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Abstract: Lattice Boltzmann (LB) methods are usually developed on cubic lattices that discretize
the configuration space using uniform grids. For efficient computations of anisotropic and inhomo-
geneous flows, it would be beneficial to develop LB algorithms involving the collision-and-stream
steps based on orthorhombic cuboid lattices. We present a new 3D central moment LB scheme based
on a cuboid D3Q27 lattice. This scheme involves two free parameters representing the ratios of
the characteristic particle speeds along the two directions with respect to those in the remaining
direction, and these parameters are referred to as the grid aspect ratios. Unlike the existing LB
schemes for cuboid lattices, which are based on orthogonalized raw moments, we construct the
collision step based on the relaxation of central moments and avoid the orthogonalization of moment
basis, which leads to a more robust formulation. Moreover, prior cuboid LB algorithms prescribe
the mappings between the distribution functions and raw moments before and after collision by
using a moment basis designed to separate the trace of the second order moments (related to bulk
viscosity) from its other components (related to shear viscosity), which lead to cumbersome relations
for the transformations. By contrast, in our approach, the bulk and shear viscosity effects associated
with the viscous stress tensor are naturally segregated only within the collision step and not for such
mappings, while the grid aspect ratios are introduced via simpler pre- and post-collision diagonal
scaling matrices in the above mappings. These lead to a compact approach, which can be interpreted
based on special matrices. It also results in a modular 3D LB scheme on the cuboid lattice, which
allows the existing cubic lattice implementations to be readily extended to those based on the more
general cuboid lattices. To maintain the isotropy of the viscous stress tensor of the 3D Navier–Stokes
equations using the cuboid lattice, corrections for eliminating the truncation errors resulting from
the grid anisotropy as well as those from the aliasing effects are derived using a Chapman–Enskog
analysis. Such local corrections, which involve the diagonal components of the velocity gradient
tensor and are parameterized by two grid aspect ratios, augment the second order moment equi-
libria in the collision step. We present a numerical study validating the accuracy of our approach
for various benchmark problems at different grid aspect ratios. In addition, we show that our 3D
cuboid central moment LB method is numerically more robust than its corresponding raw moment
formulation. Finally, we demonstrate the effectiveness of the 3D cuboid central moment LB scheme
for the simulations of anisotropic and inhomogeneous flows and show significant savings in memory
storage and computational cost when used in lieu of that based on the cubic lattice.

Keywords: lattice boltzmann method; cuboid lattice; central moments; multiple relaxation times;
D3Q27 lattice; Chapman–Enskog analysis; three dimensional flow benchmarks; anisotropic flows

1. Introduction

The lattice Boltzmann (LB) methods, which arise as minimally discretized numerical
schemes of the Boltzmann transport equation—a cornerstone formulation in kinetic theory,
have attracted much attention in recent decades [1–5]. As a mesoscopic approach, these
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methods have enriched the variety of computational fluid dynamics (CFD) techniques that
are being developed and has been applied to a wide range of fluid flows successfully [6–9].
This involves the evolution of the distribution of the particle populations by a collision
step, which is then followed by lock-step advection along discrete directions—referred to
as the streaming step.

The former is often modeled by a relaxation of the distributions (e.g., [10]) or their
moments (e.g., [11]) to equilibria. The discrete particle velocity directions are referred to
as the lattice, which are usually designed to obey the associated physical symmetry and
isotropy of the fluid flow being simulated. The lattice is usually referred to by the notation
DdQq, where d represents the number of spatial dimensions and q denotes the number of
discrete particle directions.

The macroscopic fields, such as the fluid velocity, are obtained from the lower order
moments of the distribution functions, while the higher order kinetic moments can be
constructed to evolve so as to facilitate the numerical robustness of the method. The linear
advection and locally nonlinear collision of the LB method, along with its ability to naturally
represent the physics of complex fluids and flows based on kinetic models, are among the
important assets of this approach.

Anisotropic and inhomogeneous fluid motions involve relatively large spatial varia-
tions in the characteristic features of the fluid flow in one or more directions when compared
with in the other directions. These include shear flows, flows around boundary layers, and
in compacted geometrically disordered media, where the characteristic length scales or
spatial gradients in the flow are dominant in certain directions relative to others. Such
multidimensional flows governed by the Navier–Stokes equations can be more efficiently
computed using methods that use grids that naturally conform with the direction-specific
non-homogeneities inherent to the problem of interest.

The LB methods, on the other hand, are usually constructed using uniform lattice
grids, such as using a square lattice in two-dimensions (2D) and a cubic lattice in three-
dimensions (3D) in order to satisfy their symmetry and isotropy requirements. One
approach to overcome this issue is to employ nonuniform grids with the LB method
augmented using interpolations (e.g., [12,13]), which, however, introduce considerable
additional numerical dissipation compromising the accuracy of the approach [14].

Alternatively, conventional discretizations, such as finite difference, finite volume, or
finite element approaches (e.g., [15,16]) could be used, which, however, entail additional
complexity and overhead to the LB schemes. It is, thus, desirable to use the standard
LB discretization along the particle characteristics that preserve the lock-step or perfect
streaming with relatively low attendant numerical dissipation while allowing the use of
different particle speeds along different directions. Such types of LB schemes are associated
with the use of rectangular lattice grids in 2D and cuboid lattice grids in 3D.

Starting from the initial work of Koelman [17] much focus has been given to the
construction of the LB methods on rectangular grids during the last two decades using
different collision models with some necessary modifications to the algorithm to satisfy
the Navier–Stokes (NS) equations. In the simpler rectangular LB versions, the single-
relaxation-time (SRT) model has been modified by including additional particle velocities
and whose equilibria were constructed via solving a quadrature problem [18], by extending
the equilibrium distribution functions with additional corrections to restore the isotropy
effects [19], or by including some counteracting forcing terms [20].

On the other hand, by exploiting the additional degrees of freedom existing in the
multiple-relaxation-time (MRT) collision model based on raw moments, rectangular LB
schemes were constructed in the following four different ways: (i) by coupling between
various relaxation parameters and the grid aspect ratio via a linear stability analysis [21],
(ii) by keeping the matrix of the transformation between the moment space and the velocity
space of the distribution functions independent of the grid aspect ratio [22], (iii) by using
an additional adjustable parameter that determines the relative orientation in the energy-
normal stress subspace via an inverse design analysis based on the Chapman–Enskog
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expansion [23], and (iv) by extending the equilibrium moments to include the stress
components for restoring the isotropy of the recovered macroscopic equations [19].

Zong et al. [23] demonstrated that the emergent continuum limit equations of some
of the earlier rectangular LB formulations [17,21,22] were not fully consistent with the NS
equations. Moreover, although the latter rectangular LB schemes [19,23] yielded physically
correct formulations, they require cumbersome implementations involving the specifica-
tion of many free parameters and complicated expressions for the transport coefficients
and mapping matrices dependent on the grid aspect ratio, and, like the other consistent
schemes [18,20], are subject to major stability issues at lower grid aspect ratios when
simulating flows at relatively large characteristic flow velocities or low viscosities.

The rationale for the limitations of the prior rectangular LB schemes were clarified
in our recent work [24–26]. These include their choice of the orthogonal moment basis,
construction of the discrete equilibria involving only the lower order velocity terms and
without correcting for the non-Galilean invariant cubic velocity errors arising from aliasing
effects, and the use of collision models based on raw moments. Moreover, it was indicated
in an earlier work for standard lattices (square or cubic) [27,28] that the use of central
moments and avoiding the orthogonalization of the moment basis leads to significant
stability improvements.

The construction of the collision step in the LB formulations using central moments
based on the peculiar velocity [29,30] naturally maintains the Galilean invariance of the mo-
ments independently supported by the lattice and its advantages have been demonstrated
for a variety of fluid dynamical problems (see e.g., [31–36]). Based on these considerations,
we proposed a 2D central moment rectangular LB scheme recently and demonstrated
its superior numerical features for simulating flows at higher Reynolds numbers using
relatively small grid aspect ratio when compared to the other existing LB methods based
on the rectangular lattice [24–26].

Since anisotropic and inhomogeneous flows in situations of practical interest are often
3D in nature, it would be beneficial to develop LB algorithms on cuboid lattices. There
exist few prior studies in this regard. For example, Hegele et al. [18] presented a SRT-LB
scheme using a D3Q23 lattice that involves the use of two additional particle velocities
in each of the two Cartesian directions embedded to the D3Q19 lattice and constructed
the equilibrium distribution functions by solving a quadrature problem to ensure the
desired isotropy.

They evaluated the accuracy of the resulting approach for simulating cylindrical
waves by using grid sizes with only small deviations from the cubic lattice. Later, Jiang and
Zhang [37] presented a cuboid LB scheme using a D3Q19 lattice for simulations of porous
media. However, due to severe numerical stability restrictions, it was able to use grid
aspect ratios with minor variations from unity. More recently, Wang et al. [38] presented
a raw moment-based MRT-LB scheme on the D3Q19 cuboid lattice, which utilized an
orthogonal moment basis.

The equilibria and the transport coefficients were constructed via an inverse design
analysis to satisfy the Navier–Stokes equations and involved the specification of many
free parameters entailing a cumbersome implementation of the method. The resulting
numerical approach was validated for some benchmark flow problems at moderate grid
aspect ratios. Here, it should be pointed out that the choice of the equilibria plays a crucial
role in maintaining the physical isotropy of the fluid flow equations [39]. This can be
naturally constructed by matching with the continuous Maxwell distribution as done in
central moment LB formulations rather than involving complicated fitting of parameters.

Moreover, as mentioned above, the use of central moments is expected to provide
significant improvements to the state-of-the-art in LBM based on non-cubic grids. However,
a 3D central moment LBM based on a cuboid lattice does not currently exist in the literature,
which can be constructed via an extension and significant modification of our recent work
on the rectangular lattice [26] and is the main objective of this present paper.
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In this study, we present a new 3D cuboid central moment LB method on a D3Q27
lattice. This is referred to as the 3DCCM-LBM in what follows, and is parameterized by
two grid aspect ratios representing the ratios of the characteristic particle speeds along
the two directions with respect to those in the remaining direction. The D3Q27 lattice
is chosen since it provides greater possible isotropy and accuracy when compared to its
D3Q15 and D3Q19 lattice subsets [40]; however, the equilibria corrections needed for the
D3Q27 cuboid lattice to satisfy the NS equations (see below for more details) are applicable
for these lattice subsets as well.

In contrast to the prior approaches, our cuboid LB scheme will be constructed by using
a natural moment basis that avoids orthogonalization, and the discrete central moment
equilibria are specified by matching with those corresponding to the continuous Maxwell
distribution function. Moreover, the prior LB algorithms on stretched lattice grids based on
the various collision models discussed above, including our recent 2D rectangular central
moment LB scheme [26], prescribe the transformations between the distribution functions
and raw moments before and after collision by using a moment basis that separates the
trace of the second order moments (related to the bulk viscosity) from its other components
(related to shear viscosity).

The use of this strategy in the context of the 3D formulations based on the cuboid
lattice would result in quite complicated transformation matrices dependent on the grid
aspect ratios. This is obviated in our present approach by naturally separating the bulk and
shear viscosity effects associated with the viscous stress only within the collision step and
not for such transformations, and the effect of the grid aspect ratios are introduced via much
simpler pre- and post-collision diagonal scaling matrices in such mappings. We will show
the resulting compact approach can be naturally interpreted based on special matrices.

The truncation errors resulting from the grid anisotropy associated with the cuboid
lattice as well as those due to the aliasing effects will be eliminated by deriving the necessary
correction terms from a Chapman–Enskog analysis, which will be augmented to the second
order moment equilibria. The resulting 3DCCM-LBM is modular in construction in that
the existing 3D central moment (and also its special case involving raw moment) based
algorithms developed for the cubic lattices can be readily extended to cuboid lattices by
using the corrections to the moment equilibria derived in this work and introducing the
pre- and post-collision diagonal scaling matrices based on the grid aspect ratios.

Our cuboid LB approach will be first validated against the analytical solutions and/or
numerical results for standard benchmark flow problems. The advantages of this scheme
in efficiently simulating an example inhomogeneous and anisotropic flow problem with
significant savings in memory storage and computational effort will then be demonstrated.
Moreover, we will also show numerical stability improvements in the use of our 3D central
moment scheme when compared to that based on raw moments for computation of shear
flows at relatively large flow velocities and/or low viscosities.

The organization of this paper is as follows. Section 2 presents a Chapman–Enskog
multiscale analysis of a 3D LB equation based on the non-orthogonal moment basis using a
D3Q27 cuboid lattice. Since the viscous stress tensor in the NS equations is based on the
second order non-equilibrium raw moments that are the same as the corresponding second
order non-equilibrium central moments, it suffices to present our analysis based on the
simpler raw moment formulation; and as part of this, we will identify the correction terms
involving velocity gradients and grid aspect ratios for eliminating the grid anisotropy and
non-Galilean invariant cubic velocity related truncation errors and show consistency with
the 3D NS equations.

Formulas for computing the local strain rate tensor based on non-equilibrium mo-
ments and parameterized by the grid aspect ratios will also be derived in this section.
In Section 3, we will discuss the complete details of the implementation aspects of our
3DCCM-LBM. Additional algorithmic details in this regard are given in various appendices
(see Appendices A–D). Formulas for the momentum-augmented bounce-back scheme for
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the D3Q27 cuboid lattice that are dependent on the grid aspect ratios for simulating shear
flows due to moving boundaries are derived and summarized in Section 4.

Section 5 presents a numerical validation study of the 3DCCM-LBM using different
grid aspect ratios for a variety of benchmark flow problems. This is followed by a demon-
stration of the computational effectiveness of using cuboid grids (via 3DCCM-LBM) in lieu
of utilizing cubic grids for simulating inhomogeneous and anisotropic flows in Section 6
and the numerical stability improvements achieved with using central moments rather
than raw moments on the D3Q27 cuboid lattice at different grid aspect ratios in Section 7.
Finally, the main conclusions of this work are given in Section 8.

2. Chapman–Enskog Analysis on a D3Q27 Cuboid Lattice: Isotropy Corrections,
Macroscopic Flow Equations, and Local Formulas for the Strain Rate Tensor
2.1. Cuboid Lattice Parameters, Moment Basis, and Definitions of Central Moments and
Raw Moments

The cuboid grid based on the three dimensional, twenty seven velocities (D3Q27)
lattice used in deriving the formulation in what follows is shown in Figure 1.

Figure 1. Three-dimensional, twenty seven particle velocity (D3Q27) cuboid lattice.

The components of the particle velocities e =
(
ex, ey, ez

)
in the y and z directions

are related to the grid aspect ratios r and s, respectively, which is defined below. In other
words, these two free parameters represent the ratios of the characteristic particle speeds
along the y and z directions with respect to those in the x direction, and formalize the
flexibility accorded by the cuboid lattice. Thus, if ∆x, ∆y, and ∆z are the space steps in the
x, y, and z directions, respectively, for evolving over a time step ∆t that would then fix the
particle speeds in the respective directions (i.e., cx = ∆x/∆t, cy = ∆y/∆t, and cz = ∆z/∆t),
we can then define the grid aspect ratios as r = ∆y/∆x, and s = ∆z/∆x.

As is standard in LB formulations, we work with the usual lattice units for simplicity
in the following, i.e., the reference space step in the x direction and the time step are taken to
be unity: ∆x = 1 and ∆t = 1. Thus, ∆y = r and ∆z = s. We now clarify the notations used
in Figure 1, where the magnitude of each of the particle velocity is the distance between the
head and tail of an arrow representing that direction; in lattice units, with a unit time step,
the Cartesian components of the length of each lattice direction or the streaming distance
are bounded by (1, r, s).

Now, since in Figure 1, for every particle velocity direction, its opposite counterpart
is also depicted, the total distance for such a pair encompasses a length with compo-
nents (2, 2r, 2s) as shown. Based on these considerations, we can then list the Cartesian
components of the particle velocities for the D3Q27 cuboid lattice as follows:

|ex〉 = (0, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1)†, (1a)

|ey〉 = (0, 0, 0, r,−r, 0, 0, r, r,−r,−r, 0, 0, 0, 0, r,−r, r,−r, r, r,−r,−r, r, r,−r,−r)†, (1b)

|ez〉 = (0, 0, 0, 0, 0, s,−s, 0, 0, 0, 0, s, s,−s,−s, s, s,−s,−s, s, s, s, s,−s,−s,−s,−s)†, (1c)
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where |·〉 denotes a column vector based on the standard ‘ket’ notation and † refers to
taking the transpose of any array. We will also need the following 27-dimensional vector
with unit elements in what follows:

|1〉 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)†. (2)

We then define a linearly independent set of non-orthogonal basis vectors for the
D3Q27 cuboid lattice using a combination of the monomials of the type |em

x en
y ep

z 〉 for integer
exponents m, n, and p [30] as follows:

T =
[
|T0〉 , |T1〉 , |T2〉 , . . . , |T26〉

]†
, (3)

where [30]

|T0〉 = |1〉 , |T9〉 = |e2
x + e2

y + e2
z〉 |T18〉 ,= |e2

xe2
y + e2

xe2
z − e2

ye2
z〉 ,

|T1〉 = |ex〉 , |T10〉 = |exe2
y + exe2

z〉 , |T19〉 = |e2
xe2

y − e2
xe2

z〉 ,
|T2〉 = |ey〉 , |T11〉 = |e2

xey + eye2
z〉 , |T20〉 = |e2

xeyez〉 ,
|T3〉 = |ez〉 , |T12〉 = |e2

xez + e2
yez〉 , |T21〉 = |exe2

yez〉 ,
|T4〉 = |exey〉 , |T13〉 = |exe2

y − exe2
z〉 , |T22〉 = |exeye2

z〉 ,
|T5〉 = |exez〉 , |T14〉 = |e2

xey − eye2
z〉 , |T23〉 = |exe2

ye2
z〉 ,

|T6〉 = |eyez〉 , |T15〉 = |e2
xez − e2

yez〉 , |T24〉 = |e2
xeye2

z〉 ,
|T7〉 = |e2

x − e2
y〉 , |T16〉 = |exeyez〉 , |T25〉 ,= |e2

xe2
yez〉 ,

|T8〉 = |e2
x − e2

z〉 , |T17〉 = |e2
xe2

y + e2
xe2

z + e2
ye2

z〉 , |T26〉 = |e2
xe2

ye2
z〉 .

