RR

k
j = RR

k−1
i , ER

k
j = ER

k−1
i , (A43)

because we have the shock, and
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(2.2 b) if (
UR

k−1
i+1 −UR

k−1
i

)
> 0 and (x2 − h/2) ≤ xj ≤ (x2 + h/2),

then
PR

k
j = PR

k−1
i+1 , UR

k
j = UR

k−1
i+1 , RR

k
j = RR

k−1
i+1 , ER

k
j = ER

k−1
i+1 (A44)

because we have a rarefaction wave.

(3) If

(
CR

k−1
i+1 −CR

k−1
i

)
≥ e1, (A45)

then
(3.1) if (

UR
k−1
i+1 −UR

k−1
i

)
< e1,

then we have the shock.
(3.1 a) If

(x1 − h/2) ≤ xj ≤ (x1 + h/2),

then
PR

k
j = PR

k−1
i , UR

k
j = UR

k−1
i , RR

k
j = RR

k−1
i , ER

k
j = ER

k−1
i ; (A46)

(3.1 b) if
(x1 + h/2) < xj ≤ x2,

then
PR

k
j = PR

k−1
i+1 , UR

k
j = UR

k−1
i+1 , RR

k
j = RR

k−1
i+1 , ER

k
j = ER

k−1
i+1 . (A47)

This option is possible because of the following ratio of the local acoustic velocity of
the shock to the sound velocity of the unperturbed flow ahead of its front, which can be
given as follows:

CR
k−1
i

CR
k−1
i+1

=
DR −U

cR
=
ρR
RR

√
(κ+ 1)P

2κ pR
+
κ− 1

2κ
(A48)

or

DR −U
cR

=
ρR
RR

√√√√ (κ+ 1)
2κ

(
κ+ 1− (κ− 1)ρR

RR

(κ+ 1)ρR
RR
− (κ− 1)

)
+
κ− 1

2κ
. (A49)

From the graphical analysis of this ratio, it follows that for weak shock waves, it will
be less than unity and increase indefinitely.

Particularly, the test case of a shock wave considered by Sod [42] refers to the variant
“(3.1).”

(3.2) If (
UR

k−1
i+1 −UR

k−1
i

)
≥ e1,
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then we have a rarefaction wave, and the solution for x1 ≤ xj ≤ x2 is determined from the
Riemann invariants of the hyperbolic conservation law as follows:

UR
k
j = UR

k−1
i +

UR
k−1
i+1 −UR

k−1
i

x2−x1
(xj − x1),

ER
k
j =

(√
ER

k−1
i +

√
ER

k−1
i+1 −

√
ER

k−1
i

x2−x1
(xj − x1)

)2

,

RR
k
j =

(
RR

k−1
i

(
ER

k
j

ER
k−1
i

) 1
κ−1

+ RR
k−1
i+1

(
ER

k
j

ER
k−1
i+1

) 1
κ−1
)

/2,

PR
k
j = (κ− 1)RR

k
j ER

k
j .

(A50)

Under conditions (1)–(3), if it turns out that the solution has already been assigned
to the grid cell at the given substep, then it is replaced by a new solution obtained using
the Riemann exact solver. In this case, the solution already assigned will be with the
subscript R, and the next solution that comes to this cell will be with the subscript L. The
resulting new solution is taken from the result of the Riemann problem with subscript
R. Additionally, when assigning a solution to the grid cell, the condition is checked so
that the propagation of these solutions with a local acoustic velocity does not overtake (or
overwrite) the solution of the forward shock, if such a shock exists.

For the wave propagating along the negative direction of the x-axis (to the left), and
with transfer values w1= {P L, UL, RL, EL}, the conditions and expressions are obtained
in a similar way.

