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Abstract: Recently, the trend towards sustainable energy production and pollution control has
motivated the increased consumption of ultra-low-sulfur diesel (ULSD) or bio-fuels. Such fuels have
relatively low surface tension with water and therefore, the separation of water from fuel has become
a challenging problem. The separation process relies on using porous structures for the collection
and removal of water droplets. Hence, understanding the interaction between water droplets and
the separators is vital. The simplest geometry of a separator is the wire mesh screen, which is used in
many modern water–diesel separators. Thus, it is considered here for systematic study. In this work,
pore-scale computational fluid dynamics (CFD) simulations were performed using OpenFOAM®

(an open-source C++ toolbox for fluid dynamics simulations) coupled with a new accurate scheme
for the computation of the surface tension force. First, two validation test cases were performed
and compared to experimental observations in corresponding bubble-point tests. Second, in order
to describe the interaction between water droplets and wire mesh screens, the simulations were
performed with different parameters: mean diesel velocity, open area ratio, fiber radii, Young–Laplace
contact angle, and the droplet radius. New correlations were obtained which describe the average
reduction of open surface area (clogging), the pressure drop, and retention criteria.

Keywords: computational fluid dynamics (CFD); multiphase flow; volume of fluid (VoF); water
droplets; liquid–liquid separation; pore-scale simulations

1. Introduction

Liquid–liquid or liquid–gas separation processes are vital for many applications
such as power generators, hydraulic lines, solvent extraction, and aerosol separation.
In the special case of diesel fuel, the trend towards a sustainable fuel production and
the reduction of hazardous emissions leads to an increasing usage of ultra-low-sulfur
diesel (ULSD) and bio-diesel. Such fuels have a low surface tension in contact with water
(droplets). Consequently, the dynamics of emulsions of water droplets in diesel have
great importance on the overall performance of the separation process [1]. In general,
the process of water–diesel separation contains four components: solid particles, water
droplets, ambient fluid (diesel), and the surface of the separator (solid). The present work
focuses on the interactions between water, diesel, and the wire mesh screen.

The macroscopic behavior of a separator is defined in terms of separation efficiency
and the overall pressure drop. Different macroscopic models for the filtration of solid parti-
cles are found in the literature either based on empirical correlations [2–6] or mathematical
modeling of the transport as a convection–diffusion equation [7,8]. For liquid contaminants,
the majority of the experimental investigations in the literature considered viscous droplets
(water or silicone oil) in air. Kulkarni et al. [9] studied the effects of wettability on the
separation of water from oil. The separator was made of multilayers: hydrophobic and
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hydrophilic. It was found that when the number of the hydrophobic layers is 3 to 10 times
the number of hydrophilic layers, the separation efficiency is optimal. Chase et al. [10]
studied the effect of fibrous media on the separation efficiency by combining two types of
fibers: microglass and electrospun polypropylene (PP) fibers. The PP fibers had a mean
radius less than 1 µm, which increased the hydrophobicity and the overall separation
efficiency. Chase and Patel [11] showed that fibrous structures created from electrospun PP
fibers can successfully be used for the separation of water from ULSD. Lu et al. [12] studied
the effect of the droplet size distribution on the separation efficiency of water emulsion
from oil. Moreover, they showed that the decrease of the mean fiber radii increased the
separation efficiency. Kampa et al. [13] showed that non-wettable materials lead to less
pressure drop in comparison to wettable materials for oil mist filtration.