(4)

As discussed in the introduction section, we will not orthogonalize the above set
of basis vectors further to maintain simplicity and robustness and retain them in their
natural forms in the following derivation based on the 3D cuboid lattice analogous to our
rectangular central moment LB formulation [26].

While the above basis vectors segregate the trace of the second order components
|e2

x + e2
y + e2

z〉 from the other second order components in order to enable the independent
specification of the bulk viscosity from shear viscosity, as mentioned earlier, in the algo-
rithmic implementation of the central moment approach discussed in the next section (see
Section 3), these operations will be confined only within the collision step and not for per-
forming any mappings between distribution functions and moments. These considerations
are crucial in avoiding cumbersome transformations and corrections for eliminating any
truncation errors in order to develop an efficient algorithm on a cuboid lattice.

Then, we list the vectors of the distribution functions f, their equilibria feq and the
source terms S accounting for the effect of any body force with components F = (Fx, Fy, Fz)
experienced by the motion of the fluid with density ρ and velocity u = (ux, uy, uz)

for the D3Q27 cuboid lattice as f = ( f0, f1, f2, . . . , f26)
†, feq =

(
f eq
0 , f eq

1 , f eq
2 , . . . , f eq

26

)†
,

S = (S0, S1, S2, . . . , S26)
†. In anticipation of the developments in Section 3, we first define

the central moments of the distribution functions fα and their equilibria f eq, as well as the
source term Sα of order (m + n + p) using the weights as the peculiar velocity components,
i.e., the components of the particle velocity shifted by those of the fluid velocity, as follows:kmnp

keq
mnp

σmnp

 =
26

∑
α=0

 fα

f eq
α

Sα

(eαx − ux)
m(eαy − uy)

n(eαz − uz)
p. (5)
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We define the bare or raw moments of the above three quantities of order (m + n + p)
by using just the particle velocity components as the weights, which are given byk′mnp,

keq′
mnp,

σ′mnp.

 =
26

∑
α=0

 fα

f eq
α

Sα

em
αxen

αyep
αz. (6)

Note that here and in the following any quantity with a prime notation (′) is used to
distinguish it as a raw moment (as opposed to a central moment). For convenience, we
now enumerate these raw moments as

n =
(

k′000, k′100, k′010, k′001, k′110, k′101, k′011, (k′200 − k′020), (k
′
200 − k′002), (k

′
200 + k′020 + k′002),

(k′120 + k′102), (k
′
210 + k′012), (k

′
201 + k′021), (k

′
120 − k′102), (k

′
210 − k′012), (k

′
201 − k′021), k′111,

(k′220 + k′202 + k′022), (k
′
220 + k′202 − k′022), (k

′
220 − k′202), k′211, k′121, k′112, k′122, k′212, k′221, k′222

)†
,

neq =
(

keq′
000, keq′

100, keq′
010, keq′

001, keq′
110, keq′

101, keq′
011, (keq′

200 − keq′
020), (k

eq′
200 − keq′

002), (k
eq′
200 + keq′

020 + keq′
002),

(keq′
120 + keq′

102), (k
eq′
210 + keq′

012), (k
eq′
201 + keq′

021), (k
eq′
120 − keq′

102), (k
eq′
210 − keq′

012), (k
eq′
201 − keq′

021), keq′
111,

(keq′
220 + keq′

202 + keq′
022), (k

eq′
220 + keq′

202 − keq′
022), (k

eq′
220 − keq′

202), keq′
211, keq′

121, keq′
112, keq′

122, keq′
212, keq′

221, keq′
222

)†
,

Ψ =
(

σ′000, σ′100, σ′010, σ′001, σ′110, σ′101, σ′011, (σ′200 − σ′020), (σ
′
200 − σ′002), (σ

′
200 + σ′020 + σ′002),

(σ′120 + σ′102), (σ
′
210 + σ′012), (σ

′
201 + σ′021), (σ

′
120 − σ′102), (σ

′
210 − σ′012), (σ

′
201 − σ′021), σ′111,

(σ′220 + σ′202 + σ′022), (σ
′
220 + σ′202 − σ′022), (σ

′
220 − σ′202), σ′211, σ′121, σ′112, σ′122, σ′212, σ′221, σ′222

)†
.

Here, the distribution functions and raw moments are related via T, i.e., the basis
vectors (Equation (4)), as

n = Tf, neq = Tfeq, Ψ = TS, (7)

2.2. The Lattice Boltzmann Equation

The use of a cuboid lattice would result in an anisotropic viscous tensor given in terms
of the grid aspect ratios r and s via the second order non-equilibrium moments, and such
grid-related anisotropy effects need be eliminated via carefully designed correction terms.
In constructing such counteracting corrections, since the second order non-equilibrium
raw components are the same as the corresponding central moments by definition, it is
sufficient to perform an analysis on the following simpler lattice Boltzmann equation (LBE)
on the raw moments, i.e., the MRT-LBE [26]:

f(x + e∆t, t + ∆t)− f(x, t) = T−1
[
Λ ( neq − n ) +

(
I− Λ

2

)
Ψ∆t

]
, (8)

where Λ = diag
(
ω0, ω1, ω2, . . . , ω26

)
is the diagonal relaxation time matrix and I is a

27× 27 identity matrix. Here, the right side of Equation (8) prescribes the relaxation of
different moments nj to their equilibria neq

j at a rate given by the parameter ωj, which is
augmented by the effect of the source term via Ψj (j = 0, 1, 2, . . . , 26), and the results are
then mapped back into the velocity space via the inverse mapping T−1. This is followed
by the perfect advection of the distribution functions fα to the nearest node along the
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particle characteristics eα (α = 0, 1, 2, . . . , 26) as implied by the left side Equation (8). Then,
the hydrodynamic fields are computed via appropriate moments as

ρ =
26

∑
α=0

fα, ρu =
26

∑
α=0

fαeα +
1
2

F∆t. (9)

2.3. Equilibria and Sources: Central Moments and Raw Moments

In this work, we obtain the countable discrete central moment equilibria for the D3Q27
cuboid lattice by matching those of the continuous Maxwell distribution function [29] and
given by

keq
000 = ρ, keq

100 = keq
010 = keq

001 = 0, keq
110 = keq

101 = keq
011 = 0, keq

200 = keq
020 = keq

002 = c2
s ρ,

keq
120 = keq

102 = keq
210 = keq

012 = keq
201 = keq

021 = 0, keq
111 = 0, keq

220 = keq
202 = keq

022 = c4
s ρ,

keq
211 = keq

121 = keq
112 = 0, keq

122 = keq
212 = keq

221 = 0, keq
222 = c6

s ρ. (10)

where cs is the speed of sound, which is an adjustable parameter of the collision model and
will be related to the transport coefficients via a Chapman–Enskog analysis later.

However, the analysis in what follows that provides corrections for the second order
moments as well as the algorithm devised in the next section (Section 3) for the cuboid
lattice are still applicable for other collision models. These include those based on the
factorization property [30,41] and cumulant collision model [28], which differ from the
Maxwellian-based central moment model in the evolution of the higher order moments.
Then, the corresponding discrete raw moment equilibria are obtained from Equation (10)
via binomial transforms, which read as follows:

keq′
000 = ρ, keq′

100 = ρux, keq′
010 = ρuy, keq′

001 = ρuz,

keq′
110 = ρuxuy, keq′

101 = ρuxuz, keq′
011 = ρuyuz,

keq′
200 = c2

s ρ + ρu2
x, keq′

020 = c2
s ρ + ρu2

y, keq′
002 = c2

s ρ + ρu2
z ,

keq′
120 = c2

s ρux + ρuxu2
y, keq′

102 = c2
s ρux + ρuxu2

z , keq′
210 = c2

s ρuy + ρu2
xuy,

keq′
012 = c2

s ρuy + ρuyu2
z , keq′

201 = c2
s ρuz + ρu2

xuz, keq′
021 = c2

s ρuz + ρu2
yuz,

keq′
111 = ρuxuyuz,

keq′
220 = c4

s ρ + ρc2
s (u

2
x + u2

y) + ρu2
xu2

y, keq′
202 = c4

s ρ + ρc2
s (u

2
x + u2

z) + ρu2
xu2

z ,

keq′
022 = c4

s ρ + ρc2
s (u

2
y + u2

z) + ρu2
yu2

z ,

keq′
211 = ρ(c2

s + u2
x)uyuz, keq′

121 = ρ(c2
s + u2

y)uxuz, keq′
112 = ρ(c2

s + u2
z)uxuy,

keq′
122 = c4

s ρux + ρc2
s ux(u2

y + u2
z) + ρuxu2

yu2
z , keq′

212 = c4
s ρuy + ρc2

s uy(u2
x + u2

z) + ρu2
xuyu2

z ,

keq′
221 = c4

s ρuz + ρc2
s uz(u2

x + u2
y) + ρu2

xu2
yuz,

keq′
222 = c6

s ρ + ρc4
s (u

2
x + u2

y + u2
z) + ρc2

s (u
2
xu2

y + u2
yu2

z + u2
xu2

z) + ρu2
xu2

yu2
z . (11)

In addition, the central moments of the source terms for recovering the NS equations
in 3D are given by [30]

σ000 = 0, σ100 = Fx, σ010 = Fy, σ001 = Fz, σmnp = 0 if (m + n + p) ≥ 2, (12)
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and the corresponding raw moments follow from their binomial transform as in [30]

σ′000 = 0,

σ′100 = Fx σ′110 = Fxuy + Fyux, σ′200 = 2Fxux,

σ′010 = Fy, σ′101 = Fxuz + Fzux, σ′020 = 2Fyuy,

σ′001 = Fz, σ′011 = Fyuz + Fzuy, σ′002 = 2Fzuz,

σ′mnp = 0 if (m + n + p) ≥ 3; (13)

2.4. Chapman–Enskog Analysis: Identification of Truncation Errors Due to Grid Anisotropy and
Non-Galilean Invariance from Aliasing Effects on the D3Q27 Cuboid Lattice

We will now perform an analysis based on the Chapman–Enskog (C-E) multiscale
expansion [42], written for the LBE in the matrix form by d’Humières [43], to identify
the truncation errors due to anisotropic effects arising from using the cuboid lattice grid
and non-Galilean invariant (GI) cubic velocity errors resulting from the aliasing effects
associated with the D3Q27 lattice. Corrections to eliminate these errors will then be derived
in what follows. The analysis for a 3D LBE formulation given above follows the approach
presented in Premnath and Banjeree [44] and Hajabdollahi and Premnath [45], which was
adopted for constructing a rectangular LB algorithm recently [26].

In this version of the C-E analysis, we expand the moments about their equilibria by
including the non-equilibrium effects as higher order perturbations and the time derivative
as a multiple scale expansion as follows:

n =
∞

∑
j=0

εjn(j), ∂t =
∞

∑
j=0

εj∂tj , (14)

where ε = ∆t is the perturbation parameter that serves the purpose of bookkeeping and
isolating terms of the different orders. Moreover, we apply a multivariate Taylor series
expansion in both space and time to the first term on the left side of Equation (8) and
then transform all the resulting terms to the moment space via f = T−1n. Subsequently,
substituting the C-E expansions (Equation (14)) in the 3D LBE with the natural moment
basis given in Equation (8) and then grouping terms of the same order of ε, we obtain the
following set of moment equations identified by O(εk) for k = 0, 1, and 2:

O(ε0) : n(0) = neq, (15a)

O(ε1) : (∂t0 + Ei∂i)n(0) = −Λ n(1) + Ψ, (15b)

O(ε2) : ∂t1 n(0) + (∂t0 + Ei∂i)
[(

I− Λ
2

)
n(1)

]
= −Λ n(2), (15c)

where Ei = T (ei I)T−1 and ei = |ei〉with i ∈ (x, y, z). We then re-express Equations (15b,c)
in the long form, which, respectively, read as

O(ε) moment system:

∂t0n(0) + ∂xExn(0) + ∂yEyn(0) + ∂zEzn(0) = −Λn(1) + Ψ. (16)

O(ε2) moment system:

∂t0n(0) + ∂t0

(
I− Λ

2

)
n(1) + ∂xEx

(
I− Λ

2

)
n(1) + ∂yEy

(
I− Λ

2

)
n(1) + ∂zEz

(
I− Λ

2

)
n(1) = −Λn(2). (17)

Substituting the moment equilibria n(0) listed in Equation (11) into the O(ε) Equation (16),
we now write explicitly all the equations up to the second order moment components that are
relevant to determining the fluid dynamical behavior as follows:
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∂t0 ρ + ∂x(ρux) + ∂y(ρuy) + ∂z(ρuz) = 0, (18a)

∂t0(ρux) + ∂x(ρc2
s + ρu2

x) + ∂y(ρuxuy) + ∂z(ρuxuz) = Fx, (18b)

∂t0(ρuy) + ∂x(ρuxuy) + ∂y(ρc2
s + ρu2

y) + ∂z(ρuyuz) = Fy, (18c)

∂t0(ρuz) + ∂x(ρuxuz) + ∂y(ρuyuz) + ∂z(ρc2
s + ρu2

z) = Fz, (18d)

∂t0(ρuxuy) + ∂x(c2
s ρuy + ρu2

xuy) + ∂y(c2
s ρux + ρuxu2

y) + ∂z(ρuxuyuz) =

−ω4 n(1)
4 +

(
Fxuy + Fyux

)
, (18e)

∂t0(ρuxuz) + ∂x(c2
s ρuz + ρu2

xuz) + ∂y(ρuxuyuz) + ∂z(c2
s ρux + ρuxu2

z) =

−ω5 n(1)
5 + (Fxuz + Fzux), (18f)

∂t0(ρuyuz) + ∂x(ρuxuyuz) + ∂y(c2
s ρuz + ρu2

yuz) + ∂z(c2
s ρuy + ρuyu2

z) =

−ω6 n(1)
6 +

(
Fyuz + Fzuy

)
, (18g)

∂t0

[
(ρ(u2

x − u2
y)
]
+ ∂x

[
(1− c2

s )ρux − ρuxu2
y

]
+ ∂y

[
(−r2 + c2

s )ρuy + ρu2
xuy
]
+ ∂z

[
(ρ(u2

x − u2
y)uz

]
=

−ω7 n(1)
7 + 2

(
Fxux − Fyuy

)
, (18h)

∂t0

[
ρ(u2

x − u2
z)
]
+ ∂x

[
(1− c2

s )ρux − ρuxu2
z
]
+ ∂y

[
(ρ(u2

x − u2
z)uy

]
+ ∂z

[
(−s2 + c2

s )ρuz + ρu2
xuz
]
=

−ω8 n(1)
8 + 2(Fxux − Fzuz), (18i)

∂t0

[
3c2

s ρ + ρ(u2
x + u2

y + u2
z)
]
+ ∂x

[
(1 + 2c2

s )ρux + ρux(u2
y + u2

z)
]
+ ∂y

[
(r2 + 2c2

s )ρuy + ρuy(u2
x + u2

z)
]
+

∂z

[
(s2 + 2c2

s )ρuz + ρuz(u2
x + u2

y)
]
= −ω9 n(1)

9 + 2
(

Fxux + Fyuy + Fzuz
)
, (18j)

Clearly, at the O(ε) level, the evolution of the conserved moments (Equation (18a–c))
are unaffected by anisotropic lattice grid. In other words, the evolutions of the den-
sity and the components of the momentum at the O(ε) level, respectively, given in
(Equation (18a–c)) do not contain any spurious terms associated with the grid aspect ratios.
On the other hand, it is evident from the underlined terms that the diagonal components
of the non-equilibrium parts of second order moments (n(1)

7 , n(1)
8 and n(1)

9 ) are influenced
by the grid aspect ratios r and s.

