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Abstract: The objective of the present work is to propose an extended analytical wall function that is
capable of predicting the bypass transition from laminar to turbulent flow. The algebraic γ transition
model, the k−ω turbulence model and the analytical wall function are integrated together in this
work to detect the transition onset and start the transition process. The present analytical wall
function is validated with the experimental data, the Blasius solution and the law of the wall. With
this analytical wall function, the transition onset in the skin friction coefficient is detected and the
growth rate of transition is properly generated. The predicted mean velocity profiles are found to
be in good agreement with the Blasius solution in the laminar flow, the experimental data in the
transition zone and the law of the wall in the fully turbulent flow.

Keywords: wall function; analytical wall function; transition; bypass transition; transition modeling;
algebraic transition model; intermittency

1. Introduction

Theoretically, turbulence and the laminar-to-turbulent flow transition process have
been studied, for example in Balonishnikov [1] and Ershkov [2], respectively. For engi-
neering applications, it was reported by Pacciani et al. [3,4] that transition from laminar
to turbulent flow plays a key role in modern aero-engines. This complex flow appears
for instance in low-pressure turbines where the number of blades per row is reduced to
meet the increasing demand of compact and light aircraft engines. Consequently, the load
on each blade increases with relatively low Reynolds number operations. Typically, for
industrial flow simulations, the wall function is employed when the Reynolds-averaged
Navier–Stokes (RANS) equations are solved with the turbulence model. The transition
model is used to account for the effects of transition on the mean flow.

The wall function was first proposed by Patankar and Spalding [5] and later on
improved by Launder and Spalding [6]. The wall function is useful because the turbulent
flow near the wall behaves differently in three different regions: (1) the viscous sublayer,
(2) the buffer layer and (3) the log layer, each of which possesses steep variation with
complex interfaces among them, leading to the requirement of prohibitively fine mesh,
especially for three-dimensional flow. According to the classification by Hanjalić and
Launder [7], the wall function can be categorized into five types: standard wall function
(SWF), analytical wall function (AWF), simplified analytical wall function (SAWF), blended
wall treatment (BWT), and numerical wall function (NWF). Only the AWF is considered
here. The AWF was considered as an advanced modeling approach in Saric et al. [8] that
had not yet been extensively used in industrial CFD applications. AWF has been developed
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in order to cope with non-equilibrium effects—for example, strong adverse and favorable
pressure gradient, separation, transition, compressibility and heat transfer.

The AWF was originally proposed by Craft et al. [9]. With the assumption of the linear
eddy viscosity profile beyond the viscous sublayer in the first control volume adjacent to
the wall, the AWF formulation is obtained by the analytical integration of the simplified
wall-parallel momentum equation in which the wall-parallel convection and the streamwise
pressure gradient are balanced with the wall-normal diffusion, leading to an algebraic
formulation of the wall shear stress to be prescribed as a wall-normal diffusive flux at the
wall boundary. In this first control volume adjacent to the wall, the transport equation of the
turbulent kinetic energy (k) is numerically solved using the volume-averaged formulations
of its production and dissipation terms. For the dissipation rate of turbulent kinetic energy,
its transport equation is not solved in the first control volume adjacent to the wall but its
local formulation is prescribed instead. In this way, the non-equilibrium condition can be
treated properly.

The AWF has been continually developed and evaluated in various engineering as-
pects. Craft et al. [10]) applied it to a 2D downward-directed buoyancy-modified turbulent
wall jet. Suga et al. [11] extended its capability to account for the effects of fine-grain
surface roughness on turbulent flow and heat transfer. Suga [12] extended its capabil-
ity to turbulent flow and heat transfer of a high-Prandtl-number fluid with and without
roughness. Suga and Nishiguchi [13] applied it in the interface region between a porous
wall and a clear fluid in order to bridge the flows inside and outside the porous medium.
Suga and Kubo [14] proposed an extended version of AWF to model the mass transfer
and the concentration field across undeformable air–water interfaces with and without
shear at the interface over a range of Schmidt number 1 ≤ Sc ≤ 1000. Suga et al. [15]
modified the coefficient α of the AWF eddy viscosity from a constant to a function of mean
strain rate and tested it on heat transfer of backward-facing step flow and an impinging
jet. Amano et al. [16] evaluated its performance on turbulent flow and heat transfer in
a 3D two-pass cooling channel. Omranian et al. [17] evaluated its performance on the
turbulent natural convection flows in various cavity configurations with differentially
heated walls. Wang et al. [18] applied it to 2D shock wave/turbulent boundary layer
interaction. Chedevergne [19] modified the AWF of Suga et al. [11] using the roughness
corrections of Aupoix [20,21] to improve the prediction of turbulent flow and heat transfer
over rough walls in the unstructured mesh framework. Saric et al. [8] implemented the
AWF formulation of the energy equation (AWF-e) of Suga [22] into the AVL software
and tested it in high-Prandtl-number turbulent flows in an IC engine and an E-motor
cooling jacket. However, from the literature review, there has been no AWF proposed for
transitional flows. The main objective of the present research work is to extend the AWF
capability to transitional flow prediction.