Although macroscopic (collective) models are successful in describing the evolution
of the pressure drop and the distribution of bubbles or particles [14–17], they require
closure relationships. For the problem of liquid–liquid separation, closure relationships
model different interactions on the microscopic level. Because of the drag force of the
carrier fluid (diesel), the droplet is spread on the surface of the separator and it takes the
shape of a spherical cap. In turn, more open surface (area) of the wire mesh screen is
blocked and the pressure drop is increased. At a threshold value of the pressure drop,
the surface tension force is less than the drag force. Above this threshold, the droplet is
pushed through the mesh and flows downstream. When the droplet is released, the open
area of the mesh increases again and the pressure drop is reduced. The contact angle of
a droplet on a fibrous structure or textures is not unique, which is called hysteresis of
contact angle [18–21]. It has been found that the increase of surface roughness increases
the hydrophobicity of the fibrous structure [22]. The surface energy minimization approach
has been successful in the prediction and computation of the shape of droplets on different
textures [23–28]. Tafreshi et al. [29] experimentally and numerically studied the wetting
of ferrofluid droplets on fibrous mats. The effect of the number of fibrous layers was
investigated. They used the numerical surface energy minimization approach implemented
in a software called Surface Evolver (SE) [30].

Lorenceau et al. [31] studied the capture criteria of a single droplet by a single fiber.
They used droplets of silicone-oil and water, falling eccentrically on a thin cylindrical
fiber. In [32,33], the effect of the relative distance between the droplet and the fiber on the
capture criteria was studied and quantified. In [34,35], the eccentric impact of a droplet
on a flexible fiber was studied. It was seen that the flexibility of the fibers increases the
capturing efficiency with respect to the droplet velocity.

On the other hand, numerical methods and in particular pore-scale simulations of
two-phase flows showed an accurate computation of the flow fields in porous media [36–40].
Kuipers et al. [41] simulated the impact of a droplet on a wettable fibrous structure using the
volume of fluid method (VoF) [42] coupled with the immersed boundary method (IBM) [43].
Despite the VoF method being applied and validated in the application of modeling two-
phase flow in porous media, it produces non-physical velocities at the interface called
“spurious currents” [39,44–46]. In the particular case of water–diesel separation, the process
is capillary-dominated. An accurate computation of the curvature field leads to a significant
reduction of the order of magnitude of spurious currents, as was demonstrated in [47].

The existing literature lacks a systematic analysis of the interaction between a single
water droplet and the separator. Hence, a macroscopic model capable of taking into account
different physical interactions cannot be formulated. In this work, the focus is on studying
the interaction between a single water droplet and a hydrophobic idealized wire mesh
screen in diesel. The fluids used in this study (in the experiments and the numerical
simulations) are considered to be Newtonian. Moreover, the computation of the surface
tension force were validated by comparison to experimental measurements. A bubble
point test [48,49] was performed to determine the bubble pressure of two samples of plain
weaves. In the presented experiments, the wire mesh screen was saturated with glycerol.
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Air was injected until a stream of air bubbles was observed, which determined the bubble
point test pressure (threshold pressure).

This article is organized as follows: the next section is devoted to the materials and
the methods: (a) mathematical model and the corresponding numerical details and (b)
experimental setup for the bubble point test. In the third section, the measurements, the
CFD results, and the corresponding models are discussed. It is divided into two subsections.
In the first subsection, the experimental and numerical results of the bubble point test
are compared to each other. In the second subsection, the special case of a single droplet
single fiber interaction and the interaction between a single water droplet and an idealized
wire mesh screen in diesel are discussed. Three closure relationships were found, which
describe the spreading of the droplet on the separator, the pressure drop, and the condition
for the breakthrough. The fourth section is devoted to the summary and conclusions.

2. Materials and Methods
2.1. Mathematical Model

The volume of fluid method (VoF), as described in [42], is a robust approach for the
simulation of two-phase flow by incorporating a function for the volume fraction. The
two phases are indexed by 0 (primary phase) and 1 (secondary phase). Both phases (the
primary and the secondary) are Netwonian. The choice of the primary and secondary
phase is arbitrary. The volume fraction α is defined as the ratio of the volume occupied by
the primary fluid (V0) and the volume of the computational cell (Vcell) as follows:

α =
V0

Vcell
. (1)

The transport properties (density ρ and dynamic viscosity µ) of the mixture are
computed as the arithmetic average of the two phases:

ρ = αρ0 + (1− α)ρ1, µ = αµ0 + (1− α)µ1. (2)

The conservation of the volume fraction is described by

∂α

∂t
+∇·(αu) = 0, (3)

where u is the velocity vector. Because of the incompressibility of both fluids, the conserva-
tion of mass reads

∇·u = 0. (4)

The conservation of the momentum of the mixture is described by

∂(ρu)
∂t

+ ρ(u · ∇)u = −∇p + ρg + µ∇2u + fst, (5)

where p is the pressure field, g is the gravity vector, and fst is the surface tension force per
unit volume. The surface tension is modeled using the sharp surface force (SSF) model [39]
as follows:

fst = γKM∇αSSF. (6)

where KM is the mean curvature of the fluid–fluid interface and αSSF is the sharp volume
fraction. The sharp volume fraction is computed as follows:

αSSF =
1

1− Ccap

[
min

(
max

(
α,

Ccap

2

)
, 1−

Ccap

2

)
−

Ccap

2

]
, (7)

where Ccap is a numerical parameter to tune the sharpness of the volume fraction. In
the presented simulations, Ccap = 0.99 was set. The introduction of the sharp surface
tension force (Equations (6) and (7)) alone does not guarantee that the surface tension
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approximation is accurate or robust. So-called spurious currents can still occur. In order to
improve this, a novel method was proposed in [47], which showed an accurate computation
of the mean curvature. The methods showed significant reduction of spurious currents by
at least two orders of magnitude. The method approximates the surface tension force based
on the signed distance function Φ. The signed distance function is defined as the signed
minimum distance between the computational cells near the fluid–fluid interface and an
iso-surface (α = 0.5). The unit normal vector n̂ to the fluid–fluid interface is computed as
the unit gradient of the signed distance function:

n̂ =
∇Φ
||∇Φ|| . (8)

The mean curvature KM [50] at each cell center is computed as follows:

KM = −1
2
∇·n̂, (9)

and the Gauss curvature KG [50] reads:

KG = −det
(∣∣∣∣ ∇ n̂ n̂T

n̂ 0

∣∣∣∣). (10)

The principal curvatures at each cell center are:

K1,2 = KM ±
√

K2
M − KG. (11)

The principal curvatures [51] of the fluid–fluid interface at the nearest point to each
cell are:

K∗1,2 =
K1,2

1 + ΦK1,2
. (12)

The corrected mean curvature reads:

K∗M = K∗1 + K∗2 . (13)

2.2. Geometry and Computational Grids

The bubble point test was performed for two different wire mesh screens. Both screens
had a plain weave pattern. The geometry of the wire mesh screen was characterized by
the yarn radius, yarn pitch and the total mesh thickness. The mesh with the larger yarn
pitch was referred to as ‘coarse’ mesh. The other mesh is referred to as ‘fine’ mesh. The
geometric properties of the mesh screens, used in the bubble point test, are given in Table 1.

Table 1. Geometric properties of the wire mesh screens.

Screen Yarn Radius µm Yarn Pitch µm Mesh Thickness µm

Coarse 133 433 245
Fine 16.9 82.82 64

In Figure 1, images of the samples of the wire mesh screens are shown. The images
were obtained using a microscope for illustration only. The dimensions of the wire mesh
were taken from the manufacturer’s data sheets.

The computer model of the wire mesh screen was reconstructed using the software
GeoDict [52], as shown in Figure 2.
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Figure 2. Computer model of a sample of the (a)coarse and (b)fine screens created by GeoDict [52].

The computational grid was generated using snappyHexMesh, which is an automatic
grid generation utility in OpenFOAM. The utility creates unstructured grids made of
polyhedra elements. The majority of the computational cells were cubic. The average edge
length of the computational cells was 7 µm for the coarse mesh and 0.6 µm for the fine
mesh, which was proven to be sufficient in terms of accuracy.