After simulating the wave propagations along the left and right directions, we have
sets of transfer values w1= {P L

k, UL
k, RL

k, EL
k} and w3= {P R

k, UR
k, RR

k, ER
k}, re-

spectively, in each cell of the grid, as well as a solution from the last substep in time

{p k−1, uk−1, ρk−1, εk−1
}

(see Figure A1) for which the Riemann problem is solved by
the Godunov exact solver [25] three times. The first time the problem is solved for
data w3= {P R

k, UR
k, RR

k, ER
k} on the left and {p k−1, uk−1, ρk−1, εk−1

}
on the right

(see Figure A2), the resulting right solution is assigned to the data of the Riemann problem
solved for the third time from the left (see Figure A2). The second time the problem is
solved for the data {p k−1, uk−1, ρk−1, εk−1

}
on the left and w1= {P L

k, UL
k, RL

k, EL
k}

on the right (see Figure A3), the resulting left solution is assigned to the data of the third
problem on the right (see Figure A4). Finally, the third time the problem is solved for the
aforementioned data (see Figure A4), as a result, we again obtain the values of the large
variables {P k∗, Uk∗, RL

k∗, EL
k∗, RR

k∗, ER
k∗
}

.
Because the pressure and convective velocity are equal for the left and right sides,

their values after the acoustics stage are determined as follows:

pk
ci = pk∗

i , uk
ci = Uk∗

i . (A51)

The values for density and energy are selected as follows:

ρk
ci= RR

k∗
i , εk

ci= ER
k∗
i , if Uk∗

i ≥ 0,

ρk
ci= RL

k∗
i , εk

ci= EL
k∗
i , if Uk∗

i < 0.
(A52)

The solution to the acoustics stage is {p k
c , uk

c , ρk
c , εk

c

}
.
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Appendix B.2. A Scheme of the Method for the Convection Stage of the One-Dimensional Scalar
Hyperbolic Conservation Law

At the convection stage, the system of Equations (29) and (41) is solved. In the
proposed method, the value {p k

c , uk
c , ρk

c , εk
c} = {p

k−1
u , uk−1

u , ρk−1
u , εk−1

u

}
is transferred

with local convective velocity uk
c , i.e., the calculated results of the acoustics stage are the

initial data for the convection stage. Additionally, the cells are considered in pairs at
the convection stage. The cells’ coordinates after transferring at the convection stage are
determined as follows:

x1 = x + uk−1
ui ∆tu,

x2 = xi+1 + uk−1
ui+1 ∆tu.

(A53)

Furthermore, after we omit subscript u, the variables here refer to the convection stage.
The solution at the convection stage is sought in the following form:

(1) if the conditions

|ui+1 − ui| < e1, |ρi+1 − ρi| < e1, |εi+1 − εi| < e1 (A54)

are satisfied, then for all grid cells for which the condition is satisfied, the solution at the
next time moment k is trivial:

pk
j =

1
2
(pk−1

i + pk−1
i+1 ), uk

j =
1
2
(uk−1

i + uk−1
i+1 ), ρ

k
j =

1
2
(ρk−1

i + ρk−1
i+1 ), ε

k
j =

1
2
(εk−1

i + εk−1
i+1 ). (A55)

When assigning the solution (A55) to the grid cells, the condition is separately checked so
that the propagation of this solution at the convection velocity does not overtake (does not
overwrite) the solution of the forward shock, if one exists. For this, at the beginning of the
convection stage, the positions of all of the shock boundaries at the next moment in time
are determined.

(2) If the conditions

(ui+1 − ui) < e1 (A56)

are satisfied, then we have the shock.
(2.1) If

(x2 − x1) > e2, (A57)

then the solution is defined as follows:
(2.1 a) if

x1 ≤ xj ≤ (x1 + x2)/2,

then
pk

j = pk−1
i , uk

j = uk−1
i , ρk

j = ρk−1
i , εk

j = εk−1
i ; (A58)

(2.1 b) if
(x1 + x2)/2 < xj ≤ x2,

then
pk

j = pk−1
i+1 , uk

j = uk−1
i+1 , ρk

j = ρk−1
i+1 , εk

j = εk−1
i+1 ; (A59)

(2.2) if
(x2 − x1) ≤ e2, (A60)

then
(2.2 a) if ∣∣∣pk−1

i+1 − pk−1
i

∣∣∣ < e1,
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then the discontinuity boundary is first determined as follows:

x = xi + h/2 + (uk−1
i + uk−1

i+1 ) ∆tu (A61)

and the solution is assigned to cell j to the left of the discontinuity boundary

pk
j = pk−1

i , uk
j = uk−1

i , ρk
j = ρk−1

i , εk
j = εk−1

i , (A62)

and in cell j+ 1 to the right of the discontinuity boundary, the following values are assigned:

pk
j = pk−1

i+1 , uk
j = uk−1

i+1 , ρk
j = ρk−1

i+1 , εk
j = εk−1

i+1 , (A63)