From the literature review in Fu and Wang [23], Durbin [24,25] and Dick and
Kubacki [26], transition models can be categorized into three classes: two-equation,
one-equation and algebraic (zero-equation) models. For two-equation transition models,
Langtry and Menter [27] proposed the γ− Reθ transition model, where γ is the intermit-
tency factor and Reθ is the momentum-thickness Reynolds number, while Juntasaro and
Ngiamsoongnirn [28] developed the γ− kL transition model, where kL is the kinetic energy
of laminar fluctuations. Juntasaro and Narejo [29] further improved the γ− kL transition
model to account for pressure gradient effects. Xu et al. [30] proposed another γ− kL tran-
sition model. The γ− νLF transition model of Xu et al. [31] was an extension of the work of
Xu et al. [30]; however, the kL-equation was replaced by the νLF-equation, where νLF is the
eddy viscosity of the laminar fluctuations. For one-equation transition models, a variety
of γ transition models were proposed: Lodefier et al. [32], Wang and Fu [33], Durbin [34],
Ge et al. [35], Menter et al. [36] and Juntasaro et al. [37]. Besides the intermittency factor
γ, Mayle and Schulz [38], Walters and Leylek [39], Walters and Cokljat [40] and Medina
et al. [41] developed the kL transition model. As an alternative to the kinetic energy of
laminar fluctuations kL, Lopez and Walters [42] proposed the ν′2 transition model, where
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ν′2 is the wall-normal velocity fluctuation made approximately equal to the difference
between the turbulent kinetic energy k and the kinetic energy of laminar fluctuations kL,
i.e., ν′2 ≈ k− kL. For zero-equation transition models, Kubacki and Dick [43,44] proposed
an algebraic γ transition model that requires no transport equation. Sandhu and Ghosh [45]
modified the k-equation of the SST k−ω turbulence model, where k is the turbulent kinetic
energy and ω is the specific dissipation rate of k, by (1) multiplying its production and
destruction terms by the algebraic γ expression and (2) adding three extra terms (diffusion,
source and sink) to account for the effects of transition on the mean flow.

Since the AWF has been constructed to save the computing time for industrial flow
simulations, the algebraic γ transition model of Kubacki and Dick [43,44] is thus selected
here for its simplicity, compared to other transition models, in order to essentially serve the
same economical purpose as the AWF.

2. Transition and Turbulence Models

The k − ω turbulence model of Wilcox [46] was modified in combination with the
algebraic γ transition model by Kubacki and Dick (2016a, 2016b) for the predictive capa-
bility of capturing the effect of transition on the mean flow. In this work, some constants
of the algebraic γ transition model of Kubacki and Dick [43,44] are re-calibrated for its
compatibility with AWF.

2.1. k − ω Turbulence Model

The k−ω turbulence model of Wilcox [46] was modified by Kubacki and Dick [43,44]
for the prediction of laminar-to-turbulent flow transition as follows:

Dk
Dt

=
∂

∂xj

[(
ν + σ∗

k
ω

)
∂k
∂xj

]
+ γ · Pk − β∗kω (1)