Hence, it follows that such underlined terms will impact the viscous stress tensor and,
hence, the hydrodynamics. Thus, in order to obtain the complete picture, we show in the
following the evolution of the conserved moments at the O(ε2) level, i.e., the leading four
moment components of Equation (17), which manifest the effect of the non-equilibrium
parts on the evolution of density and momentum components at the slower time scale t1:
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∂t1 ρ = 0, (19a)

∂t1(ρux) + ∂x

[
1
3

(
1− ω7

2

)
n(1)

7 +
1
3

(
1− ω8

2

)
n(1)

8 +
1
3

(
1− ω9

2

)
n(1)

9

]
+ ∂y

[(
1− ω4

2

)
n(1)

4

]
+∂z

[(
1− ω5

2

)
n(1)

5

]
= 0, (19b)

∂t1

(
ρuy
)
+ ∂x

[(
1− ω4

2

)
n(1)

4

]
+ ∂y

[
−2

3

(
1− ω7

2

)
n(1)

7 +
1
3

(
1− ω8

2

)
n(1)

8 +
1
3

(
1− ω9

2

)
n(1)

9

]
+∂z

[(
1− ω6

2

)
n(1)

6

]
= 0, (19c)

∂t1(ρuz) + ∂x

[(
1− ω5

2

)
n(1)

5

]
+ ∂y

[(
1− ω6

2

)
n(1)

6

]
+ ∂z

[
− 2

3

(
1− ω7

2

)
n(1)

7 +
1
3

(
1− ω8

2

)
n(1)

8

+
1
3

(
1− ω9

2

)
n(1)

9

]
= 0, (19d)

Evidently, the hydrodynamical behavior given in Equation (19b–d) is influenced by
the grid aspect ratios via the non-equilibrium moments n(1)

7 , n(1)
8 , and n(1)

9 , which needs to
be eliminated. Before accomplishing this, we need the complete expressions of the second
order non-equilibrium moments in order to isolate the truncation errors from terms that
correspond to physics. Hence, we rewrite Equation (18e–j) after segregating the terms
associated with the grid aspect ratios r and s (see underlined terms) from those associated
with the standard cubic lattice (terms within the brackets {· · · }) as follows:

n(1)
4 =

1
ω4

{
− ∂t0(ρuxuy)− ∂x(c2

s ρuy + ρu2
xuy)− ∂y(c2

s ρux + ρuxu2
y)− ∂z(ρuxuyuz) + (Fxuy + Fyux)

}
, (20a)

n(1)
5 =

1
ω5

{
− ∂t0(ρuxuz)− ∂x(c2

s ρuz + ρu2
xuz)− ∂y(ρuxuyuz)− ∂z(c2

s ρux + ρuxu2
z) + (Fxuz + Fzux)

}
, (20b)

n(1)
6 =

1
ω6

{
− ∂t0(ρuyuz)− ∂x(ρuxuyuz)− ∂y(c2

s ρuz + ρu2
yuz)− ∂z(c2

s ρuy + ρuyu2
z) + (Fyuz + Fzuy)

}
, (20c)

n(1)
7 =

1
ω7

{
− ∂t0(ρu2

x − ρu2
y)− ∂x

[
(1− c2

s )ρux − ρuxu2
y

]
− ∂y

[
(−1 + c2

s )ρuy + ρu2
xuy

]
− ∂z

[
ρ(u2

x − u2
y)uz

]
+ 2(Fxux − Fyuy)

}
− 1

ω7
(1− r2)∂y(ρuy), (20d)

n(1)
8 =

1
ω8

{
− ∂t0(ρu2

x − ρu2
z)− ∂x

[
(1− c2

s )ρux − ρuxu2
z

]
− ∂y

[
ρ(u2

x − u2
z)uy

]
− ∂z

[
(−1 + c2

s )ρuz + ρu2
xuz

]
+ 2(Fxux − Fzuz)

}
− 1

ω8
(1− s2)∂z(ρuz), (20e)

n(1)
9 =

1
ω9

{
− 3c2

s ∂t0 ρ− ∂t0(ρu2
x + ρu2

z + ρu2
z)− ∂x

[
(1 + 2c2

s )ρux + ρux(u2
y + u2

z)
]
− ∂y[(1 + 2c2

s )ρuy

+ ρuy(u2
x + u2

z)]− ∂z[(1 + 2c2
s )ρuz + ρuz(u2

x + u2
y)] + 2(Fxux + Fyuy + Fzuz)

}
− 1

ω9
(r2 − 1)∂y(ρuy)−

1
ω9

(s2 − 1)∂z(ρuz). (20f)

The diagonal parts of the non-equilibrium moments n(1)
7 , n(1)

8 , and n(1)
9 contain contri-

butions from the non-GI cubic velocity terms due to aliasing effects associated with the
D3Q27 lattice (e.g., ∑α fαe3

αi = ∑α fαeαi, where i ∈ {x, y, z}), which appear together with
the physical terms within those enclosed within the brackets {· · · }) of Equation (20d–f) in
addition to the grid-dependent anisotropic errors. The grid-anisotropy related error terms
will be denoted by Ejs, while the non-GI cubic velocity truncation errors will be referred to
as Ejg for j = 7, 8, and 9.
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The structures of the non-equilibrium moments can then be obtained from Equa-
tion (20a–f) after substituting for the time derivatives of the conserved moments by means
of terms related to the spatial derivatives using Equation (18a–d) and simplifying the re-
sulting equations by retaining terms of O(u3

i ) (following Hajabdollahi and Premnath [45]).

The off-diagonal second order non-equilibrium moments n(1)
4 = k′(1)110 , n(1)

5 = k′(1)101 and

n(1)
6 = k′(1)011 , which do not contain any truncation errors, then read as

n(1)
4 = − c2

s ρ

ω4

(
∂xuy + ∂yux

)
, (21a)

n(1)
5 = − c2

s ρ

ω5
(∂xuz + ∂zux), (21b)

n(1)
6 = − c2

s ρ

ω6

(
∂yuz + ∂zuy

)
. (21c)

Finally, the diagonal second order non-equilibrium moments n(1)
7 = k′(1)200 − k′(1)020 ,

n(1)
8 = k′(1)200 − k′(1)002 and n(1)

9 = k′(1)200 + k′(1)020 + k′(1)002 are given as follows:

n(1)
7 = −2c2

s ρ

ω7

(
∂xux − ∂yuy

)
+ E7s + E7g, (22a)

n(1)
8 = −2c2

s ρ

ω8
(∂xux − ∂zuz) + E8s + E8g, (22b)

n(1)
9 = −2c2

s ρ

ω9

(
∂xux + ∂yuy + ∂zuz

)
+ E9s + E9g, (22c)

where the truncation errors due to grid-anisotropy E7s, E8s, and E9s and non-GI aliasing
effects E7g, E8g, and E9g can be written as

E7s =
1

ω7

[
(3c2

s − 1)∂x(ρux)− (3c2
s − r2)∂y(ρuy)

]
, (23a)

E7g =
3ρ

ω7

[
u2

x∂xux − u2
y∂yuy

]
, (23b)

E8s =
1

ω8

[
(3c2

s − 1)∂x(ρux)− (3c2
s − s2)∂z(ρuz)

]
, (23c)

E8g =
3ρ

ω8

[
u2

x∂xux − u2
z∂zuz

]
, (23d)

E9s =
1

ω9

[
(3c2

s − 1)∂x(ρux) + (3c2
s − r2)∂y(ρuy) + (3c2

s − s2)∂z(ρuz)
]
, (23e)

E9g =
3ρ

ω9

[
u2

x∂xux + u2
y∂yuy + u2

z∂zuz

]
. (23f)

2.5. Elimination of Errors Due to Lattice Stretching and Non-GI Cubic Velocity Terms via
Extended Moment Equilibria

In order to eliminate the truncation errors identified above in Equation (23a–f) asso-
ciated with Equation (22a–c), we now extend the moment equilibria neq to an effective
moment equilibria neq,eff as

neq,eff = neq + ∆tneq(1), (24)

where neq(1) are the required correction terms. Since the truncation errors appear in the
diagonal parts of the second order non-equilibrium moments only, it suffices to consider
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non-zero correction terms only for those corresponding components identified by the
indices 7, 8, and 9 in the effective equilibria. Hence, we write

neq(1) =


θ7x∂xux − θ7y∂yuy + λ7x∂xρ + λ7y∂yρ, j = 7
θ8x∂xux − θ8z∂zuz + λ8x∂xρ + λ8z∂zρ, j = 8
θ9x∂xux + θ9y∂yuy + θ9z∂zuz + λ9x∂xρ + λ9y∂yρ + λ9z∂zρ, j = 9
0, otherwise

(25)

The expressions in Equation (25) are inspired by an inspection of Equation (23a–f) and
involve the diagonal components of the velocity gradient tensor ∂xux ∂yuy and ∂zuz, and
the density gradients ∂xρ, ∂yρ and ∂zρ, and their unknown coefficients θ7x, θ7y, θ8x, θ8z, θ9x,
θ9y, and θ9z, and λ7x, λ7y, λ8x, λ8z, λ9x, λ9y, and λ9z. The formulas for these coefficients will
now be established by performing a modified C-E analysis that accounts for the effective
moment equilibria introduced in Equation (24) into the expansion. That is,

n = neq,eff + εn(1) + ε2n(2) + · · · = neq + εneq(1) + εn(1) + ε2n(2) + · · · ,

∂t = ∂t0 + ε∂t1 + ε2∂t2 + · · · .

Then, repeating the steps performed in Section 2.4, the respective moment equations of
O(εk) for k = 0, 1, and 2, respectively, in Equations (15a–c) are replaced with the following:

O(ε0) : n(0) = neq, (26a)

O(ε1) : (∂t0 + Ei∂i)n(0) = −Λ
[
n(1) − neq(1)

]
+ Ψ, (26b)

O(ε2) : ∂t1n(0) + (∂t0 + Ei∂i)
[(

I− Λ
2

)
n(1)

]
+ (∂t0 + Ei∂i)

[
Λ
2 neq(1)

]
= −Λn(2). (26c)

Notice that the moment equilibria corrections appear in both O(ε) and O(ε2) equa-
tions in Equation (26b,c), respectively, via the underlined terms. Following the steps in
Section 2.4, we simplify Equation (26b) for the leading set of moments up to the second
order that are related to the derivation of the hydrodynamical equations. These lead to the
following results for the effective non-equilibrium parts of the second order moments:

n(1)
4 = −

c2
s ρ

ω4

(
∂xuy + ∂yux

)
, (27a)

n(1)
5 = −

c2
s ρ

ω5
(∂xuz + ∂zux), (27b)

n(1)
6 = −

c2
s ρ

ω6

(
∂yuz + ∂zuy

)
, (27c)

n(1)
7 = −

2c2
s ρ

ω7

(
∂xux − ∂yuy

)
+ (E7s + E7g) + neq(1)

7 , (27d)

n(1)
8 = −

2c2
s ρ

ω8
(∂xux − ∂zuz) + (E8s + E8g) + neq(1)

8 , (27e)

n(1)
9 = −

2c2
s ρ

ω9

(
∂xux + ∂yuy + ∂zuz

)
+ (E9s + E9g) + neq(1)

9 , (27f)

where Ejg and Ejs (j = 7, 8, and 9) are truncation error terms associated with grid anisotropy

and non-GI due to aliasing, which are given in Equation (23a–f) and neq(1)
7 , neq(1)

8 , and neq(1)
9

are the corresponding yet to be determined corrections.
It now remains to obtain the desired expressions for the correction terms. In this

regard, we combine the moment equations (Equation (26b)), in particular, those for the
hydrodynamic moments (mass and momentum components) evolving at time scale t0 with
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ε times the corresponding equations (Equation (26c)) based on the time scale t1 variations.
Then, using ∂t = ∂t0 + ε∂t1, we obtain the effective evolution equations for all the moments,
including the macroscopic fields related to the mass and momentum components.

In particular, the momentum equations will then contain the truncation error terms
and the counteracting correction terms along with those associated with the physics. We
can then isolate the terms related to the truncation errors and corrections from those related
to the desired NS equations and set the combined effect of the former to be zero. This
would then lead to constraint relations between the errors and the required corrections as
discussed in detail in Hajabdollahi and Premnath [45]. Thus, if we define the following
vector containing the truncation errors as

Ξ = (ϕ0, ϕ1, ϕ2, . . . , ϕ26)
†, (28)

where

ϕj =


E7s + E7g j = 7
E8s + E8g j = 8
E9s + E9g j = 9
0 otherwise,

(29)

Then, it follows from Equations (26b,c) and (27a–f), the required constraint equation
between the moment equilibria corrections vector neq(1) identified in Equation (24) and the
vector of truncation errors Ξ is given by

neq(1) +

(
I− Λ

2

)
Ξ = 0, (30)

Specifically, it reduces to

neq(1)
j +

(
1−

ωj

2

)
(Ejs + Ejg) = 0, j = 7, 8, 9. (31)

In Equation (31), we do not assume the summation convention of repeated indices.
Now, evaluating Equation (31) by applying Equation (25) for j = 7 and using

Equation (23a,b), we find

θ7x∂xux − θ7y∂yuy + λ7x∂xρ + λ7y∂yρ = −
(

1− ω7

2

)
E7s −

(
1− ω7

2

)
E7g.

By comparing, we finally obtain the following required expressions for the coefficients
θ7x, θ7y, λ7x, and λ7y:

θ7x = −
(

1
ω7
− 1

2

)
ρ
[
(3c2

s − 1) + 3u2
x

]
, (32a)

θ7y = −
(

1
ω7
− 1

2

)
ρ
[
(3c2

s − r2) + 3u2
y

]
, (32b)

λ7x = −
(

1
ω7
− 1

2

)(
3c2

s − 1
)

ux, (32c)

λ7y = +

(
1

ω7
− 1

2

)(
3c2

s − r2
)

uy, (32d)

Repeating these steps by applying Equations (31) and (25) together for j = 8 and j = 9
and invoking Equation (23c,d) and Equation (23e,f), respectively, i.e.,

θ8x∂xux − θ8z∂zuz + λ8x∂xρ + λ8z∂zρ = −
(

1− ω8

2

)
E8s −

(
1− ω8

2

)
E8g,
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and

θ9x∂xux + θ9y∂yuy + θ9z∂zuz + λ9x∂xρ + λ9y∂yρ + λ9z∂zρ = −
(

1− ω9

2

)
E9s −

(
1− ω9

2

)
E9g,

we arrive at the required formulas for the coefficients θ8x, θ8z, λ8x, λ8z, and θ9x, θ9y, θ9z, λ9x,
λ9y, and λ9z as follows:

θ8x = −
(

1
ω8
− 1

2

)
ρ
[
(3c2

s − 1) + 3u2
x

]
, (33a)

θ8z = −
(

1
ω8
− 1

2

)
ρ
[
(3c2

s − s2) + 3u2
z

]
, (33b)

λ8x = −
(

1
ω8
− 1

2

)(
3c2

s − 1
)

ux, (33c)

λ8z = +

(
1

ω8
− 1

2

)(
3c2

s − s2
)

uz, (33d)

and

θ9x = −
(

1
ω9
− 1

2

)
ρ
[
(3c2

s − 1) + 3u2
x

]
, (34a)

θ9y = −
(

1
ω9
− 1

2

)
ρ
[
(3c2

s − r2) + 3u2
y

]
, (34b)

θ9z = −
(

1
ω9
− 1

2

)
ρ
[
(3c2

s − s2) + 3u2
z

]
, (34c)

λ9x = −
(

1
ω9
− 1

2

)(
3c2

s − 1
)

ux, (34d)

λ9y = −
(

1
ω9
− 1

2

)(
3c2

s − r2
)

uy, (34e)

λ9z = −
(

1
ω9
− 1

2

)(
3c2

s − s2
)

uz, (34f)

When the extended moment equilibria (Equation (24)) using the corrections (Equation (25))
with these above coefficients are used in the LBE formulation based on the D3Q27 cuboid
lattice, we recover the 3D NS equations given by

∂tρ +∇.(ρu) = 0, (35)

∂t(ρu) +∇ · (ρuu) = −∇p +∇ ·
{

ρ

[
ν
(
∇u + (∇u)†

)
+

(
ξ − 2

3
ν

)
∇ · uI

]}
+ F, (36)

where p = c2
s ρ represents the pressure field, and the bulk viscosity ξ and shear viscosity ν

are related to the relaxation parameters of the second order moments as

ξ =
2c2

s
3

(
1

ω9
− 1

2

)
∆t, ν = c2

s

(
1

ωj
− 1

2

)
∆t, j = 4, 5, . . . , 8. (37)

Before concluding this section, the following important remarks related to our above
derivation are in order:

• The expressions for the moment equilibria corrections and the transport coefficients
involve only the minimally required set of free parameters, viz., the grid aspect ratios
r and s and the speed of sound cs, and are considerably simpler than those used in
a recent work [38] that used a set of orthogonalized moment basis on the D3Q19
cuboid lattice and many additional parameters in the specification of the equilibria.
Moreover, unlike the previous study [38], the equilibria used in our approach given in
Equation (11) involve higher order velocity terms obtained from matching with the
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moments of the continuous Maxwell distribution, thereby, naturally eliminating the
non-GI truncation errors.
This aspect along with the use of the non-orthogonal moment basis in the present
derivation avoids a spurious coupling of the evolution of the higher order moments
with those of the lower moments existing in approaches that use orthogonal moment
basis [27], which result in a robust LBE formulation on a cuboid lattice.

• The results derived here for the D3Q27 cuboid lattice for the counteracting corrections
and the transport coefficients are also equally valid for the D3Q15 and D3Q19 cuboid
lattice sets when they use subsets of the same non-orthogonal moment basis.

• The formulas derived in this section for the equilibria corrections necessary to elim-
inate the grid anisotropy and non-GI error are general and applicable for a wide
variety of collision models. For example, if k′mnp, kmnp, and cmnp correspond to raw
moments, central moments and cumulants, respectively, of order (m + n + p), owing
to the definitions of these quantities, it follows that their second order non-equilibrium
components are identical, i.e., k(1)′mnp = k(1)mnp = c(1)mnp for (m + n + p) = 2. From this, it
follows that the formulas obtained above can be directly incorporated into either raw
moment-, central moment- or cumulant-based 3D LB algorithms extended to using a
cuboid lattice.
Moreover, we point out that our derivation can be readily used to construct even an
SRT-based LB scheme using a cuboid lattice by setting all the relaxation parameters
equal to one another and then constructing the equilibrium distribution functions
including the necessary corrections in the velocity space via using feq,eff = T−1neq,eff =
T−1(neq + ∆tneq(1)). However, as demonstrated in our recent work on the rectangular
lattice [26], the SRT- and raw moment-based LB schemes are less stable compared to
those based on central moments; hence, the present investigation will focus on further
developing the derivation presented here into an efficient and robust 3D LB algorithm
on the D3Q27 cuboid lattice and their numerical study in the following sections. Such
an implementation for a cumulant collision kernel on a cuboid lattice is a subject for a
future study.