In order to perform a systematic analysis of the interaction between a single water
droplet and a wire mesh screen, the special case of the interaction between a single droplet
with a single fiber was considered in a stagnant ambient fluid (diesel). A thin long cylinder
was placed at the center of a cubic domain. The computational cells were very small near
the surface of the cylinder in order to capture the rapid change of the interfacial curvature.

Furthermore, different idealized geometries were used in the simulations of the
interaction between a single water droplet and a wire mesh screen in diesel. Each wire
mesh screen was assumed to be made of cylindrical fibers. The meshes differed from each
other in the fiber radius r f , number of pores nP (total size of the domain), yarn pitch LP,
and the open area ratio ζ. The open area ratio was defined as follows:

ζ =

(
LP − 2r f

)2

L2
P

. (14)

The geometric properties of the wire mesh screens are given in Table 2. The fibrous
structure was generated by orthogonal intersections of the fibers as shown in Figure 3.

Table 2. Geometric properties of the wire mesh screens.

Total Number of Pores np(−) 9–100

Fiber radius r f (µm) 10, 25, 50
Open area ratio ζ 0.25–0.51
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Figure 3. Idealized geometry of two wire mesh screens with different total size and open area ratio
ζ = 0.25.

A structured multi-block computational grid was generated using a utility called
blockMesh in OpenFOAM [53,54]. An in-house Python script was used to generate the
geometry and the corresponding blocks in order to automate the process of grid generation
as shown in Figure 4. The number of computational cells between every two fibers
was chosen to be 15–20 cells such that the flow in the pores was fully resolved. The
computational cells had aspect ratio of 1–2 near the upstream boundary of the wire mesh
screen and of 4–6 far away from the regions of significant importance. Since the droplet
radius was much larger than the pore length scale, this grid resolution was sufficient to
resolve the fluid–fluid interface and the flow inside and outside the droplet.
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2.3. Initial and Boundary Conditions
2.3.1. Bubble Point Test

The bubble point test was simulated for a single pore as shown in Figure 5. The
pressure at the lower boundary was set to a specified value for the differential pressure ∆p
(Dirichlet boundary condition). At the upper boundary, the pressure value was normalized
to 0 Pa. The velocity boundary condition was set to zero flux (Neumann) on both the upper
and lower boundary. At the surface of the wire mesh screen, a fixed contact angle condition
was imposed using the Young–Laplace contact angle θYL. On the side planes, symmetry
boundary conditions were imposed. Initially, the domain was filled by two fluids: glycerol
in the upper half of the domain and air in the lower half, as shown in Figure 5. As in the real
bubble point experiment, the (differential) pressure at the lower boundary was increased
gradually until a threshold value was reached, at which the fluid–fluid interface ruptured
and the air started to flow through the pores and rise in the computational domain.
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2.3.2. Droplet–Mesh Interaction

In the special case of a single fiber, a perfect spherical droplet was initialized such that
it wet few computational cells of the fiber. Because of the contact angle boundary condition
imposed on the fiber, the contact line moved and the fluid–fluid interface deformed until
an equilibrium was reached. In the present simulations, it was assumed that the single
fiber or the wire mesh screen was hydrophobic (θYL > 90◦). At the inflow (inlet) boundary,
the flow velocity was uniformly set to the flow velocity far away from the mesh (u∞) and
for the pressure, a gradient of zero was prescribed. At the oulflow boundary (outlet), the
pressure was uniformly set to zero while a zero-gradient condition was imposed on the
velocity. At the boundaries along the flow direction, symmetry boundary conditions for
both velocity and pressure were imposed due to the symmetric nature of the geometry.