Dω

Dt
=

∂

∂xj

[(
ν + σ

k
ω

)
∂ω

∂xj

]
+ α∗

ω

k
Pk − βω2 +

σd
ω

∂k
∂xj

∂ω

∂xj
(2)

where k is the turbulent kinetic energy, ω is the specific dissipation rate of k, ν is the
kinematic viscosity, (σ∗, σ, α∗, β∗, σd) are the model constants and β is the model function.
The intermittency factor γ in Equation (1) was used by Kubacki and Dick [43,44] to detect
the transition onset and start the transition process by controlling the production term of
the k-equation with its formulation, described later in Section 2.2. The production term Pk
was modified by Kubacki and Dick [43,44] using the small-scale eddy viscosity νs as:

Pk = νs·S2 (3)

where S is the magnitude of the mean strain rate, whose definition will be provided after
Equation (7), and νs was defined by Kubacki and Dick [43,44] as:

νs =
ks

ω̃s
(4)

The small-scale specific dissipation rate of turbulent kinetic energy ω̃s in Equation (4)
retains the original form of Wilcox [46] as:

ω̃s = max
(

ω, Clim
S
a1

)
(5)

where Clim and a1 are the model constants with their standard values. The small-scale
turbulent kinetic energy ks in Equation (4) was modeled by Kubacki and Dick [43,44] to
take into account a shear-sheltering mechanism with the following definition:

ks = fss · k (6)
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where the shear-sheltering function fss was adopted from Walters and Cokljat [40] by
Kubacki and Dick [43] with the following definition:

fss = exp

[
−
(

Css
ν ·Ω

k

)2
]

(7)

where Css = 4.5 is the model constant, re-calibrated in this work for compatibility with
AWF. In Equation (3) and Equation (5), S =

√
2SijSij is the magnitude of the mean

strain rate with Sij = 0.5
(
∂Ui/∂xj + ∂Uj/∂xi

)
where Ui and Uj are the velocity com-

ponents. In Equation (7), Ω =
√

2ΩijΩij is the magnitude of the mean rotation rate with

Ωij = 0.5
(
∂Ui/∂xj − ∂Uj/∂xi

)
.

Based on Walters and Cokljat [40], the turbulent kinetic energy k was divided by
Kubacki and Dick [43,44]) into two parts: ks (small scale) and kl (large scale). The small-
scale part ks was already defined in Equation (6) while the large-scale part kl is calculated by:

kl = k− ks (8)

Similarly, the eddy viscosity νT used in the momentum equations was also divided
by Kubacki and Dick [43,44]) into two parts: νs (small scale) and νl (large scale). The
small-scale part νs was already defined in Equation (4) whereas the large-scale part νl is
calculated by:

νl =
kl
ω̃l

(9)

where the large-scale specific dissipation rate of turbulent kinetic energy ω̃l was proposed
by Kubacki and Dick [43,44]) to have the same functional form as ω̃s as follows:

ω̃l = max
(

ω, Clim
S
a2

)
(10)

where a2 is the model constant that was calibrated by Kubacki and Dick [43,44] for the
transition prediction.

According to Wilcox [46] and Kubacki and Dick [43,44], the model constants and
functions used can be summarized as follows:

Wilcox [46]:

σ∗ = 0.6, σ = 0.5,

β∗ = 0.09, β = β0 fβ, β0 = 0.0708, fβ = 1+85χω
1+100χω

, χω =

∣∣∣∣ΩijΩjkSki

(β∗ω)3

∣∣∣∣,
α∗ = 0.52, Clim = 0.875, a1 = 0.3, σdo = 0.125 and

σd =

{
0, ∂k

∂xj
∂ω
∂xj
≤ 0 (near wall)

σdo, ∂k
∂xj

∂ω
∂xj

> 0

Kubacki and Dick [43,44]:
a2 = 0.45

2.2. Algebraic γ Transition Model

The algebraic γ transition model of Kubacki and Dick [43,44] is expressed as:

γ = min
[

max
(

y∗

Aγ
− 1, 0

)
, 1
]

(11)

where y∗ = y
√

k/ν, with y being the wall-normal distance and Aγ = 45 is the model
constant, re-calibrated in this work for compatibility with AWF.
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3. Analytical Wall Function

The analytical wall function (AWF) is used only for the first layer of all near-wall cells
(hereafter the near-wall cell P) adjacent to the surface. According to Craft et al. [9], Suga [47]
and Hanjalić and Launder [7], the AWF formulations can be summarized as seen below.