• When r = s = 1 and c2
s = 1/3, all the correction terms shown above become equal to

zero, and the previous formulations applicable for the cubic lattice sets are recovered.
• Finally, when interested in simulating relatively very low Mach number flows, the non-

GI cubic velocity errors can become relatively small and can, thus, be neglected.
Under such conditions, the formulas derived in the above for the corrections lead
to further simplifications. In particular, the coefficients determined above reduce to
the following:

θ7x = −
(

1
ω7
− 1

2

)
ρ(3c2

s − 1),

θ7y = −
(

1
ω7
− 1

2

)
ρ(3c2

s − r2),

λ7x = λ7y = 0,

θ8x = −
(

1
ω8
− 1

2

)
ρ(3c2

s − 1),

θ8z = −
(

1
ω8
− 1

2

)
ρ(3c2

s − s2),

λ8x = λ8z = 0,
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θ9x = −
(

1
ω9
− 1

2

)
ρ(3c2

s − 1),

θ9y = −
(

1
ω9
− 1

2

)
ρ(3c2

s − r2),

θ9z = −
(

1
ω9
− 1

2

)
ρ(3c2

s − s2),

λ9x = λ9y = λ9z = 0,

and thus we do not require the computation of the density gradients; moreover,
the local expressions for the velocity gradients derived in the next section will become
more compact and can be readily re-derived when required.

2.6. Strain Rate Tensor Components Based on Non-Equilibrium Moments for the D3Q27
Cuboid Lattice

The moment equilibria corrections in Equation (25) depend on the diagonal parts of
the strain rate tensor ∂xux, ∂yuy, and ∂zuz. These components, along with the off-diagonal
components, i.e., 1

2 (∂xuy + ∂yux), 1
2 (∂xuz + ∂zux) and 1

2 (∂yuz + ∂zuy) can be obtained
locally from the second-order non-equilibrium moments as follows. From Equations (27d)
and (31) for j = 7 and using Equation (23a,b), and after rearranging, we find[

−2c2
s

ω7
+

1
2
(3c2

s − 1) +
3u2

x
2

]
ρ∂xux +

[
2c2

s
ω7
− 1

2
(3c2

s − r2)−
3u2

y

2

]
ρ∂yuy

= n(1)
7 −

1
2
(3c2

s − 1)ux∂xρ +
1
2
(3c2

s − r2)uy∂yρ, (38)

Combining Equations (27e) and (31) for j = 8, applying Equation (23c,d), and after
rearranging, it follows that[

−2c2
s

ω8
+

1
2
(3c2

s − 1) +
3
2

u2
x

]
ρ∂xux +

[
2c2

s
ω8
− 1

2
(3c2

s − s2)− 3
2

u2
z

]
ρ∂zuz

= n(1)
8 −

1
2
(3c2

s − 1)ux∂xρ +
1
2
(3c2

s − 1)uz∂zρ, (39)

Finally, using Equations (27f) and (31) together for j = 9 along with Equation (23e,f),
we obtain the following:[

−2c2
s

ω9
+

1
2
(3c2

s − 1) +
3
2

u2
x

]
ρ∂xux +

[
−2c2

s
ω9

+
1
2
(3c2

s − r2) +
3
2

u2
y

]
ρ∂yuy

+

[
−2c2

s
ω9

+
1
2
(3c2

s − s2) +
3
2

u2
z

]
ρ∂zuz = n(1)

9 −
1
2
(3c2

s − 1)ux∂xρ

−1
2
(3c2

s − r2)uy∂yρ−−1
2
(3c2

s − s2)uz∂zρ. (40)

We can use the above three equations to solve for the diagonal parts of the strain rate
tensor as follows. First, we define the following variables:

A =
1
2

(
3c2

s − 1
)

ux, B =
1
2

(
3c2

s − r2
)

uy, C =
1
2

(
3c2

s − s2
)

uz, (41a)

e7ρ = −A∂xρ + B∂yρ, (41b)

e8ρ = −A∂xρ + C∂zρ, (41c)

e9ρ = −A∂xρ− B∂yρ− C∂zρ. (41d)

Here, the density gradients ∂xρ, ∂yρ, and ∂zρ are based on a (isotropic) second order
finite-difference scheme (see the work by Kumar [46] and Leclaire [47] for details). The
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Equations (38)–(40) require the non-equilibrium moments n(1)
7 , n(1)

8 , and n(1)
9 , respectively,

which can be obtained from either using raw moments or central moments as follows:

n(1)
7 = (k′200 − k′020)−

(
keq′

200 − keq′
020

)
= (k200 − k020)−

(
keq

200 − keq
020

)
,

n(1)
8 = (k′200 − k′002)−

(
keq′

200 − keq′
002

)
= (k200 − k002)−

(
keq

200 − keq
002

)
,

n(1)
9 = (k′200 + k′020 + k′002)−

(
keq′

200 + keq′
020 + keq′

002

)
= (k200 + k020 + k002)−

(
keq

200 + keq
020 + keq

002

)
,

where the equilibrium central moments keq
200, keq

020 and keq
002 are given in Equation (10), while

the corresponding raw moments are listed in Equation (11). For example,

n(1)
7 = (k200 − k020), (42a)

n(1)
8 = (k200 − k002), (42b)

n(1)
9 = (k200 + k020 + k002)− 3ρc2

s . (42c)

Based on these considerations, we can rewrite the right and left sides Equations (38)–(40),
respectively, by means of the following variables:

R7 = n(1)
7 + e7ρ = (k200 − k020) + e7ρ, (43a)

R8 = n(1)
8 + e8ρ = (k200 − k002) + e8ρ, (43b)

R9 = n(1)
9 + e9ρ =

[
(k200 + k020 + k002)− 3ρc2

s

]
+ e9ρ, (43c)

and

C7x =

[
−2c2

s
ω7

+
1
2

(
3c2

s − 1
)
+

3
2

u2
x

]
ρ, C7y =

[
+

2c2
s

ω7
− 1

2

(
3c2

s − r2
)
− 3

2
u2

y

]
ρ,

C8x =

[
−2c2

s
ω8

+
1
2

(
3c2

s − 1
)
+

3
2

u2
x

]
ρ, C8z =

[
+

2c2
s

ω8
− 1

2

(
3c2

s − s2
)
− 3

2
u2

z

]
ρ,

C9x =

[
−2c2

s
ω9

+
1
2

(
3c2

s − 1
)
+

3
2

u2
x

]
ρ, C9y =

[
−2c2

s
ω9

+
1
2

(
3c2

s − r2
)
+

3
2

u2
y

]
ρ,

C9z =

[
−2c2

s
ω9

+
1
2

(
3c2

s − s2
)
+

3
2

u2
z

]
ρ. (44)

Then, Equations (38)–(40) reduce to the following system of equations

C7x∂xux + C7y∂yuy = R7, (45a)

C8x∂xux + C8z∂zuz = R8, (45b)

C9x∂xux + C9y∂yuy + C9z∂zuz = R9, (45c)

which can be readily solved as follows, thus, providing the local expressions for the
diagonal components of the strain rate tensor on a cuboid lattice:

∂xux =

[
−C8zC9yR7 − C7y(C9zR8 − C8zR9)

][
−C7xC8zC9y − C7y(C8xC9z − C8zC9x)

], (46a)

∂yuy = [R7 − C7x∂xux]/C7y, ∂zuz = [R8 − C8x∂xux]/C8z. (46b)
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For completeness, we note that the off-diagonal components of the strain rate tensor
can be obtained from Equation (27a–c) as

1
2
(∂xuy + ∂yux) = − ω4

2ρc2
s

n(1)
4 , n(1)

4 = k′110 − ρuxuy = k110, (47)

1
2
(∂xuz + ∂zux) = − ω5

2ρc2
s

n(1)
5 , n(1)

5 = k′101 − ρuxuz = k101 (48)

1
2
(∂yuz + ∂zuy) = − ω6

2ρc2
s

n(1)
6 , n(1)

6 = k′011 − ρuyuz = k011. (49)

Before concluding this section, we provide a guideline in choosing the speed of sound
cs for the cuboid lattice-based LB formulations. The optimal value for the cubic lattice
c2

s = 1/3. However, in general cases for the cuboid lattice, the particle speeds in the y and
z directions are, respectively, r and s times the particle speed in the x direction. With dif-
ferent particle speeds in different coordinate directions, based on physical considerations,
the speed of sound is then chosen as c2

s = (1/3)min(r2, s2). This choice maintains the
physically consistent isotropy requirements, reduces the number of spurious terms to
be eliminated via the corrections derived earlier, and recovers the optimal value for the
cubic lattice.

3. 3D Cuboid Central Moment LBM (3DCCM-LBM) Using a Non-Orthogonal Moment
Basis on the D3Q27 Lattice

Before constructing a 3D central moment LBM on the cuboid lattice grid using the
derivation presented in the previous section, we first note a challenge in directly using the
moment basis T given in Equations (3) and (4) and the resulting definition of the moments
in Equation (7), and then present its simple resolution that is more suitable for devising an
efficient algorithm. In particular, the moment basis T (Equations (3) and (4)) involves linear
combinations of moments of their second order diagonal components that are written to
separate the trace of the diagonal elements from the others in order to allow an independent
specification of the bulk and shear viscosities and are also accordingly parameterized by
the grid aspect ratios r and s.

This was necessary in showing consistency of our approach to the 3D NS equations
and in the derivation of the required corrections for using the cuboid lattice. Now, since the
collision step needs to be performed in terms of the relaxations of either the raw moments
or the central moments and whose effect need to be transformed back into the velocity
space in terms of the distribution functions via T−1 (see e.g., Equation (8) for the raw
moment representation of the LBE), a direct inversion of T would lead to cumbersome
expressions involving the grid aspect ratios r and s.

However, we will now show that, by using a re-defined moment basis, the segregation
of the evolution of the moments for independent adjustments of bulk and shear viscosities
can still be achieved by confining it only within the collision step for the relaxation process
and not for the mappings, which would have the same overall effect as the original
moment basis. Such equivalent but considerably simpler re-formulations of the moment
basis and the associated LBE given in Equation (8) will then form the foundation for the
constructions of the 3D LB scheme on the cuboid lattice based on raw moments as well as
its generalization in terms of central moments.
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3.1. Efficient Formulation of LBE on the Cuboid Lattice and Its Interpretation Based on
Various Matrices

First, we define the following moment basis Q involving just the linearly independent
bare moments for the D3Q27 cuboid lattice (i.e., without any linear combinations of them as
in T – see Equations (3) and (4)):

Q =
[
|1〉 , |ex〉 , |ey〉 , |ez〉 , |exey〉 , |exez〉 , |eyez〉 , |e2

x〉 , |e2
y〉 , |e2

z〉 , |exe2
y〉 , |exe2

z〉 , |e2
xey〉 ,

|eye2
z〉 , |e2

xez〉 , |e2
yez〉 , |exeyez〉 , |e2

xe2
y〉 , |e2

xe2
z〉 , |e2

ye2
z〉 , |e2

xeyez〉 , |exe2
yez〉 , |exeye2

z〉 ,

|exe2
ye2

z〉 , |e2
xeye2

z〉 , |e2
xe2

yez〉 , |e2
xe2

ye2
z〉
]
. (50)

where the particle velocities |ex〉, |ex〉 and |ez〉 appearing in Equation (50) are given in
Equation (1a–c) and thus Q depends on the grid aspect ratios r and s. We can then express a
correspondence between this re-defined moment basis Q and the original one, i.e, T given
Equations (3) and (4) using

T = BQ, (51)

where B represents those operations that combine the various moments according to
Equation (4) and has the form of a block diagonal matrix. While an explicit specification of
B is not necessary for the following discussion, Equation (51) would be helpful in recasting
the LBE in an equivalent form that leads to an efficient implementation. Moreover, let us
see how this moment basis Q for the cuboid lattice can be related to that for the cubic lattice
that involves the following set of particle velocities so as to construct a modular LB scheme:

|ēx〉 = (0, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1)†, (52a)

|ēy〉 = (0, 0, 0, 1,−1, 0, 0, 1, 1,−1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1, 1,−1,−1, 1, 1,−1,−1)†, (52b)

|ēz〉 = (0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1, 1, 1,−1,−1,−1,−1)†. (52c)

Such a moment basis for the cubic lattice, referred to as P in the following obviously
does not depend on the grid aspect ratios, and can be written as

P =
[
|1〉 , |ēx〉 , |ēy〉 , |ēz〉 , |ēx ēy〉 , |ēx ēz〉 , |ēy ēz〉 , |ē2

x〉 , |ē2
y〉 , |ē2

z〉 , |ēx ē2
y〉 , |ēx ē2

z〉 , |ē2
x ēy〉 ,

|ēy ē2
z〉 , |ē2

x ēz〉 , |ē2
y ēz〉 , |ēx ēy ēz〉 , |ē2

x ē2
y〉 , |ē2

x ē2
z〉 , |ē2

y ē2
z〉 , |ē2

x ēy ēz〉 , |ēx ē2
y ēz〉 , |ēx ēy ē2

z〉 ,

|ēx ē2
y ē2

z〉 , |ē2
x ēy ē2

z〉 , |ē2
x ē2

y ēz〉 , |ē2
x ē2

y ē2
z〉
]
. (53)

It follows from the above definitions that Q and P matrices are related via

Q = SP, (54)

where S is a simple diagonal scaling matrix, and for the D3Q27 lattice, it can be expressed as

S = diag
(

1, 1, r, s, r, s, rs, 1, r2, s2, r2, s2, r, rs2, s, r2s, rs, r2, s2, r2s2, rs, r2s, rs2, r2s2, rs2, r2s, r2s2 ). (55)

Moreover, the inverse mapping for the cuboid lattice Q−1 can be related to that for the
cubic lattice P−1 using

Q−1 = S−1P−1, (56)

where S−1 is another diagonal matrix whose elements are the reciprocals of the correspond-
ing elements of S. Thus,

S−1 = diag
(

1, 1, r−1, s−1, r−1, s−1, r−1s−1, 1, r−2, s−2, r−2, s−2, r−1, r−1s−2, s−1, r−2s−1, r−1s−1, r−2,

s−2, r−2s−2, r−1s−1, r−2s−1, r−1s−2, r−2s−2, r−1s−2, r−2s−1, r−2s−2 ). (57)

As we will see below, these considerations would facilitate the construction of the 3D
cuboid LB schemes involving both forward and inverse transformations around collisions
with effort similar to that for the common cubic lattice that is augmented with some
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simple scalings of moments based on r and s rather than using lengthy formulas. Next,
using the simpler moment basis Q we can relate the vectors of the bare moments (i.e.,
without involving any linear combinations) and the distribution functions via

m = Qf, f = Q−1m, (58)

based on which, we now list the countable raw moments for the D3Q27 lattice as follows:

m =
(
k′000, k′100, k′010, k′001, k′110, k′101, k′011, k′200, k′020, k′002, k′120, k′102, k′210, k′012, k′201, k′021, k′111,

k′220, k′202, k′022, k′211, k′121, k′112, k′122, k′212, k′221, k′222
)†. (59)

and similarly, using meq = Qfeq and Φ = QS, we can write the respective equilibria and
the source terms in the moment space as

meq =
(
keq′

000, keq′
100, keq′

010, keq′
001, keq′

110, keq′
101, keq′

011, keq′
200, keq′

020, keq′
002, keq′

120, keq′
102, keq′

210, keq′
012, keq′

201, keq′
021, keq′

111,

keq′
220, keq′

202, keq′
022, keq′

211, keq′
121, keq′

112, keq′
122, keq′

212, keq′
221, keq′

222
)†, (60)

Φ =
(
σ′000, σ′100, σ′010, σ′001, σ′110, σ′101, σ′011, σ′200, σ′020, σ′002, σ′120, σ′102, σ′210, σ′012, σ′201, σ′021, σ′111,

σ′220, σ′202, σ′022, σ′211, σ′121, σ′112, σ′122, σ′212, σ′221, σ′222
)†. (61)

Here, the components of the raw moments, their equilibria and the source moments
k′mnp, keq′

mnp, and σ′mnp, respectively, are defined in Equation (6).
With these preliminaries, we now rewrite the LBE given in Equation (8) and use

f = T−1n in terms of the following collide-and-stream steps with the goal of constructing
an efficient LB algorithm on the cuboid lattice:

f̃(x, t) = T−1
[
n + Λ ( neq − n ) +

(
I− Λ

2

)
Ψ∆t

]
, (62)

f(x + e∆t, t + ∆t) = f̃(x, t). (63)

Note that here and in what follows, we use ‘tilde’ (·̃) to refer to the post-collision state
of any variable. Then, we combine Equations (7) and (58), i.e., to relate the sets of moments
m and n as n = Tf = TQ−1m, and, similarly, Φ and Ψ as Φ = TQ−1Ψ. Substituting these
expressions for n and Ψ and eliminating the use of the problematic T in favor of Q via
T = BQ (see Equation (51)) in Equation (62), the post-collision vector f then modifies to

f̃(x, t) = (BQ)−1
[
TQ−1m + ΛTQ−1 ( meq −m ) +

(
I− Λ

2

)
TQ−1Φ∆t

]
. (64)

Exploiting the fact that TQ−1 = B and (BQ)−1 = Q−1B−1 based on their definitions,
and then performing the product of B−1 with the resulting terms inside the brackets [· · · ]
in the above Equation (64) and invoking B−1B = I, it follows that

f̃(x, t) = Q−1
[
m + B−1ΛB ( meq −m ) + B−1

(
I− Λ

2

)
BΦ∆t

]
. (65)

As a further simplification, in order to bring this above LB formulation for the cuboid
lattice (Equation (65)) closer to that for the common cubic lattice, we replace the trans-
formations based on Q in terms P via Equation (54), i.e., Q = SP and Q−1 in terms P−1

using Equation (56), i.e., Q−1 = P−1S−1. Thus, using these in Equation (65) and writing
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the change in moments under collision as B−1ΛB ( meq −m ) = B−1Λ ( Bmeq −Bm ),
the equation for the post-collision vector f reduces finally to

f̃(x, t) = P−1S−1
[
m + B−1Λ ( Bmeq −Bm ) + B−1

(
I− Λ

2

)
BΦ∆t

]
. (66)

Evidently, the linear combinations of moments B and their inverse operation to
retrieve the individual bare moments via B−1 are now confined just around the steps
in determining the changes due to collision in terms of moments only and not for any
mappings to or from the velocity space, which are handled by operations similar to those
for the cubic lattice augmented with simple scalings of moments based on the grid aspect
ratios. These aspects greatly simplify the implementation of the cuboid LB algorithm.