Second, the interaction between a single water droplet and the wire mesh screen was
considered. A spherical water droplet was initialized at a random position upstream to
the wire mesh screen. At the inlet, the velocity was set to Dirichlet with a uniform inflow
velocity u∞ and the pressure was set to Neumann. At the outlet, the pressure was set
to Dirichlet 0 Pa and the velocity was set to Neumann. On the side planes, symmetry
boundary condition was set. The schematic layout of the domain is shown in Figure 6.
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Figure 6. Computational domain for the simulation of the interaction between a large single droplet
and wire mesh screen.

2.4. Discretization Schemes and Solution Control

OpenFOAM uses the finite volume method (FVM) to solve the conservation laws
and a co-located grid. A summary of the discretization schemes chosen in the following
simulations is given in Table 3. The PISO algorithm [55] was used for the pressure–velocity
coupling. The time-step was chosen such that the Courant–Friedrichs–Lewy (CFL) [56]
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number was less than 0.3. The number of advection sub-cycles for the volume fraction was
set to 3 such that each sub-cycle had a corresponding CFL number of 0.1.

Table 3. Summary of discretization schemes used in the presented simulations.

Temporal Derivatives ∂
∂t First-Order Explicit (Euler)

Advection of volume fraction ∇·(αu) Geometric scheme (isoAdvector) [57]
Convection of momentum ρ(u·∇)u Second-order upwind [54]

Diffusion of momentum (shear stress) Explicit central difference
Gradient ∇ Least-squares

Interpolation Linear

2.5. Experimental Setup

A clean rectangular sample of the wire mesh screen was prepared by manual cutting
using scissors. The sample was 2× 2 cm2. The sample was saturated and covered by
glycerol. A capillary flow pore size meter (Topas PSM 165 [58]) was used to measure the
pressure drop during the bubble point test. Figure 7 shows the schematic layout of the test
rig. The test rig was made of two large hollow cylinders. The sample was placed between
the two cylinders, which were locked in place. Manually, a control needle valve was
opened gradually to inject air. By increasing the air flowrate, the pressure drop increased.
At threshold pressure, a stream of air bubbles was released and detected optically.
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Figure 7. Schematic structure of the porometer test rig.

The relevant material properties of the glycerol are given in Table 4.

Table 4. Transport properties of the glycerol.

Density ρG (kg/m3) 1260

Dynamic viscosity µG (Pa s) 1.4
Surface tension coefficient γ () 0.063

The mesh screen was made of polyethylene terephthalate (PET). Measurement of the
contact angle of glycerol on wire mesh screens could not be performed. The Young–Laplace
contact angle was assumed to be θYL = 70◦.

3. Results and Discussion
3.1. Bubble Point Test: Validation Case

The bubble point test pressure was the maximum pressure at which the fluid–fluid
interface was not ruptured (stable). Figure 8 shows the measurements of the pressure
curves during the bubble point test. Each curve represents a single experiment. The
pressure dropped rapidly after reaching its threshold value because of the manual control
of the needle. The control valve was shut down after noticing the stream of bubbles.
In order to ensure that the manual control of the air valve had a negligible effect on
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the threshold pressure, different measurements were taken. Each curve represents an
experiment where the total time to reach the threshold pressure was different. All curves
show an upper bound (threshold value). At this value, the glycerol–air interface ruptured
and a stream of air bubbles was released. Because of the rupture of the interface, the
pressure drop decreased significantly. The upper bound was found to be 5.8± 0.468 mbar
and 33± 5.2 mbar for the coarse and the fine mesh, respectively.
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Figure 8. Measurements of the pressure evolution during the bubble point test of two wire mesh
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Figure 9 shows the glycerol–air interface simulated at different pressure boundary con-
ditions values. The increase of the pressure resulted in a decrease in the interfacial curvature.
At a certain threshold value, the inflated interface collided with the symmetry boundaries
followed by rupture of the interface. From CFD simulations, the threshold pressure was
found to be be 6.5 mbar and 36 mbar for the coarse and the fine mesh, respectively.