3.1. Eddy Viscosity of the Near-Wall Cell P

As proposed in Craft et al. [9], the eddy viscosity of the near-wall cell P was assumed
to have the following variation:

νT = max[0, α · ν · (y∗P − y∗ν)] (12)

where α = CµC`, Cµ = 0.09, C` = 2.55, y∗ν = 10.7 and y∗P = yP
√

ks,P/ν at the center of the
near-wall cell P. In Equation (12), ks,P is proposed in this work to calculate y∗p.

3.2. Wall Shear Stress at Face s (South) of the Near-Wall Cell P

At face s of the near-wall cell P, the wall shear stress that is proposed in this work to
account for laminar, transitional and turbulent flows is modeled in the framework of AWF
as follows:

τw = max

1
2

ρU2
∞·C f ,Blasius︸ ︷︷ ︸
laminar

,
AU
√

ks,P

ν︸ ︷︷ ︸
turbulent

 (13)

where ρ is the fluid density, U∞ is the free-stream velocity, C f ,Blasius = 0.664/
√

Rex is the
local skin friction coefficient of Blasius solution with Rex = U∞x/ν, ks,P is the small-scale
part of k given in Equation (6) at the center of the near-wall cell P, and AU is expressed as:

AU =
Un − CU

2µ (y
∗
ν)

2 − CU
αµ (y

∗
n − y∗ν) +

CU
α2µ

(1− αy∗ν) ln|1 + α(y∗n − y∗ν)|
y∗ν
µ + 1

αµ ln|1 + α(y∗n − y∗ν)|
(14)

where µ is the dynamic viscosity, Un is the mean velocity at face n (north) of the near-wall
cell P, y∗n = yn

√
kP/ν is the dimensionless wall-normal distance at face n of the near-wall

cell P, and CU is expressed as:

CU =
ν2

kP

(
ρU

∂U
∂x

+
∂P
∂x

)
(15)

where P is the pressure, and the first and second terms in the bracket are the wall-parallel
convection and the streamwise pressure gradient, respectively. In Equation (14), AU is
the constant of integration that appears when the simplified x-momentum equation is
integrated in the wall-normal direction y over the near-wall cell P using the eddy viscosity
in Equation (12). The formulation of AU in Equation (14) is obtained by satisfying the
wall-parallel velocity profiles U of both the viscous sublayer and the turbulent-flow layer
with boundary conditions at the wall, at the north face of the near-wall cell P and at the
interface between the viscous sublayer and the turbulent-flow layer.

3.3. k-Equation of the Near-Wall Cell P

The k-equation of Craft et al. [9] is directly adopted in this work only in the near-wall
cell P. Its volume-averaged sink term is ε, which is calculable as a function of (k, ν, y) as
shown in Equation (17). The k-equation of the near-wall cell P is numerically solved using
the following volume-averaged production and dissipation terms, respectively:
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−
Pk =

ρks,PC2
U

α3µ5y∗n

{
1
2 µ2
[
2α(y∗n − y∗ν) + α2(y∗n − y∗ν)

2
]

+(2CM − µ)αµ(y∗n − y∗ν)
+
(
C2

M − 2CMµ
)

ln|1 + α(y∗n − y∗ν)|

−C2
Mα(y∗n−y∗ν)

1+α(y∗n−y∗ν)

} (16)

−
ε =


k2

P
νy∗n

(
2
y∗ε

+ 1
C`

ln
∣∣∣ y∗n

y∗ε

∣∣∣), y∗ε ≤ y∗n
2k2

P
ν(y∗ε )

2 , y∗ε > y∗n
(17)

where y∗n = yn
√

ks,P/ν and ks,P are proposed in this work to calculate Pk, y∗ε = 5.1 and CM
is expressed as:

CM = µ

[
α

(
y∗ν +

AU
CU

)
− 1
]

(18)

The volume-averaged intermittency factor γ of the near-wall cell P is proposed in
this work as a multiplier of the volume-averaged production term of k-equation Pk in
Equation (16) to detect the transition onset and start the transition process in AWF. γ is
obtained by integrating the intermittency factor γ in Equation (11) over the near-wall cell
P as:

γ = min

{
max

[
1
y∗n

(
(y∗n)

2 − (y∗ν)
2

2Aγ
− (y∗n − y∗ν)

)
, 0

]
, 1

}
(19)

where the model constant Aγ = 30 is proposed in this work.