Noting that the terms within the brackets [· · · ] in Equation (66) correspond to the post-
collision raw moments, which we write as m̃ = m+B−1

{
Λ ( Bmeq −Bm ) +

(
I− Λ

2

)
BΦ∆t

}
,

where the pre-collision raw moments m can be obtained from the distribution functions f
via m = SPf, we can finally obtain the following equivalent but significantly more efficient
cuboid LB formulation of that given in Equations (62) and (63) based on raw moments:

m = SPf,

m̃ = m + B−1
{

Λ ( Bmeq −Bm ) +

(
I− Λ

2

)
BΦ∆t

}
,

f̃(x, t) = P−1S−1m̃,

f(x + e∆t, t + ∆t) = f̃(x, t). (67)

Note that when we discuss the implementation details of each of the steps involved,
we will write down the explicit details of performing P and P−1 related to mappings
between the raw moments and distribution functions (which can be readily constructed
based on the usual cubic lattice), S and S−1 related to scalings of raw moments by the grid
aspect ratios, and B and B−1 related to combining and segregating the moments around
the collision steps involving the relaxation process and augmented by the source terms.

As discussed in the introduction earlier, schemes constructed using the central mo-
ments have been shown to be more robust than those based on raw moments. Hence,
a natural generalization of the above is to consider next in using the central moments
in lieu of the raw moments in performing the collision step. In this regard, we first list
the countable central moments mc and their equilibria mc,eq as well as the source central
moments Φc for the D3Q27 lattice as follows:

mc =
(
k000, k100, k010, k001, k110, k101, k011, k200, k020, k002, k120, k102, k210, k012, k201, k021, k111,

k220, k202, k022, k211, k121, k112, k122, k212, k221, k222
)†, (68)

mc,eq =
(
keq

000, keq
100, keq

010, keq
001, keq

110, keq
101, keq

011, keq
200, keq

020, keq
002, keq

120, keq
102, keq

210, keq
012, keq

201, keq
021, keq

111,

keq
220, keq

202, keq
022, keq

211, keq
121, keq

112, keq
122, keq

212, keq
221, keq

222
)†, (69)

Φc =
(
σ000, σ100, σ010, σ001, σ110, σ101, σ011, σ200, σ020, σ002, σ120, σ102, σ210, σ012, σ201, σ021, σ111,

σ220, σ202, σ022, σ211, σ121, σ112, σ122, σ212, σ221, σ222
)†, (70)

where the components of the central moment components kmnp, keq
mnp, and σmnp, respec-

tively, are defined in Equation (5). We note that the mappings between the central moments
and raw moments can be accomplished via the frame transformation matrix F and its
inverse F−1 as

mc = F m, m = F−1 mc. (71)
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Here, F and F−1 are both lower triangular matrices dependent on the fluid velocity
components (ux, uy, uz) and are the same for the cuboid lattice as well as the cubic lattice.
The elements of F can be readily obtained by listing the binomial transforms of all the
linearly independent central moments for the D3Q27 lattice in terms of the raw moments
and collecting them in a matrix–vector representation.

As noted in our recent work on the rectangular central moment LB scheme [26],
once F = F (ux, uy, uz) is known, its inverse follows from it by exploiting an interesting
property of the generating function representation of the binomial expansion, which
involves simply reversing the signs of the velocity components appearing inF , i.e.,F−1 =
F (−ux,−uy,−uz).

Then, as an extension of Equation (66), the changes under collision as well as the
source term in the LBE can be prescribed in terms of central moments, and the resulting
post-collision central moments are then mapped back to raw moments via F−1, which
leads to the following equation for the post-collision vector f:

f̃(x, t) = P−1S−1F−1
[
mc + B−1Λ ( Bmeq,c −Bmc ) + B−1

(
I− Λ

2

)
BΦc∆t

]
. (72)

In view of Equation (72), we can write the 3D cuboid central moment LB method
(3DCCM-LBM) as a generalization of the previous raw moment formulation given in
Equation (67) as follows:

mc = FSPf,

m̃c = mc + B−1
{

Λ ( Bmc,eq −Bmc ) +

(
I− Λ

2

)
BΦc∆t

}
,

f̃(x, t) = P−1S−1F−1m̃c,

f(x + e∆t, t + ∆t) = f̃(x, t). (73)

The expressions associated with F and F−1 in addition to the other matrices will be
written explicitly when we discuss the implementation details of the central moment LB
scheme for the cuboid lattice next.

3.2. Algorithmic Details of the 3DCCM-LBM

We will now discuss the implementation details of the 3DCCM-LBM based on Equation (73).
While the main steps will be identified systematically in the following, the formulas associated
with each of steps will be presented in respective appendices.

• Compute pre-collision raw moments

m = Pf,

where P is given in Equation (53), and the components of f, i.e., fα are at time level
t, i.e., fα = fα(x, t). This provides intermediate values for all the pre-collision raw
moments k′mnp for the D3Q27 cubic lattice. The implementation of this step is given
in Appendix A.

• Perform scaling of pre-collision raw moments for a cuboid lattice

m← Sm,

where S is given in Equation (55), and this step yields the pre-collision raw moments
for the cuboid lattice k′mnp from those for the cubic lattice computed in the previous
step. The equations representing this operation is presented in Appendix B.

• Compute the pre-collision central moments

mc = Fm,
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where F transforms the pre-collision raw moments k′mnp into central moments kmnp,
and the associated details are listed in Appendix C.

• Compute the post-collision central moments: Relaxation under collision using ex-
tended equilibria for corrections and sources for body force

m̃c = mc + B−1
{

Λ ( Bmc,eq −Bmc ) +

(
I− Λ

2

)
BΦc∆t

}
.

Here, we obtain the post-collision central moments k̃mnp as a result of the relaxation of
the central moments to their effective equilibria and augmented with source terms due
to the body force. The details on the effective central moment equilibria accounting
for the corrections due to grid anisotropy and non-GI velocity errors using the results
from Section 2.5, the selection of the relaxation parameters appearing in Λ and how
certain moments are combined and segregated prior to and after the relaxation step
under collision as required via B and B−1 are given in Appendix D.

• Compute post-collision raw moments

m̃ = F−1m̃c.

The expressions for the mappings of the post-collision central moments k̃mnp to raw
moments k̃′mnp performed via the inverse frame transformation matrix F−1 are pro-
vided in Appendix E.

• Perform inverse scaling of post-collision raw moments for the cuboid lattice

m̃← S−1m̃.

This scales down the post-collision raw moments k̃′mnp and facilitates their more
efficient transformation to distribution functions via the moment basis for the cubic
lattice P−1 in the next step. Here, the inverse of the scaling matrix, i.e., S−1 is presented
in Equation (57), and the operations involved in this step are listed in Appendix F.

• Compute the post-collision distribution functions

f̃ = P−1m̃,

where the computations involved in the inverse of the simpler moment basis P is
given in Equation (53) are shown in Appendix G.

• Perform streaming of distribution functions

fα(x, t + ∆t) = f̃α(x− eα∆t, t).

• Update hydrodynamic fields
Using fα(x, t + ∆t) at the new time level t + ∆t from the previous step, the fluid
density and velocities can be obtained as

ρ =
26

∑
α=0

fα, ρu =
26

∑
α=0

fαeα +
1
2

F∆t.

The following comments regarding the algorithm given above are now in order.
(i) When compared to the central moment LB scheme for the common D3Q27 cubic

lattice, we emphasize that the only extra computations incurred by the above discussed
method for the D3Q27 cuboid lattice are those involving the corrections in the diagonal
components of the second order moments in the collision step and the applications of
scalings on the raw moments before and after the collision step (i.e., S and S−1); these
result in a minor additional overhead, but as will be demonstrated in the simulations of an
inhomogeneous and anisotropic shear flow case study later, it will be offset by far due to
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the overall significant computational advantages of using the cuboid lattice in lieu of the
cubic lattice that accommodates the nature of the flow much more efficiently.

(ii) The algorithm given above based on central moments is modular in nature. It
can be readily extended to other collision models. For example, a raw moment-based
cuboid scheme as a modification of the above would simply involve the elimination of the
mappings between the raw moments and central moments (i.e., those involving F and
F−1) around collision and performing the collision step in terms of raw moments rather
than central moments, but using the same corrections via the extended moment equilibria.

However, as will be numerically shown later, the central moment formulation is more
robust than that based on raw moments for the cuboid lattice. Schemes based on other
collision models, such as those based on cumulants [28] can be readily constructed from
the above algorithm by introducing additional mappings between central moments and
cumulants and performing the collision step in terms of relaxations of cumulants by using
the same required corrections for the cuboid lattice as in the above algorithm. Such an
extension can be considered in a future study.

(iii) Finally, the present approach devised for the D3Q27 cuboid lattice readily extends
to other lattice sets, such as D3Q15 and D3Q27 cuboid lattices, by using only a subset of
the moment basis as necessary while incorporating the corrections to the equilibria derived
in this work.

4. Boundary Conditions on Moving Walls: Momentum-Augmented Bounce Back
Scheme on Cuboid Lattice Grids

Before discussing the numerical results based on the 3DCCM-LBM constructed above,
we note that the use of cuboid lattice requires some modifications to the implementation of
the standard link-based half-way bounce back boundary condition for moving boundaries.
Since we will be investigating shear driven flows due to the motion of the walls in this
work, we will now derive the necessary changes to such a boundary scheme. If x f and xw
represent the fluid node nearest to the boundary and the wall node, respectively, and α
and ᾱ denote, respectively, the outgoing and incoming particle directions, where eᾱ = −eα,
then the general form of the momentum-augmented half-way bounce back scheme can be
written as

fᾱ(x f , t + ∆t) = f̃α(x f , t)−
[

f eq
α (xw)− f eq

ᾱ (xw)
]
. (74)

Here, the equilibrium distribution functions f eq
α and f eq

ᾱ associated with feq at xw
depend on the wall density and velocities. It can be obtained via an inverse mapping
from the equilibrium moments meq using feq = Q−1meq, where the components of the
equilibrium moments are evaluated using Equation (11) from those based on the imposed
wall conditions. Note that since Q−1 is dependent on the grid aspect ratios, the resulting
formulas will be parameterized by r and s. Specifically, consider a moving boundary
located in the x− z plane, whose outward normal is along the y direction and pointing
into the plane of the paper (see Figure 1).

Let this boundary plane be moving along the x direction with an imposed velocity U;
thus, based on the no-slip boundary conditions for the fluid, we can then write ux = U,
uy = 0, uz = 0, and, as usual for the bounce back scheme, we approximate the wall node
density to that based on the known fluid, i.e., ρ = ρ f . For the case under consideration,
referring to Figure 1, the unknown or incoming distribution functions are fᾱ, where
ᾱ = 4, 9, 10, 16, 18, 21, 22, 25, 26, and can be written in terms of the known directions using
Equation (74) as
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f4(x f , t + ∆t) = f̃3(x f , t)−
[

f eq
3 (xw)− f eq

4 (xw)
]
,

f9(x f , t + ∆t) = f̃8(x f , t)−
[

f eq
8 (xw)− f eq

9 (xw)
]
, f21(x f , t + ∆t) = f̃24(x f , t)−

[
f eq
24(xw)− f eq

21(xw)
]
,

f10(x f , t + ∆t) = f̃7(x f , t)−
[

f eq
7 (xw)− f eq

10(xw)
]
, f22(x f , t + ∆t) = f̃23(x f , t)−

[
f eq
23(xw)− f eq

22(xw)
]
,

f16(x f , t + ∆t) = f̃17(x f , t)−
[

f eq
17(xw)− f eq

16(xw)
]
, f25(x f , t + ∆t) = f̃20(x f , t)−

[
f eq
20(xw)− f eq

25(xw)
]
,

f18(x f , t + ∆t) = f̃15(x f , t)−
[

f eq
15(xw)− f eq

18(xw)
]
, f26(x f , t + ∆t) = f̃19(x f , t)−

[
f eq
19(xw)− f eq

26(xw)
]
.

Then, we determine the expressions of the known equilibrium distribution functions
using feq = Q−1meq, where we evaluate the components of the moment equilibria on the
wall via Equation (11) based on the imposed wall conditions mentioned above. Using these,
we then finally obtain the momentum-augmented bounce-back scheme for the cuboid
lattice as

f4(x f , t + ∆t) = f̃3(x f , t),

f16(x f , t + ∆t) = f̃17(x f , t), f21(x f , t + ∆t) = f̃24(x f , t) +
[

c4
s

4r2s2

]
ρU,

f18(x f , t + ∆t) = f̃15(x f , t), f22(x f , t + ∆t) = f̃23(x f , t)−
[

c4
s

4r2s2

]
ρU,

f9(x f , t + ∆t) = f̃8(x f , t)−
[
(c2

s − s2)c2
s

2r2s2

]
ρU, f25(x f , t + ∆t) = f̃24(x f , t) +

[
c4

s
4r2s2

]
ρU,

f10(x f , t + ∆t) = f̃7(x f , t) +
[
(c2

s − s2)c2
s

2r2s2

]
ρU, f26(x f , t + ∆t) = f̃19(x f , t)−

[
c4

s
4r2s2

]
ρU.

(75)

Clearly, the formulas given in Equation (75), which will be utilized in the next section,
depend on the grid aspect ratios r and s in addition to the specified wall velocity U.

5. Results and Discussion: Numerical Validation

In this section, we will perform numerical validations of our new 3D cuboid central
moment LBM via simulations of an assortment of canonical fluid flow problems, including
flows in square ducts, pulsatile flows in a square duct driven by a periodic body force,
and lid-driven flows within a cubic cavity at various characteristic parameters and grid
aspect ratios.

5.1. Flow through a Square Duct Driven by a Constant Body Force

First, we perform simulations of a fully developed flow through a square duct driven
by a constant body force using the 3DCCM-LBM. The analytical solution of this flow
problem for the velocity field u(y, z) can be written as [48]

u(y, z) =
4L2Fx

π3ρν

∞

∑
n=1,3,5,...

(−1)(n−1/2)
[

1− cosh(nπz/L)
cosh(nπ/2)

]
cos(nπy/L)

n3 , (76)

where L represents the side of the square duct, ν is the kinematic viscosity and Fx is the
body force imposed in the direction of the fluid flow, the x-direction. We resolve the
computational domain using Nx × Ny × Nz grid nodes, and the grid aspect ratios in the
y and z directions, i.e., r and s, respectively, are then calculated using r = L/Ny and
s = L/Nz.
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A periodic boundary condition is applied along the flow direction (x-direction), and
no slip boundary conditions at the four side walls are imposed using the half-way bounce
back boundary conditions (see e.g., Equation (75)). We define the Reynolds number Re
for this flow based on the maximum flow velocity occurring at the midpoint within the
duct cross section and the duct side length as the characteristic velocity and length scales,
respectively. Table 1 presents a list of the model parameters used for different combinations
of the aspect ratios r and s for flow simulations at L = 30 and Re = 50, including the choices
for the body force, speed of sound cs, and the relaxation time τ = 1/ων that specifies the
viscosity ν.

Table 1. Parameters used in the simulations of 3D square duct flow using 3DCCM-LBM at different
lattice grid aspect ratios with a constant Reynolds number Re = 50.

Nx× Ny× Nz r s Fx c2
s τ ν

3× 30× 60 1.0 0.5 3.82× 10−6 0.10 0.6 0.01
3× 30× 90 1.0 0.33 5.50× 10−6 0.04 0.8 0.012
3× 60× 30 0.5 1.0 5.09× 10−9 0.04 1.0 0.02
3× 60× 90 0.5 0.33 5.09× 10−6 0.04 1.0 0.02

As an example of the results obtained, Figure 2 shows the comparisons of the velocity
profiles computed using 3DCCM-LBM with r = 0.5 and s = 0.33 along the z direction
for four different selected locations in the y direction. Excellent agreement can be seen
between the computed results using the cuboid lattice and the analytical solution. Moreover,
though not shown in this figure, the 3DCCM-LBM results were also found to be in similar
agreements with the exact solution for all the other cases of the grid aspect ratios tested
according to Table 1.

We note here that, due to the similarity of the governing equations for this Stokes flow
problem with the anisotropic advection diffusion equation (ADE), it can be alternatively
solved by the LBMs developed in this regard by Ginzburg. [49,50] via a coordinate grid
transform, as in e.g., [51,52], for which the role of the associated anisotropy on the numeri-
cal stability was studied in [53]. More generally, the idea of the coordinate grid transform
used for the ADE LBM may also be adopted for flow LBM.