Fluids 2021, 6, x FOR PEER REVIEW 9 of 21 

3. Results and Discussion

3.1. Bubble Point Test: Validation Case 

The bubble point test pressure was the maximum pressure at which the fluid–fluid 

interface was not ruptured (stable). Figure 8 shows the measurements of the pressure 

curves during the bubble point test. Each curve represents a single experiment. The pres-

sure dropped rapidly after reaching its threshold value because of the manual control of 

the needle. The control valve was shut down after noticing the stream of bubbles. In order 

to ensure that the manual control of the air valve had a negligible effect on the threshold 

pressure, different measurements were taken. Each curve represents an experiment where 

the total time to reach the threshold pressure was different. All curves show an upper 

bound (threshold value). At this value, the glycerol–air interface ruptured and a stream 

of air bubbles was released. Because of the rupture of the interface, the pressure drop de-

creased significantly. The upper bound was found to be 5.8 ± 0.468 mbar and 33 ± 5.2 

mbar for the coarse and the fine mesh, respectively. 

(a) Coarse (b) Fine

Figure 8. Measurements of the pressure evolution during the bubble point test of two wire mesh 

screens (a) coarse and (b) fine. The measurements are taken four times for each mesh. 

Figure 9 shows the glycerol–air interface simulated at different pressure boundary 

conditions values. The increase of the pressure resulted in a decrease in the interfacial 

curvature. At a certain threshold value, the inflated interface collided with the symmetry 

boundaries followed by rupture of the interface. From CFD simulations, the threshold 

pressure was found to be be 6.5 mbar and 36 mbar for the coarse and the fine mesh, 

respectively. 

(a) Δ𝑝 = 5.5 mbar (b) Δ𝑝 = 6 mbar (c) Δ𝑝 = 6.5 mbar

Figure 9. Shape of the glycerol–air interface (green) at different pressure boundary conditions (val-

ues). 

The basic model to describe the bubble point test was the approximated Young–La-

place equation for a simplified pore structure: 

𝑝𝐵𝑃 = C0

4 𝛾 cos(𝜃𝑌𝐿)

𝐿𝑃 − 2𝑟𝑓
, (15) 

where 𝐶0 is an empirical correction coefficient [48] which takes into account the mesh 

hole geometry which deviates significantly from cylinderical pores. For both the coarse 

and the fine mesh screen, the previous experimental measurements agreed well with both 

Figure 9. Shape of the glycerol–air interface (green) at different pressure boundary conditions (values).

The basic model to describe the bubble point test was the approximated Young–
Laplace equation for a simplified pore structure:

pBP = C0
4 γ cos(θYL)

LP − 2r f
, (15)

where C0 is an empirical correction coefficient [48] which takes into account the mesh hole
geometry which deviates significantly from cylinderical pores. For both the coarse and the
fine mesh screen, the previous experimental measurements agreed well with both numer-
ical simulations and the simplified Young–Laplace equation using C0 = 1.86. Figure 10
shows a comparison of the threshold pressure obtained from the experimental measure-
ment, numerical simulations of a single pore, and the approximated Young–Laplace equa-
tion (Equation (15)).
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The relative deviation of the threshold pressure using VoF simulations was evaluated
with respect to the experimental measurements as follows:

eBP = 100

∣∣pBP,CFD − pBP,exp
∣∣

pBP,exp
. (16)

The relative errors between the CFD simulations and the experimental measurements
were 12% and 11% for the coarse and the fine screen, respectively. The agreement is
considered to be good, due to the deformations on the pore structure and the deviation
between the computer model and the real mesh. Thus, VoF simulations can be used to
predict the bubble point test pressure of wire mesh screens.

3.2. Single Water Droplet Interaction with Wire Mesh Screen
3.2.1. Spreading Radius

First, the special case of a single droplet residing on a thin long cylinder (fiber) was
considered. Three different droplets were simulated with radii 15, 25, and 50 µm. The
radius of the fiber was kept constant with value r f = 10 µm. Three Young–Laplace contact
angles were simulated, namely θYL = 110◦, 130◦, and 150◦. The relevant properties of the
water and the diesel are given in Table 5.