3.4. ω-Equation of the Near-Wall Cell P

The ω-equation of the near-wall cell P is not numerically solved but ωP at the center
of the near-wall cell P is prescribed as:

ωP =


6ν

β1y2
P

, y∗P < y∗ω
√

kP
αyP

, y∗P ≥ y∗ω
(20)

where β1 = 0.0708 and y∗ω = 6α/β1 = 19.4491.

4. Results and Discussion

The present AWF in combination with the currently modified versions of the k−ω
turbulence model of Wilcox [46] and the algebraic γ transition model of Kubacki and
Dick [43,44], hereafter AWF-transition, is implemented into an in-house CFD code which
is based on the cell-centered finite-volume method. The convection terms are discretized
by the QUICK scheme while the second-order central difference scheme is used for the
diffusion terms. The SIMPLE algorithm is employed to couple the pressure and the velocity.
The Rhie–Chow interpolation is used to handle the collocated grid arrangement. The
convergence criteria is set to be equal to 10−4.

The standard T3A test case of ERCOFTAC by Coupland [48] is used to validate the
proposed AWF-transition formulation for predicting bypass transition. The computational
domain and boundary conditions of T3A are illustrated in Figure 1. The structured mesh
used is composed of 300 (clustering near the leading edge) × 100 (uniform with ∆y+ ∼= 40
at outlet) in the x- and y-directions, respectively, which is selected after performing grid-
independent study. The mesh distribution is displayed in Figure 2. The flow condition of
T3A is summarized in Table 1.
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Table 1. Flow condition of T3A.

Test Case U∞ (m/s) Tu∞ (%) Viscosity Ratio
(νT/ν)∞

ReL

T3A 5.4 3.6 12 6.1 × 105

Using the inlet condition in Table 1, the decay of the free-stream turbulence intensity
is well matched between the prediction and the experimental data in the case of T3A, as
shown in Figure 3.

Figure 4 shows the skin friction coefficient distribution along a flat plate where the
AWF-transition result is compared with the experimental data. It reveals that the present
AWF-transition can capture the laminar-to-turbulent flow transition, although a coarse
mesh is employed.

The mean velocity profile at x = 0.695 m in the transition zone is plotted in wall
units (u+ = U/uτ , y+ = yuτ/ν) and in the same dimensionless form as Blasius solution(
U/U∞, η = y

√
U∞/νx

)
in Figure 5a,b, respectively, where the AWF-transition result is

compared with the experimental data in both scaling forms, including the law of the wall
in Figure 5a and the Blasius solution in Figure 5b. It reveals that the present AWF-transition
is capable of predicting the mean velocity profile in the transition zone. It can be noticed
from the experimental data that the flow is neither fully turbulent nor laminar because the
log layer is not yet established and the Blasius solution is no longer valid at this location in
the transition zone.
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In Figure 6, the velocity profile at x = 0.195 m in the laminar zone is shown where
the AWF-transition result is compared with both the experimental data and the Blasius
solution. Even though there are very few grid points in the wall-normal direction inside the
laminar boundary layer, the AWF-transition result agrees well with both the experimental
data and the Blasius solution.
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Figure 6. Velocity profile of T3A in the laminar zone.

In Figure 7, the mean velocity profile at x = 0.895 m in the fully turbulent zone is
plotted in wall units, where the AWF-transition result is compared with both the exper-
imental data and the law of the wall. The AWF-transition result is in good agreement
with the experimental data and the law of the wall. At this location in the fully turbulent
zone, the log layer is well established as demonstrated by the experimental data and also
the AWF-transition result. However, the AWF-transition result is slightly over-predicted
compared to the experimental data.
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5. Conclusions

In this work, the capability of AWF was extended to the prediction of the bypass-
transition effect on the mean flow. To capture the transition onset and the transition
process, the presently modified versions of the algebraic γ transition model of Kubacki
and Dick [43,44] and the k−ω turbulence model of Wilcox [46] were integrated into the
proposed AWF-transition of an in-house CFD code. For validation, the T3A test case
of bypass transition was used. This AWF-transition showed the predictive capability of
detecting the transition onset and the transition process in the distribution of C f over a flat
plate. Moreover, the mean velocity profiles were well predicted in laminar, transitional and
fully turbulent regions.
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