-0.5 0 0.5

0

0.004

0.008

0.012

0.016

y/L=0.1

y/L=0.5

y/L=0.3

y/L=0.2

Figure 2. Comparison of the velocity profiles in the y − z plane along the reference lines at
y = 0.1 L, y = 0.2 L, y = 0.3 L and y = 0.5 L of a square duct of side L computed using cuboid
3DCCM-LBM (lines) with aspect ratios of (r, s) = (0.5, 0.33) with the analytical solution shown in
Equation (76) (symbols).
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5.2. Pulsatile Flow in a Square Duct Driven by a Periodic Body Force

Next, we will assess the ability of the 3DCCM-LBM in accurately representing a time-
dependent flow problem for which an analytical solution is available. In this regard, we
simulate time-periodic flow through a square duct of side length 2a driven by a sinusoidally
varying body force Fx = Fm cos ωt, where Fm is its peak amplitude and ω = 2π/T is the
angular frequency of the applied pulsations and with T being its time period. This case
study admits an analytical solution for the spatially and temporally varying velocity field
based on Fourier series and given by [54]

u(y, z, t) = R
[

Fm

ω

(
1− 2 ∑∞

n=0
(−1)n

pn

{
cosh(γny/a) cos(pnz/a)

cosh(γn)
+

cosh(γnz/a) cos(pny/a)
cosh(γn)

} )
eiωt

]
, (77)

γn =
√

p2
n + iWo2, pn = (2n + 1)π/2.

where −a ≤ y, z ≤ a andR[· · · ] represents the real part of the terms within the brackets.
Here, Wo is referred to as the Womersley number and defined by Wo = a

√
ω/ν, which is

an indication of the ratio of the flow time scale due to viscous diffusion and the time scale
of the variations of the imposed force. Considering 2a = 40, Fm = 1× 10−5 and T = 10, 000,
we simulated this flow at two different values of the Womersley number, Wo = 3.09 and
Wo = 6.25.

For a grid resolution of Nx × Ny × Nz the grid aspect ratios r and s are chosen via
r = 2a/Ny and s = 2a/Nz. We considered three different choices for the grid resolu-
tion, viz., 40× 80× 40, 40× 80× 80, and 40× 160× 80 using the cuboid lattice, which
correspond to the cases with (r, s) = (0.5, 1.0), (r, s) = (0.5, 0.5), and (r, s) = (0.25, 0.5), re-
spectively. Figure 3 presents the velocity profiles at different instants within the time period
T computed using 3DCCM-LBM and compared with the analytical solution (Equation (77)).
The computed results obtained using the cuboid lattice for all choices and combinations of
the grid aspect ratios are in very good agreement with the analytical solution at any given
instant in time.
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r =0.5, s=0.5

r =0.25, s=0.5

 Analytical

0.5T

T
0.1T

0.6T

0.4T

0.9T
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(a) (b)

Figure 3. The velocity profiles for the pulsatile flow through a square duct at different instants within the time period
T with Womersley numbers of (a) Wo = 3.09 and (b) Wo = 6.25 computed using 3DCCM-LBM (lines) with different
aspect ratios ((r, s) = (0.5, 1.0), (r, s) = (0.5, 0.5), and (r, s) = (0.25, 0.5)) compared with the analytical solution given in
Equation (77) (symbols).
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In addition, Figures 4 and 5 show the computed velocity distributions for the en-
tire cross section of the duct obtained using (r, s) = (0.5, 1.0), (r, s) = (0.5, 0.5), and
(r, s) = (0.25, 0.5) for Wo = 3.09 and Wo = 6.25, respectively, at the time instant t = T,
which compare well with those given by the exact solution. These results provide evi-
dence that the 3DCCM-LBM can perform relatively accurate numerical computations of
temporally varying flows.

(a) (b)

Figure 4. Distribution of the velocity field across the y − z plane of the pulsatile flow through a square duct with the
Womersley number Wo = 3.09 at the instant t = T (a) computed using 3DCCM-LBM with aspect ratios of (r, s) = (0.5, 1.0)
and (b) obtained from the exact solution given in Equation (77) (symbols).

(a) (b)

Figure 5. Distribution of the velocity field across the y − z plane of the pulsatile flow through a square duct with the
Womersley number Wo = 6.25 at the instant t = T (a) computed using 3DCCM-LBM with aspect ratios of (r, s) = (0.5, 1.0)
and (b) obtained from the exact solution given in Equation (77) (symbols).

5.3. 3D Lid-Driven Shear Flow in a Cubic Cavity

Finally, we investigate our 3DCCM-LBM for simulating a fully 3D shear flow case
with complex flow features for which only some prior benchmark numerical solutions are
available. In this regard, we consider the motion of the fluid enclosed within a cubic cavity
of side length H driven by the motion of the top lid located parallel to the x− z plane at
y = H at a velocity U along the x direction. Such a shear-driven flow involves circulation
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patterns with 3D vortical structures whose details depend on the Reynolds number Re
defined as Re = UH/ν [55].

In this paper, we will perform simulation of this flow at Re = 100, 400, and 1000 for
which the reference numerical solutions for benchmarking can be found from various
prior studies (see e.g., [56–58]). For applying the 3DCCM-LBM in this regard, we used
the following three different grid aspect ratios r = {1.0, 0.5, 0.33} and s = 1, so that the
resolutions are selectively varied only along the y direction which is normal to the shearing
motion of the top lid. The choices made for the various parameters for each set of grid
aspect ratios, including the number of grid nodes, lid velocity, speed of sound, and the
relaxation time τ = 1.0/ων, are presented in Table 2.

Table 2. Parameters used in the simulation of 3D lid-driven cubic cavity flow using 3DCCM-LBM.

Re Nx× Ny× Nz r s U c2
s τ ν

100
80× 80× 80 1.0 1.0 0.1 0.3333 0.737 0.079

80× 160× 80 0.5 1.0 0.05 0.14 0.782 0.039
80× 240× 80 0.33 1.0 0.04 0.06 1.023 0.031

400 80× 160× 80 0.5 1.0 0.1 0.3333 0.737 0.079

1000 80× 160× 80 0.5 1.0 0.1 0.3333 0.737 0.079

The no-slip boundary conditions are implemented using the half-way bounce back
scheme; in particular, for representing the effect of the moving top lid, we impose the
momentum-augmented corrections, which are parameterized by the grid aspect ratios
as shown in Equation (75). Figure 6 presents the steady state velocity profiles of the
horizontal velocity component u and the vertical velocity component v along the vertical
and horizontal geometric centerlines, respectively, in the mid x− y plane at z = 0.5H at
a fixed Reynolds number Re = 100 and using the 3DCCM-LBM with three different grid
aspect ratios as indicated in Table 2 earlier.
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Figure 6. The velocity profiles along the centerlines of the 3D lid driven cavity flow for (a) u component along the y
direction at x = 0.5H and z = 0.5H, and (b) v component along the x direction at y = 0.5H and z = 0.5H computed
using the 3DCCM-LBM using three different aspect ratios and compared with the reference numerical solution from
Shu et al. [58] (symbols).
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Here, we compared them with the benchmark numerical solution based on the method
of differential quadrature to solve the incompressible NS equation in Shu et al. [58]. It
is evident that our 3D central moment LBM based on the cuboid lattice is in very good
agreement with the reference numerical data.

Moreover, Figure 7 shows the comparisons made for the velocity profiles at a fixed
grid aspect ratios of r = 0.5 and s = 1.0 for three different Reynolds numbers of 100, 400,
and 1000. Our 3DCCM-LBM is able to reproduce the reference results quite well for all the
values of Re considered. Thus, the use of the extended moment equilibria involving the
correction terms in our LB algorithm effectively eliminates the anisotropy associated with
the use of the cuboid lattice and computes solutions that are fully consistent with the 3D
NS equations.
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Re =100

Re =400
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(a)
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Re =400
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(b)

Figure 7. The velocity profiles along the centerlines of the 3D lid driven cavity flow for (a) u component along the y direction
at x = 0.5H and z = 0.5H, and (b) v component along the x direction at y = 0.5H and z = 0.5H computed using the
3DCCM-LBM on a cuboid lattice with the grid aspect ratios of r = 0.5 and s = 1.0 at three different Reynolds numbers
Re = 100, 400, and 1000 and compared with the reference numerical solution from Shu et al. [58] (symbols).

In addition, for visualizing the overall flow patterns, the streamlines along the mid-
x − y plane, x − z plane and y− z plane of the cubic cavity at Re = 100, 400, and 1000
computed using r = 0.5 and s = 1 are presented in Figure 8.

The motion of the lid normal to the y direction is seen to set up a major vortex in x− y
plane whose size and its center location appear to significantly change as the Reynolds
number is varied. In particular, the eye of this vortex moves towards the center in the
x− y plane as Re increases. Meanwhile, some secondary vortices start to form around the
corners at higher Re and grow in size with increase in the inertial effects as the Reynolds
number is increased. The three-dimensionality of the resulting flow field is evident from
observing the other y− z and x− z planes in these figures. These features are in agreement
with the prior numerical solutions [56–58].
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Figure 8. Projections of the streamlines in the 3D lid-driven cubic cavity flow along three different mid-planes computed
using 3DCCM-LBM with a grid aspect ratio of r = 0.5 and s = 1.0 at Re = 100 (a–c), Re = 400 (d–f) and Re = 1000 (g–i) at
z = 0.5H, y = 0.5H, and x = 0.5H, respectively.

6. Demonstration of Computational Advantages of Using Cuboid Lattice over Cubic
Lattice: 3D Anisotropic Shear Flows in a Lid-Driven Shallow Cuboid Cavity

The results from the above case studies show the ability of our 3DCCM-LBM in
computing the flow fields accurately for a variety of standard benchmark flow problems.
Now, we will demonstrate the advantages of using the cuboid lattice over the cubic
lattice in more efficiently simulating a flow case study characterized by an anisotropic and
inhomogeneous shear flow where their spatial gradients in one or more direction are larger
than those in the other directions. In this regard, we consider a 3D cuboid cavity of span
length L in the x direction, height H in the y direction, and width W in the z direction
enclosing a fluid of viscosity ν. A flow is set up by the shearing motion of the lid located in
the x− z plane at y = H at a velocity U (see Figure 9).
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Figure 9. Schematic of the 3D shallow cuboid cavity of dimensions L× H ×W.

In particular, we choose the span-to-height ratio L/H = 4, and width-to-height ratio
W/H = 2 so that the cavity block is relatively shallow in nature, and the flow generated
by this set up is inhomogeneous and anisotropic, with the spatial gradients along the y
direction that is normal to the direction of shear expected to be larger than those in the
x and z directions. If Nx × Ny × Nz represent the total number of grid nodes resolving
the flow domain, the grid space steps in each of the directions are given by ∆x = L/Nx,
∆y = H/Ny, and ∆z = W/Nz.

In the case of using a cubic lattice, they are constrained by the uniform grid spacing
requirement, i.e., ∆x = ∆y = ∆z, which fixes the number of grid points in each coordi-
nate direction according to the length dimension of the cuboid cavity in that direction,
i.e., Nx/L = Ny/H = Nz/W. As an example, we consider a flow at a Reynolds number
Re = UL/ν = 100 within this cavity block, and choose the number of grid nodes in the y
direction normal to the shear as Ny = 64. Based on the above considerations, for the cubic
lattice, we obtain Nx = 256 and Nz = 128, and hence the total number of grid nodes in this
case is 256× 64× 128.

On the other hand, when the cuboid lattice is used ∆y = r∆x and ∆z = s∆x = (s/r)∆y,
so that Nx = r(L/H)Ny and Nz = (1/s)(W/L)Nx = (r/s)(W/H)Ny. Taking Ny = 64
again along the direction normal to the shearing motion of the lid, for the purpose of
illustration, we consider the following three different possibilities for the grid aspect ratios
along with the corresponding resolution requirements in the x and z directions: (i) (r, s) =
(0.406, 1.3) with (Nx, Nz) = (104, 40), (ii) (r, s) = (0.375, 0.75) with (Nx, Nz) = (96, 64),
and (iii) (r, s) = (0.375, 1.0) with (Nx, Nz) = (96, 48).

Thus, the total number of grid nodes with using the cuboid lattice for the above three
cases are 104× 64× 40, 96× 64× 64, and 96× 64× 48, respectively. Clearly, the reso-
lution requirements with using the cubic lattice involving the same grid size in all the
directions are significantly greater than those with using the choices made above with
the flexible cuboid lattice that can more naturally conform with the flow characteristics.
For performing flow simulations, we choose c2

s = 1/3 for the cubic lattice and c2
s = 0.04 for

the cuboid lattice.
Figure 10 presents comparisons of the velocity profiles of the u component along the y

direction at x = 0.5L and z = 0.5W, and v component along the x direction at y = 0.5H and
z = 0.5W obtained using the 3DCCM-LBM with the above three sets of grid aspect ratios
for the cuboid lattice and the cubic lattice with (r, s) = (1.0, 1.0). Moreover, the streamlines
along the three mid-planes of the 3D shallow cuboid cavity using both the cubic lattice and
the cuboid lattice using the grid aspect ratios for the case (i) (corresponding to that with
the lowest total number of grid points among the three cuboid lattice cases) are shown in
Figure 11.

Clearly, the cuboid lattice results, while using significantly fewer total number of grid
nodes, are in excellent agreement with those using the cubic lattice. In particular, to achieve
practically similar accuracy for the numerical results, the flexibility accorded by the cuboid
lattice yielded significant savings in the computer memory storage by a factor of 7.88,
5.33, and 7.11 for cases (i), (ii), and (iii), respectively, and about similar reductions in the
computational cost for the simulation turnaround time when compared to the cubic lattice.

While, for the specific flow configuration considered here, a reduction in the compu-
tational resource requirements by a factor between 5 to 7.5 was achieved for the choices
made for the grid aspect ratios, if the flow geometry happens to be further skewed in
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the different coordinate directions, e.g., when H/L � 1 and/or H/W � 1, additional
improvements with using the cuboid lattice can be expected for simulating such anisotropic
shear flow problems.
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Figure 10. The velocity profiles along the centerlines of a 3D shallow lid driven cavity of aspect ratio L/H = 2 and L/W = 4
at a Reynolds number Re = 100 computed using 3DCCM-LBM with the cubic lattice (r = s = 1) and a cuboid lattice with the
following three different choices o fthe grid aspect ratios: (r, s) = (0.406, 1.3), (r, s) = (0.375, 0.75), and (r, s) = (0.375, 1.0).
(a) u component along the y direction at x = 0.5L and z = 0.5W, and (b) v component along the x direction at y = 0.5H and
z = 0.5W.
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Figure 11. Comparison of streamline patterns along the mid-planes of a 3D shallow lid driven cavity of aspect ratio L/H = 2
and L/W = 4 at a Reynolds number Re = 100 computed using 3DCCM-LBM with the cubic lattice ((r, s) = (1.0, 1.0)) using
a grid resolution of 256× 128× 64 shown in sub-figures (a,c,e) and compared with the 3DCCM-LBM with the cuboid lattice
((r, s) = (0.406, 1.3)) using a grid resolution of 104× 64× 40 shown in sub-figures (b,d,f).

7. Numerical Stability Test Results of Raw Moment and Central Moment Based LB
Algorithms on the D3Q27 Cuboid Lattice

The algorithmic details given in Section 3.2 are general and readily extend to other
collision models. For example, if instead of central moments, the raw moments are used
in performing the relaxations under collision with the same corrections in the equilibria
as before and omitting the steps involving the mappings between the central moments
and raw moments (i.e., involving F and F−1), the algorithm reduces to a 3D cuboid raw
moment LBM, which is referred to as the 3DCRM-LBM in what follows.

Such a 3DCRM-LBM would be significantly better than other prior 3D cuboid LB
raw moment based formulations, as it avoids the orthogonalization of the moment basis,
uses better forms of the equilibria obtained from matching with those of the continuous
Maxwell distribution function and the elimination of the non-GI cubic velocity errors,
and has simpler expressions for the corrections and transport coefficients. However, it
would be interesting to see how the resulting 3DCRM-LBM compares with the 3DCCM-
LBM based on central moments that has been used as the method of choice in this work
and validated in detail earlier.

While the 3DCRM-LBM incurs a slightly lower computational cost than the 3DCCM-
LBM because of the absence of the additional mappings indicated above, the 3DCCM-LBM,
which executes the collision step in the local moving frame of reference, is expected to
be more robust with better numerical stability characteristics in simulating shear flows at
larger characteristic velocities or lower viscosities than the 3DCRM-LBM, as observed in
the recent 2D studies involving square [31] and rectangular [26] lattice sets.

Let us verify if this is indeed observed in 3D simulations of the lid-driven cubic cavity
flow using the cuboid lattice. In this regard, we first perform a stability test in which, for a
chosen grid resolution (or the grid aspect ratio), and by varying the relaxation parameter
ων controlling the shear viscosity, we determine the maximum possible lid velocity U,
i.e., Umax that maintains stable simulation for 100,000 steps in each case. We chose two
different grid resolutions of 30× 40× 30 and 30× 60× 30 corresponding to the grid ratios
of r = 0.75 and s = 1.0 and r = 0.5 and s = 1.0, respectively.

In both cases, we use c2
s = 0.08, which is the minimum of the optimal values for the

two grid aspect ratios, in order to have the same reference speed of sound in calculating
the Mach number. All the relaxation parameters, other than that for the shear viscosity, are
set to 1.0 for simplicity. The results are shown in Figure 12. Clearly, the 3DCCM-LBM is
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able to support larger magnitudes of shear consistently than the 3DCRM-LBM for all the
choices of the grid resolution used.
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0

0.1
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0.3

0.4

0.5

0.6
3DCCM-LBM

3DCRM-LBM

Figure 12. Numerical stability test results showing the maximum threshold velocity of the lid U in a
3D lid driven cubic cavity flow at different values of the relaxation parameter corresponding to the
shear viscosity for the 3DCCM-LBM (i.e., based on central moments) and 3DCRM-LBM (i.e., based
on central moments) at grid aspect ratios of r = 0.75, s = 1.0 (upper two curves), and r = 0.5, s = 1.0
(lower two curves).

Moreover, it was pointed out earlier that, in our 3D cuboid LB algorithms, the trace
of the diagonal components of the second order moments is evolved separately from the
other moments with its own relaxation parameter ωξ after applying B, and the individual
components are subsequently recovered via applying B−1, so that the bulk viscosity can be
specified independently from shear viscosity.