Table 5. Transport properties of water and diesel.

Diesel Density ρD (kg/m3) 850

Diesel dynamic viscosity µD (Pa s) 4× 10−3

Water density ρW
(
kg/m3) 1000

Water dynamic viscosity µW (Pa s) 1× 10−3

Because the flow fields were static, only two length scales affected the spreading of
the droplet: the droplet radius R and the fiber radius r f . Figure 11a shows the shape of the
droplet on the fiber. Figure 11b demonstrates the contact line of the droplet on the surface
of the fiber.
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Figure 11. Wetting of a single water droplet on a hydrophobic thin fiber in diesel: (a) shape of the
water droplet; (b) contact line (black) of a water droplet where red corresponds to water and blue
corresponds to diesel.

The contactline is an ellipse projected on the surface of the fiber. The ellipse is described
by the major radius a0 and minor radius b0. The averaged wetting (clogging) radius rw,0
was defined as the geometric mean value:

rw,0 =
√

a0 b0. (17)

It is important to note that when the solid surface is flat (at a very large fiber radius),
the contact line is circular with radius:

lim
r f→∞

rw,0 = a0 = b0 = R cos(θYL − 90◦). (18)

From dimensional analysis, the averaged wetting radius is normalized by the wetting
radius in case of a flat surface. Another non-dimensional length appears by combining the
droplet radius, fiber radius, and Young–Laplace contact angle as follows:

rw,0

R cos(θYL − 90◦ )
= f

(
R

r f cos(θYL − 90◦ )

)
, (19)

where f (·) is a fitting function to be determined. An important constraint on the fitting
function is that it should tend to unity as the radius of curvature of the fiber goes to infinity:

lim
r f→∞

f

(
R

r f cos(θYL − 90◦ )

)
= 1. (20)

Figure 12 shows the averaged wetting radius of the contact line. The curve was
modeled as a decaying exponential. For very large droplets, it can be seen that the ratio
was independent of the radius of the fiber. For relatively small droplets, the wetting tended
toward the shape of a droplet residing on a flat surface. A fitting function to model this
pattern was found to have the following form:

rw,0

R cos(θYL − 90◦ )
= 0.45 + 0.55 exp

(
−0.16

R
r f cos(θYL − 90◦ )

)
. (21)

Second, the case of a moving diesel with a mean velocity u∞ at the inlet of the
domain was considered. The droplet radius was larger than the open pore length scale. In
order to cover a wide range of non-dimensional numbers, different droplet radii, inflow
velocities, surface tension coefficients, and Young–Laplace contact angles were assumed
(as summarized in Table 6). Figure 13 shows a visualization of the averaged wetting
(clogging) radius.
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Figure 12. Averaged wetting radius of a droplet on a thin cylindrical fiber.

Table 6. Parameter space of the simulations of water–wire mesh screen interaction.

Inlet Velocity u∞ (m/s) 0.005, 0.025, . . . , 0.25

Droplet radius R (µm) 25, 50, . . . , 650
Ratio between droplet radius and mesh pitch

R/LP (−) 1–5

Surface tension coefficient γ (N/m) 0.01, 0.02, and 0.04
Young–Laplace contact angle θYL (◦) 120◦, 135◦, and 150◦
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Table 6 gives the different parameters of the simulations between a single water
droplet and a hydrophobic wire mesh screen (the properties of the wire mesh screens
were given earlier in Table 2). The choice of the simulation parameter was chosen using
a random number generator from the values in Table 6. The total number of performed
simulations was 130.