(2.2 b) if ∣∣∣pk−1
i+1 − pk−1

i

∣∣∣ ≥ e1

then the solution is defined as follows:

- if

pk−1
i > pk−1

i+1 and (x1 − h/2) ≤ xj ≤ (x1 + h/2),

then
pk

j = pk−1
i , uk

j = uk−1
i , ρk

j = ρk−1
i , εk

j = εk−1
i ; (A64)

- if

pk−1
i < pk−1

i+1 and (x2 − h/2) ≤ xj ≤ (x2 + h/2),

then
pk

j = pk−1
i+1 , uk

j = uk−1
i+1 , ρk

j = ρk−1
i+1 , εk

j = εk−1
i+1 . (A65)

(3) If

(ui+1 − ui) ≥ e1, (A66)

then we have the rarefaction wave, and the solution for x1 ≤ xj ≤ x2 is determined from
the conservation condition of the Riemann invariants as follows:

uk
j = uk−1

i +
uk−1

i+1 −uk−1
i

x2−x1
(xj − x1),

εk
j =

(√
εk−1

i +

√
εk−1

i+1 −
√
εk−1

i
x2−x1

(xj − x1)

)2

,

ρk
j =

(
ρk−1

i

(
εk

j

εk−1
i

) 1
κ−1

+ ρk−1
i+1

(
εk

j

εk−1
i+1

) 1
κ−1
)

/2,

pk
j = (κ− 1)ρk

j ε
k
j .

(A67)

When conditions (1)–(3) are satisfied, if it turns out that the solution has already been
assigned to the grid cell at this substep, then it is replaced by a new one when the pressure
of the new solution is greater than the pressure of the solution already in the grid cell.

Appendix B.3. Boundary Conditions for a Wall

The main idea behind choosing the following boundary conditions is to study the
mechanism of wave reflection from the wall. Suppose that, at the acoustics stage, when
conditions (1)–(3) are satisfied, the wave w3= {P R, UR, RR, ER} propagates to the right
with velocity CR and meets the wall, and then it is reflected from it, and transforms into a
wave w1= {P R,−UR, RR, ER} that propagates to the left of the wall with velocity −CR.
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In this case, when the wave w1 is distributed into the grid cells, the dam-break problem
is solved using the Godunov method, where the variables on the left are the data already
assigned to the cell, and the variables on the right are w1= {P R,−UR, RR, ER} As a result,
new values of large variables {P ∗, U∗, R∗L, E∗L, D∗L, R∗R, E∗R, D∗R

}
are obtained, which are

assigned to the grid cells as follows

pk
i = P∗i , uk

i = U∗i , ρk
i = R∗Li, ε

k
i = E∗Ri, ck

i = D∗Li −U∗i . (A68)

For wave w1= {P L, UL, RL, EL} that, after meeting a wall, turns into the wave
w3= {P L, −UL, RL, EL}

pk
i = P∗i , uk

i = U∗i , ρk
i = R∗Ri, ε

k
i = E∗Ri, ck

i = D∗Ri −U∗i . (A69)

At the convection stage, we have one wave that reverses direction when it meets the
wall. Under conditions (1)–(3) of the convection stage, wave w =

{
pk, uk, ρk, εk} moves

to the right with velocity uk, meets the wall, and is reflected from it, turning into wave
w =

{
pk,−uk, ρk, εk}, which propagates to the left of the wall with velocity −uk. In this

case, when the wave w is distributed into the grid cells, the dam-break problem is solved
using the Godunov method, where the variables on the left are the data already assigned to
the cell, and the variables on the right are w =

{
pk,−uk, ρk, εk}. As a result, new values

of large variables {P ∗, U∗, R∗L, E∗L, D∗L, R∗R, E∗R, D∗R
}

are obtained, which are assigned to
the grid cells as shown in (A68). If wave w =

{
pk, uk, ρk, εk} propagates to the left, then a

similar reasoning leads to the result described using formula (A69).
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