It is known that, for the common LB schemes based on the cubic lattice sets, a higher
value of the bulk viscosity (via decreasing ωξ) enhances stability by suppressing the
spurious pressure waves. We will now verify if this also holds true for the cuboid LB
formulation based on central moments. Repeating the stability test mentioned above by
choosing ωξ = 0.5, 1.0, and 1.4 at 30× 60× 30 and c2

s = 0.08, Figure 13 shows the resulting
maximum threshold velocity of the lid U for numerical stability. This figure clarifies that
the robustness of the 3DCCM-LBM is significantly improved by choosing lower ωξ or
higher bulk viscosity.

In addition, we now perform a different type of stability study, where the grid reso-
lution and lid velocity are fixed, and the lowest possible shear viscosity or the maximum
Reynolds number that maintains stable simulations for 3DCCM-LBM and 3DCRM-LBM
are determined. In this regard, we set U = 0.2, c2

s = 0.08, r = 0.5, and s = 1.0, and three
different choices of the grid resolutions, 40× 80× 40, 50× 100× 50, and 90× 180× 90, are
used to determine the maximum Reynolds number. As shown in Figure 14, the central
moment formulation is found to be more stable and allows larger Reynolds number than
that due to the raw moment formulation, which again support the superior numerical
characteristics of the 3DCCM-LBM in simulating shear flows on the cuboid lattice.



Fluids 2021, 6, 326 37 of 48

1.55 1.6 1.65 1.7 1.75

0.2

0.3

0.4

0.5

0.6

3DCCM-LBM = 0.5

3DCCM-LBM = 1.0

3DCCM-LBM = 1.4

Figure 13. Numerical stability results of the 3DCCM-LBM showing the maximum threshold velocity
of the lid U in a 3D lid driven cubic cavity flow at different values of the relaxation parameter
corresponding to the shear viscosity obtained for three different values of the relaxation parameter
controlling the bulk viscosity, i.e., ωξ = 0.5, 1.0, and 1.4.

0 500 1000 1500 2000 2500 3000 3500

Maximum Reynolds number, Re

40  80  40

50  100  50

90  180  90

3DCRM-LBM

3DCCM-LBM

Figure 14. Comparison of the maximum Reynolds number for numerical stability of 3DCCM-LBM
and 3DCRM-LBM at different grid resolutions with cuboid grid aspect ratios of r = 0.5 and s = 1.0
for a fixed lid velocity of U = 0.2 and c2

s = 0.08.

8. Summary and Conclusions

In this paper, we presented a new 3D LB algorithm based on the central moments for
the D3Q27 lattice using a cuboid grid, which is parameterized by two grid aspect ratios
that are related to the ratios of the particle speeds with respect to that along a reference
coordinate direction. The additional degrees of freedom introduced by the flexible spec-
ification of the cuboid lattice grid enable the method to naturally and more efficiently
compute flows with different characteristic length scales in different directions. This was
constructed to simulate the Navier–Stokes equations consistently via introducing coun-
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teracting corrections to the second order moment equilibria that eliminate the associated
grid anisotropy and the non-Galilean invariant third order velocity errors obtained via a
Chapman–Enskog analysis.

Such corrections are related to the diagonal components of the velocity gradient
tensor and are computed locally using non-equilibrium moments in our approach and
depend on the grid aspect ratios. The implementation is shown to be compact and modular
with an interpretation based on special matrices, admitting ready extension of the standard
algorithm for the cubic lattice to the cuboid lattice via the appropriate scaling of moments
based on the grid aspect ratios before and after the collision step and equilibria corrections.

The resulting formulation is general in that the same grid corrections developed for
the D3Q27 lattice for recovering the correct viscous stress tensor is applicable for other
lattice subsets and a variety of collision models, including those based on the relaxation of
raw moments, central moments and cumulants, as well as their special case involving the
distribution functions. The cuboid central moment LBM was validated against a variety
of benchmark flows, and when used in lieu of the corresponding raw moment formula-
tion for simulating shear flows, we show that it resulted in significant improvements in
numerical stability.

Finally, we demonstrated that our cuboid LB approach is efficient in simulating
anisotropic shear flow problems with significant savings in computational cost and memory
storage when compared to that based on the cubic lattice. Future improvements are
expected by extending the present formulation as a multiblock cuboid LB algorithm, which
will be considered in a future study.
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Appendix A. Mapping Pre-Collision Distribution Functions to Raw Moments

The intermediate raw moments with respect to the moment basis for the D3Q27
cubic lattice computed from m = Pf are expressed in the following. While the full
expressions are shown in this appendix and all the ones that follow for better clarity,
in actual implementations they should be optimized by grouping together the common
sub-expressions when possible.
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k
′
000 = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9 + f10 + f11 + f12 + f13 + f14 + f15 + f16 + f17 + f18

+ f19 + f20 + f21 + f22 + f23 + f24 + f25 + f26,

k
′
100 = f1 − f2 + f7 − f8 + f9 − f10 + f11 − f12 + f13 − f14 + f19 − f20 + f21 − f22 + f23 − f24 + f25 − f26,

k
′
010 = f3 − f4 + f7 + f8 − f9 − f10 + f15 − f16 + f17 − f18 + f19 + f20 − f21 − f22 + f23 + f24 − f25 − f26,

k
′
001 = f5 − f6 + f11 + f12 − f13 − f14 + f15 + f16 − f17 − f18 + f19 + f20 + f21 + f22 − f23 − f24 − f25 − f26,

k
′
110 = f7 − f8 − f9 + f10 + f19 − f20 − f21 + f22 + f23 − f24 − f25 + f26,

k
′
101 = f11 − f12 − f13 + f14 + f19 − f20 + f21 − f22 − f23 + f24 − f25 + f26,

k
′
011 = f15 − f16 − f17 + f18 + f19 + f20 − f21 − f22 − f23 − f24 + f25 + f26,

k
′
200 = f1 + f2 + f7 + f8 + f9 + f10 + f11 + f12 + f13 + f14 + f19 + f20 + f21 + f22 + f23 + f24 + f25 + f26,

k
′
020 = f3 + f4 + f7 + f8 + f9 + f10 + f15 + f16 + f17 + f18 + f19 + f20 + f21 + f22 + f23 + f24 + f25 + f26,

k
′
002 = f5 + f6 + f11 + f12 + f13 + f14 + f15 + f16 + f17 + f18 + f19 + f20 + f21 + f22 + f23 + f24 + f25 + f26,

k
′
120 = f7 − f8 + f9 − f10 + f19 − f20 + f21 − f22 + f23 − f24 + f25 − f26,

k
′
102 = f11 − f12 + f13 − f14 + f19 − f20 + f21 − f22 + f23 − f24 + f25 − f26,

k
′
210 = f7 + f8 − f9 − f10 + f19 + f20 − f21 − f22 + f23 + f24 − f25 − f26,

k
′
012 = f15 − f16 + f17 − f18 + f19 + f20 − f21 − f22 + f23 + f24 − f25 − f26,

k
′
201 = f11 + f12 − f13 − f14 + f19 + f20 + f21 + f22 − f23 − f24 − f25 − f26,

k
′
021 = f15 + f16 − f17 − f18 + f19 + f20 + f21 + f22 − f23 − f24 − f25 − f26,

k
′
111 = f19 − f20 − f21 + f22 − f23 + f24 + f25 − f26,

k
′
220 = f7 + f8 + f9 + f10 + f19 + f20 + f21 + f22 + f23 + f24 + f25 + f26,

k
′
202 = f11 + f12 + f13 + f14 + f19 + f20 + f21 + f22 + f23 + f24 + f25 + f26,

k
′
022 = f15 + f16 + f17 + f18 + f19 + f20 + f21 + f22 + f23 + f24 + f25 + f26,

k
′
211 = f19 + f20 − f21 − f22 − f23 − f24 + f25 + f26,

k
′
121 = f19 − f20 + f21 − f22 − f23 + f24 − f25 + f26,

k
′
112 = f19 − f20 − f21 + f22 + f23 − f24 − f25 + f26,

k
′
122 = f19 − f20 + f21 − f22 + f23 − f24 + f25 − f26,

k
′
212 = f19 + f20 − f21 − f22 + f23 + f24 − f25 − f26,

k
′
221 = f19 + f20 + f21 + f22 − f23 − f24 − f25 − f26,

k
′
222 = f19 + f20 + f21 + f22 + f23 + f24 + f25 + f26.

Appendix B. Scaling Pre-Collision Raw Moments by Grid Aspect Ratios

In order to obtain the pre-collision raw moments for the cuboid lattice from those
for the cubic lattice, we scale the elements of the latter, i.e., k′mnp by the grid aspect ratios
using the factor rnsp for the moment of order (m + n + p). Thus, the operations involving
m← Sm can be written as follows:

k
′
000 = k

′
000 k

′
100 = k

′
100 k

′
010 = rk

′
010,

k
′
001 = sk

′
001 k

′
200 = k

′
200 k

′
102 = s2k

′
102 k

′
021 = r2sk

′
021 k

′
022 = r2s2k

′
022 k

′
122 = r2s2k

′
122,

k
′
110 = rk

′
110 k

′
020 = r2k

′
020 k

′
210 = rk

′
210 k

′
111 = rsk

′
111 k

′
211 = rsk

′
211 k

′
212 = rs2k

′
212,

k
′
101 = sk

′
101 k

′
002 = s2k

′
002 k

′
012 = rs2k

′
012 k

′
220 = r2k

′
220 k

′
121 = r2sk

′
121 k

′
221 = r2sk

′
221,

k
′
011 = rsk

′
011 k

′
120 = r2k

′
120 k

′
201 = sk

′
201 k

′
202 = s2k

′
202 k

′
112 = rs2k

′
112 k

′
222 = r2s2k

′
222.
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Appendix C. Mapping Pre-Collision Raw Moments to Central Moments

By writing the central moments for all the components for the D3Q27 lattice in terms
of the raw moments via the binomial expansions, represented by mc = Fm, the following
expressions are obtained:

k000 = k
′
000,

k100 = k
′
100 − uxk

′
000,

k010 = k
′
010 − uyk

′
000,

k001 = k
′
001 − uzk

′
000,

k110 = k
′
110 − uxk

′
010 − uyk

′
100 + uxuyk

′
000,

k101 = k
′
101 − uxk

′
001 − uzk

′
100 + uxuzk

′
000,

k011 = k
′
011 − uyk

′
001 − uzk

′
010 + uyuzk

′
000,

k200 = k
′
200 − 2uxk

′
100 + u2

xk
′
000,

k020 = k
′
020 − 2uyk

′
010 + u2

yk
′
000,

k002 = k
′
002 − 2uzk

′
001 + u2

zk
′
000,

k120 = k
′
120 − uxk

′
020 − 2uyk

′
110 + 2uxuyk

′
010 + u2

yk
′
100 − uxu2

yk
′
000,

k102 = k
′
102 − uxk

′
002 − 2uzk

′
101 + 2uxuzk

′
001 + u2

zk
′
100 − uxu2

zk
′
000,

k210 = k
′
210 − uyk

′
200 − 2uxk

′
110 + u2

xk
′
010 + 2uxuyk

′
100 − u2

xuyk
′
000,

k012 = k
′
012 − uyk

′
002 − 2uzk

′
011 + u2

zk
′
010 + 2uyuzk

′
001 − uyu2

zk
′
000,

k201 = k
′
201 − uzk

′
200 − 2uxk

′
101 + u2

xk
′
001 + 2uxuzk

′
100 − u2

xuzk
′
000,

k021 = k
′
021 − uzk

′
020 − 2uyk

′
011 + u2

yk
′
001 + 2uyuzk

′
010 − u2

yuzk
′
000,

k111 = k
′
111 − uxk

′
011 − uyk

′
101 − uzk

′
110 + uxuyk

′
001 + uxuzk

′
010 + uyuzk

′
100 − uxuyuzk

′
000,

k220 = k
′
220 − 2uyk

′
210 − 2uxk

′
120 + u2

xk
′
020 + u2

yk
′
200 + 4uxuyk

′
110 − 2u2

xuyk
′
010 − 2uxu2

yk
′
100 + u2

xu2
yk
′
000,

k202 = k
′
202 − 2uzk

′
201 − 2uxk

′
102 + u2

xk
′
002 + u2

zk
′
200 + 4uxuzk

′
101 − 2u2

xuzk
′
001 − 2uxu2

zk
′
100u2

xu2
zk
′
000,

k022 = k
′
022 − 2uzk

′
021 − 2uyk

′
012 + u2

zk
′
020 + u2

yk
′
002 + 4uyuzk

′
011 − 2u2

yuzk
′
001 − 2uyu2

zk
′
010 + u2

yu2
zk
′
000,

k211 = k
′
211 − 2uxk

′
111 − uyk

′
201 − uzk

′
210 + u2

xk011 + 2uxuyk
′
101 + uyuzk

′
200 + 2uxuzk

′
110

− u2
xuyk

′
001 − u2

xuzk
′
010 − 2uxuyuzk

′
100 + u2

xuyuzk
′
000,

k121 = k
′
121 − 2uyk

′
111 − uxk

′
021 − uzk

′
120 + uxuzk

′
020 + 2uxuyk

′
011 + u2

yk
′
101 + 2uyuzk

′
110

− uxu2
yk
′
001 − 2uxuyuzk

′
010 − u2

yuzk
′
100 + uxu2

yuzk
′
000,

k112 = k
′
112 − 2uzk

′
111 − uxk

′
012 − uyk

′
102 + uxuyk

′
002 + 2uxuzk

′
011 + 2uyuzk

′
101 + u2

zk
′
110

− 2uxuyuzk
′
001 − uxu2

zk
′
010 − uyu2

zk
′
100 + uxuyu2

zk
′
000,

k122 = k
′
122 − 2uyk

′
112 − 2uzk

′
121 − uxk

′
022 + 4uyuzk

′
111 + 2uxuzk

′
021 + 2uxuyk

′
012 + u2

yk
′
102

+ u2
zk
′
120 − uxu2

yk
′
002 − uxu2

zk
′
020 − 4uxuyuzk

′
011 − 2u2

yuzk
′
101 − 2uyu2

zk
′
110

+ 2uxu2
yuzk

′
001 + 2uxuyu2

zk
′
010 + u2

yu2
zk
′
100 − uxu2

yu2
zk
′
000,
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k212 = k
′
212 − 2uxk

′
112 − 2uzk

′
211 − uyk

′
202 + 4uxuzk

′
111 + 2uyuzk

′
201 + u2

xk
′
012 + u2

zk
′
210

+ 2uxuyk
′
102 − u2

xuyk
′
002 − uyu2

zk
′
200 − 2u2

xuzk
′
011 − 4uxuyuzk

′
101 − 2uxu2

zk
′
110

+ 2u2
xuyuzk

′
001 + u2

xu2
zk
′
010 + 2uxuyu2

zk
′
100 − u2

xuyu2
zk
′
000,

k221 = k
′
221 − 2uxk

′
121 − 2uyk

′
211 − uzk

′
220 + 4uxuyk

′
111 + u2

xk
′
021 + u2

yk
′
201 + 2uyuzk

′
210

+ 2uxuzk
′
120 − u2

xuzk
′
020 − u2

yuzk
′
200 − 2u2

xuyk
′
011 − 2uxu2

yk
′
101 − 4uxuyuzk

′
110

+ u2
xu2

yk
′
001 + 2u2

xuyuzk
′
010 + 2uxu2

yuzk
′
100 − u2

xu2
yuzk

′
000,

k222 = k
′
222 − 2uzk

′
221 − 2uyk

′
212 − 2uxk

′
122 + 4uxuyk

′
112 + 4uxuzk

′
121

+ 4uyuzk
′
211 + u2

xk
′
022 + u2

yk
′
202 + u2

zk
′
220 − 8uxuyuzk

′
111 − 2u2

xuzk
′
021

− 2u2
yuzk

′
201 − 2u2

xuyk
′
012 − 2uyu2

zk
′
210 − 2uxu2

yk
′
102 − 2uxu2

zk
′
120 + u2

xu2
yk
′
002

+ u2
xu2

zk
′
020 + u2

yu2
zk
′
200 + 4u2

xuyuzk
′
011 + 4uxu2

yuzk
′
101 + 4uxuyu2

zk
′
110 − 2u2

xu2
yuzk

′
001

− 2u2
xuyu2

zk
′
010 − 2uxu2

yu2
zk
′
100 + u2

xu2
yu2

zk
′
000.

Appendix D. Compute Post-Collision Central Moments via Relaxations under
Collision Using Extended Equilibria for Cuboid Lattice

First, reflecting the original moment basis in Equation (4), we apply B and combine
the selected pre-collision central moments of 2nd, 3rd, and 4th orders as follows:

k2s = k200 + k020 + k002, k2d1 = k200 − k020, k2d2 = k200 − k002

k3s1 = k120 + k102, k3m1 = k120 − k102,

k3s2 = k210 + k012, k3m2 = k210 − k012,

k3s3 = k201 + k021, k3m3 = k201 − k021,

k4s = k220 + k202 + k022, k4d1 = k220 + k202 − k022, k4d2 = k220 − k202. (A1)

Next, from Section 2, we can write the effective equilibrium central moments as follows:

keq
000 = ρ, keq

100 = keq
010 = keq

001 = 0, keq
110 = keq

101 = keq
011 = 0,

keq
2s = keq

200 + keq
020 + keq

002 = 3c2
s ρ +

(
θbx∂xux + θby∂yuy + θbz∂zuz + λbx∂xρ + λby∂yρ + λbz∂zρ

)
∆t,

keq
2d1 = keq

200 − keq
020 =

(
θsx∂xux − θsy∂yuy + λsx∂xρ + λsy∂yρ

)
∆t,

keq
2d2 = keq

200 − keq
002 =

(
θsx∂xux − θsz∂zuz + λsx∂xρ + λsz∂zρ

)
∆t,

keq
3s1 = keq

120 + keq
102 = 0, keq

3m1 = keq
120 − keq

102 = 0,
keq

3s2 = keq
210 + keq

012 = 0, keq
3m2 = keq

210 − keq
012 = 0,

keq
3s3 = keq

201 + keq
021 = 0, keq

3m3 = keq
201 − keq

021 = 0, keq
111 = 0,

keq
211 = keq

121 = keq
112 = 0, keq

122 = keq
212 = keq

221 = 0, keq
222 = c6

s ρ,
keq

4s = keq
220 + keq

202 + keq
022 = 3c4

s ρ, keq
4d1 = keq

220 + keq
202 − keq

022 = c4
s ρ, keq

4d2 = keq
220 − keq

202 = 0.

(A2)

Note that, in Equation (A2), we extended the combinations of the diagonal parts of the
second order moments by including the corrections due to grid anisotropy for the cuboid
grid and non-GI velocity errors due to aliasing on the D3Q27 lattice using the results from
Section 2.5. Moreover, in a slight economy for the notations, in the following, we will
introduce the subscript ‘b’ for the coefficients related to corrections associated with bulk
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viscosity and the subscript ‘s’ for those other components influencing the shear viscosity
(rather than the numerical subscripts used in Section 2.5):

θsx = −ρ
(
3u2

x + 3c2
s − 1

)( 1
ων
− 1

2

)
, λsx = −

(
3c2

s − 1
)( 1

ων
− 1

2

)
ux,

θbx = −ρ
(
3u2

x + 3c2
s − 1

)( 1
ωξ
− 1

2

)
, λbx = −

(
3c2

s − 1
)( 1

ωξ
− 1

2

)
ux,

θsy = −ρ
(

3u2
y + 3c2

s − r2
)
]

(
1

ων
− 1

2

)
, λsy = +(3c2

s − r2)

(
1

ων
− 1

2

)
uy,

θby = −ρ
(

3u2
y + 3c2

s − r2
)( 1

ωξ
− 1

2

)
, λby = −(3c2

s − r2)

(
1

ωξ
− 1

2

)
uy,

θsz = −ρ
(
3u2

z + 3c2
s − s2)( 1

ων
− 1

2

)
, λsz = +(3c2

s − s2)

(
1

ων
− 1

2

)
uz,

θbz = −ρ
(
3u2

z + 3c2
s − s2)( 1

ωξ
− 1

2

)
, λbz = −(3c2

s − s2)

(
1

ωξ
− 1

2

)
uz.

Here, ωξ is the relaxation parameter associated with the trace of the second order
moments k2s and ων for the other two diagonal components k2d1 and k2d2 defined in
Equation (A1) (as well as the off-diagonal components k110, k101, and k011). As we will
show later, this would enable independent specification of the bulk viscosity from the shear
viscosity. For the associated equilibria in Equation (A2), the density gradients ∂xρ, ∂yρ and
∂zρ will be obtained from a second order (isotropic) finite difference scheme, while the
diagonal components of the velocity gradient tensor ∂xux, ∂yuy and ∂zuz will be computed
locally from non-equilibrium moments (using the results in Equations (41)–(46) derived in
Section 2.5) as follows:

Defining

A =
1
2
(3c2

s − 1)ux, B =
1
2
(3c2

s − r2)uy, C =
1
2
(3c2

s − s2)uz,

esr1 = −A ∂xρ + B ∂yρ, esr2 = −A ∂xρ + C ∂zρ, ebr = −A ∂xρ− B ∂yρ− C ∂zρ

Rb = (k200 + k020 + k002)− 3c2
s ρ + ebr = k2s − 3c2

s ρ + ebr,

Rs1 = (k200 − k020) + esr1 = k2d1 + esr1,

Rs2 = (k200 − k002) + esr2 = k2d2 + esr2.

Csx =

[
−2c2

s
ων

+

(
3c2

s − 1
)

2
+

3u2
x

2

]
ρ, Cbx =

[
−2c2

s
ωξ

+

(
3c2

s − 1
)

2
+

3u2
x

2

]
ρ,

Csy =

[
2c2

s
ων
−
(
3c2

s − r2)
2

−
3u2

y

2

]
ρ, Cby =

[
−2c2

s
ωξ

+

(
3c2

s − r2)
2

+
3u2

y

2

]
ρ,

Csz =

[
2c2

s
ων
−
(
3c2

s − s2)
2

− 3u2
z

2

]
ρ, Cbz =

[
−2c2

s
ωξ

+

(
3c2

s − s2)
2

+
3u2

z
2

]
ρ,

we can then write the local expressions for the velocity gradients as

∂xux =

[
−CszCbyRs1 − Csy(CbzRs2 − CszRb)

]
[
−CsxCszCby − Csy(CsxCbz − CszCbx)

],
∂yuy =

1
Csy

[Rs1 − Csx ∂xux], ∂zuz =
1

Csz
[Rs2 − Csx ∂xux].
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Based on these quantities, we can then prescribe the post-collision central moments
via relaxations under collision as follows:

k̃000 = k000,

k̃100 = k100 + ω1(k
eq
100 − k100) + (1−ω1/2)σ100∆t,

k̃010 = k010 + ω1(k
eq
010 − k010) + (1−ω1/2)σ010∆t,

k̃001 = k001 + ω1(k
eq
001 − k001) + (1−ω1/2)σ001∆t,

k̃110 = k110 + ων(k
eq
110 − k110),

k̃101 = k101 + ων(k
eq
101 − k101),

k̃011 = k011 + ων(k
eq
011 − k011),

k̃2d1 = k2d1 + ων(k
eq
2d1 − k2d1),

k̃2d2 = k2d2 + ων(k
eq
2d2 − k2d2),

k̃2s = k2s + ωξ(k
eq
2s − k2s),

k̃3s1 = k3s1 + ω3s1(k
eq
3s1 − k3s1),

k̃3s2 = k3s2 + ω3s2(k
eq
3s2 − k3s2),

k̃3s3 = k3s3 + ω3s3(k
eq
3s3 − k3s3),

k̃3m1 = k3m1 + ω3m1(k
eq
3m1 − k3m1),

k̃3m2 = k3m2 + ω3m2(k
eq
3m2 − k3m2),

k̃3m3 = k3m3 + ω3m3(k
eq
3m3 − k3m3),

k̃111 = k111 + ω111(k
eq
111 − k111),

k̃211 = k211 + ω211(k
eq
211 − k211),

k̃121 = k121 + ω121(k
eq
121 − k121),

k̃112 = k112 + ω112(k
eq
112 − k112),

k̃4s = k4s + ω4s(k
eq
4s − k4s),

k̃4d1 = k4d1 + ω4d1(k
eq
4d1 − k4d1),

k̃4d2 = k4d2 + ω4d2(k
eq
4d2 − k4d2),

k̃122 = k122 + ω122(k
eq
122 − k122),

k̃212 = k212 + ω212(k
eq
212 − k212),

k̃221 = k221 + ω221(k
eq
221 − k221),

k̃222 = k222 + ω222(k
eq
222 − k222).

Here, the relaxation parameters for the second order moments ωξ and ων indepen-
dently specify the bulk viscosity ξ and shear viscosity ν, respectively, and are related to
one another via

ν = c2
s

(
1

ων
− 1

2

)
∆t, ξ =

2c2
s

3

(
1

ωξ
− 1

2

)
∆t,

so that, in conjunction the moment equilibria corrections, the 3DCCM-LBM simulates
the 3D NS equations. The rest of the relaxation parameters for the evolution of other
central moments under collision are set to unity in this work. That is, ω1 = ω3s1 = ω3s2 =
ω3s3 = ω3m1 = ω3m2 = ω3m3 = ω111 = ω211 = ω121 = ω112 = ω4s = ω4d1 = ω4d2 =
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ω122 = ω212 = ω221 = ω222 = 1.0. Finally, we segregate the post-collision values of those
selectively combined central moments in the above, which is represented by B−1, as

k̃200 =
1
3
(
k̃2s + k̃2d1 + k̃2d2

)
, k̃120 =

1
2
(
k̃3s1 + k̃3m1

)
, k̃102 =

1
2
(
k̃3s1 − k̃3m1

)
k̃020 =

1
3
(
k̃2s − 2k̃2d1 + k̃2d2

)
, k̃210 =

1
2
(
k̃3s2 + k̃3m2

)
k̃012 =

1
2
(
k̃3s2 − k̃3m2

)
,

k̃002 =
1
3
(
k̃2s + k̃2d1 − 2k̃2d2

)
, k̃201 =

1
2
(
k̃3s3 + k̃3m3

)
, k̃021 =

1
2
(
k̃3s3 − k̃3m3

)
,

k̃220 =
1
4
(
k̃4s + k̃4d1 + 2k̃4d2

)
,

k̃202 =
1
4
(
k̃4s + k̃4d1 − 2k̃4d2

)
,

k̃022 =
1
2
(
k̃4s − k̃4d1

)
.

As a result, at the end of this computation, all the linearly independent post-collision
central moments k̃mnp of the D3Q27 lattice have been computed.

Appendix E. Mapping Post-Collision Central Moments to Raw Moments

The post-collision raw moments can be obtained from the central moments via
m̃ = F−1m̃c, where the inverse of the frame transformation matrix, i.e., F−1 is given
by F−1 = F (−ux,−uy,−uz). As noted in our previous work [26], this follows from the
property of the binomial transforms in their generating function representation. In other
words, by using the expressions presented in Appendix C and performing the exchanges
kmnp ↔ k′mnp and, ux ↔ −ux, uy ↔ −uy, and uz ↔ −uz. Then, applying ˜(·) over the mo-
ments as they represent the post-collision states, we obtain the required mapping relations,
which are listed as follows:

k̃
′
000 = k̃000,

k̃
′
100 = k̃100 + ux k̃000,

k̃
′
010 = k̃010 + uy k̃000,

k̃
′
001 = k̃001 + uz k̃000,

k̃
′
110 = k̃110 + ux k̃010 + uy k̃100 + uxuy k̃000,

k̃
′
101 = k̃101 + ux k̃001 + uz k̃100 + uxuz k̃000,

k̃
′
011 = k̃011 + uy k̃001 + uz k̃010 + uyuz k̃000,

k̃
′
200 = k̃200 + 2ux k̃100 + u2

x k̃000,

k̃
′
020 = k̃020 + 2uy k̃010 + u2

y k̃000,

k̃
′
002 = k̃002 + 2uz k̃001 + u2

z k̃000,

k̃
′
120 = k̃120 + ux k̃020 + 2uy k̃110 + 2uxuy k̃010 + u2

y k̃100 + uxu2
y k̃000,

k̃
′
102 = k̃102 + ux k̃002 + 2uz k̃101 + 2uxuz k̃001 + u2

z k̃100 + uxu2
z k̃000,

k̃
′
210 = k̃210 + uy k̃200 + 2ux k̃110 + u2

x k̃010 + 2uxuy k̃100 + u2
xuy k̃000,

k̃
′
012 = k̃012 + uy k̃002 + 2uz k̃011 + u2

z k̃010 + 2uyuz k̃001 + uyu2
z k̃000,

k̃
′
201 = k̃201 + uz k̃200 + 2ux k̃101 + u2

x k̃001 + 2uxuz k̃100 + u2
xuz k̃000,

k̃
′
021 = k̃021 + uz k̃020 + 2uy k̃011 + u2

y k̃001 + 2uyuz k̃010 + u2
yuz k̃000,
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k̃
′
111 = k̃111 + ux k̃011 + uy k̃101 + uz k̃110 + uxuy k̃001 + uxuz k̃010 + uyuz k̃100 + uxuyuz k̃000,

k̃
′
220 = k̃220 + 2uy k̃210 + 2ux k̃120 + u2

x k̃020 + u2
y k̃200 + 4uxuy k̃110 + 2u2

xuy k̃010 + 2uxu2
y k̃100 + u2

xu2
y k̃000,

k̃
′
202 = k̃202 + 2uz k̃201 + 2ux k̃102 + u2

x k̃002 + u2
z k̃200 + 4uxuz k̃101 + 2u2

xuz k̃001 + 2uxu2
z k̃100 + u2

xu2
z k̃000,

k̃
′
022 = k̃022 + 2uz k̃021 + 2uy k̃012 + u2

z k̃020 + u2
y k̃002 + 4uyuz k̃011 + 2u2

yuz k̃001 + 2uyu2
z k̃010 + u2

yu2
z k̃000,

k̃
′
211 = k̃211 + 2ux k̃111 + uy k̃201 + uz k̃210 + u2

xk011 + 2uxuy k̃101 + uyuz k̃200 + 2uxuz k̃110

+ u2
xuy k̃001 + u2

xuz k̃010 + 2uxuyuz k̃100 + u2
xuyuz k̃000,

k̃
′
121 = k̃121 + 2uy k̃111 + ux k̃021 + uz k̃120 + uxuz k̃020 + 2uxuy k̃011 + u2

y k̃101 + 2uyuz k̃110

− uxu2
y k̃001 + 2uxuyuz k̃010 + u2

yuz k̃100 + uxu2
yuz k̃000,

k̃
′
112 = k̃112 + 2uz k̃111 + ux k̃012 + uy k̃102 + uxuy k̃002 + 2uxuz k̃011 + 2uyuz k̃101 + u2

z k̃110

+ 2uxuyuz k̃001 + uxu2
z k̃010 + uyu2

z k̃100 + uxuyu2
z k̃000,

k̃
′
122 = k̃122 + 2uy k̃112 + 2uz k̃121 + ux k̃022 + 4uyuz k̃111 + 2uxuz k̃021 + 2uxuy k̃012 + u2

y k̃102

+ u2
z k̃120 + uxu2

y k̃002 + uxu2
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z k̃010 + u2
yu2

z k̃100 + uxu2
yu2

z k̃000,

k̃
′
212 = k̃212 + 2ux k̃112 + 2uz k̃211 + uy k̃202 + 4uxuz k̃111 + 2uyuz k̃201 + u2

x k̃012 + u2
z k̃210

+ 2uxuy k̃102 + u2
xuy k̃002 + uyu2

z k̃200 + 2u2
xuz k̃011 + 4uxuyuz k̃101 + 2uxu2

z k̃110

+ 2u2
xuyuz k̃001 + u2
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z k̃010 + 2uxuyu2

z k̃100 + u2
xuyu2

z k̃000,

k̃
′
221 = k̃221 + 2ux k̃121 + 2uy k̃211 + uz k̃220 + 4uxuy k̃111 + u2

x k̃021 + u2
y k̃201 + 2uyuz k̃210

+ 2uxuz k̃120 + u2
xuz k̃020 + u2

yuz k̃200 + 2u2
xuy k̃011 + 2uxu2

y k̃101 + 4uxuyuz k̃110

+ u2
xu2

y k̃001 + 2u2
xuyuz k̃010 + 2uxu2

yuz k̃100 + u2
xu2

yuz k̃000,

k̃
′
222 = k̃222 + 2uz k̃221 + 2uy k̃212 + 2ux k̃122 + 4uxuy k̃112 + 4uxuz k̃121

+ 4uyuz k̃211 + u2
x k̃022 + u2

y k̃202 + u2
z k̃220 + 8uxuyuz k̃111 + 2u2

xuz k̃021

+ 2u2
yuz k̃201 + 2u2

xuy k̃012 + 2uyu2
z k̃210 + 2uxu2

y k̃102 + 2uxu2
z k̃120 + u2

xu2
y k̃002

+ u2
xu2

z k̃020 + u2
yu2

z k̃200 + 4u2
xuyuz k̃011 + 4uxu2

yuz k̃101 + 4uxuyu2
z k̃110 + 2u2

xu2
yuz k̃001

+ 2u2
xuyu2

z k̃010 + 2uxu2
yu2

z k̃100 + u2
xu2

yu2
z k̃000.

Appendix F. Inverse Scaling Post-Collision Raw Moments by Grid Aspect Ratios

The inverse scaling of the post-collision raw moments, i.e., m̃ ← S−1m̃ involves
dividing the post-collision raw moments k̃′mnp of the order (m + n + p) by rnsp. That is,

k̃
′
000 = k̃

′
000, k̃

′
100 = k̃

′
100, k̃

′
010 = r−1k̃

′
010,

k̃
′
001 = s−1k̃

′
001, k̃

′
200 = k̃

′
200, k̃

′
102 = s−2k̃

′
102, k̃

′
021 = r−2s−1k̃

′
021,

k̃
′
110 = r−1k̃

′
110, k̃

′
020 = r−2k̃

′
020, k̃

′
210 = r−1k̃

′
210, k̃

′
111 = r−1s−1k̃

′
111,

k̃
′
101 = s−1k̃

′
101, k̃

′
002 = s−2k̃

′
002, k̃

′
220 = r−2k̃

′
220, k̃

′
012 = r−1s−2k̃

′
012,

k̃
′
011 = r−1s−1k̃

′
011, k̃

′
120 = r−2k̃

′
120, k̃

′
201 = s−1k̃

′
201, k̃

′
202 = s−2k̃

′
202,

k̃
′
022 = r−2s−2k̃

′
022, k̃

′
211 = r−1s−1k̃

′
211, k̃

′
121 = r−2s−1k̃

′
121, k̃

′
112 = r−1s−2k̃

′
112,

k̃
′
122 = r−2s−2k̃

′
122, k̃

′
212 = r−1s−2k̃

′
212, k̃

′
221 = r−2s−1k̃

′
221, k̃

′
222 = r−2s−2k̃

′
222.
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Appendix G. Mapping Post-Collision Raw Moments to Distribution Functions

The post-collision distribution functions can be obtained from the raw moments via
f̃ = P−1m̃, where P−1 is the inverse of the simpler moment basis for the cubic lattice
presented in Equation (53). Thus, we find

f̃0 = k̃
′
000 − k̃

′
200 − k̃

′
020 − k̃

′
002 + k̃

′
220 + k̃

′
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′
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′
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f̃1 =
1
2

(
k̃
′
100 + k̃

′
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)
,
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)
,
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′
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,
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)
,
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,
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,
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,
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