In the regime of low velocity (dominant viscous force), the deformation of the droplet
depends on the capillary number. The capillary number represents the ratio between the
viscous force to the surface tension force. The capillary number was modified in order
to account for the surface tension force in the direction opposite to the diesel. Moreover,
the effect of the open area ratio was plugged into the modified capillary number as an
interpolation function. The modified capillary number was defined as follows:

Ca =
1− ζ

ζ

1
sin(θYL − 90◦ )

µDu∞

γ
, (22)

where (1− ζ)/ζ scaled the ratio between the viscous forces and capillary forces for different
open area ratios. For a sparse mesh, we had ζ → 1 and the viscous forces were negligible
in compraison to the capillary forces. In that vein, it was assumed that the wetting of a
droplet on the wire mesh screen was similar to the static case (negligible pressure drop). In
the case of dense wire mesh screen, we had ζ → 0 , and the viscous forces were dominant
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and the surface tension force was negligible. At larger velocities, the Reynolds number
(ratio between inertial forces and viscous forces) affects the deformation of the droplet.
The average wetting was modeled as a function of the modified capillary and Reynolds
number as follows:

rw−rw,0

R
= f

(
1− ζ

ζ

1
sin(θYL − 90◦ )

µDu∞

γ
,

2 RρDu∞

µD

)
. (23)

Figure 14 shows the normalized averaged wetting radius at different Reynolds and
capillary numbers. It can be noticed that when the Reynolds number increased, the
deformation of the contact line increased as well. For a very low capillary number, there
was a lack of correlation between the capillary number and the wetting radius. The reason
is that the wetting radius depends on the location of the droplet on the wire mesh screen.
For moderate capillary numbers, the normalized wetting radius showed a linear behavior
with respect to the capillary number.
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A good fitting of the normalized averaged wetting radius (Equation (23)) was found
to have the following form

rw−rw,0

R
= 1.323 Ca0.192Re0.043. (24)

The relative deviation between the fitting and the CFD simulations was defined
as follows:

er = 100·

∣∣∣(rw)CFD − (rw) f itting

∣∣∣
(rw)CFD

. (25)

Figure 15 shows a comparison between the wetting radius of the contact line computed
from CFD simulations and fitting. The color bar indicates the relative deviation. The points
collapsed on a line with a maximum relative deviation of 20%. The average relative
deviation was around 10%.

The height h of a droplet is defined as the distance between its farthest upper point to
the center of the fiber. In the case of static droplet single fiber interaction, the change in the
height was relatively negligible and was assumed as follows:

h0 ' 2R + r f . (26)

Because of the conservation of the volume of the droplet, the height of a deformed
droplet was modeled as a function of the radius of the deformed droplet as follows:
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h− r f

2R
= fh

( rw

R

)
, (27)

where fh(·) is an arbitrary fitting function. Figure 16 shows the height of a deformed
droplet. The maximum change of the normalized height of the droplet was found to be 0.3.
The height showed a parabolic pattern with respect to the ratio between the contact line
radius and the droplet radius.
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A good fitting of the normalized height of the deformed droplet was found to take the
following form:

h− r f

2R
= 0.31

( rw

R

)2
. (28)

The relative deviation in the modeling of the height of the droplet was defined as follows:

eh = 100·

∣∣∣(h)CFD − (h) f itting

∣∣∣
(h)CFD

. (29)

Figure 17 shows a comparison between the distance between the droplet uppermost
point and the center of the fiber computed from CFD simulations and fitting. The color bar
indicates the relative deviation. The points collapsed on a line with a maximum relative
deviation of 10%. The average relative deviation was less than 5%.
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3.2.2. Pressure Drop

At low velocities (negligible inertial forces), the pressure drop across a clean wire
mesh screen was linearly proportional to the mean inflow velocity,

∆p0 = F (ζ)u∞, (30)

where F (ζ) is a friction coefficient, similar to the flow resistance in Darcy’s law, which
essentially depends on the open area ratio ζ. The actual form of F (ζ) dependd on the
weave pattern, the geometry of the fiber cross-section, etc. For an unclogged mesh made of
nP pores, the total force is

F0 = F (ζ)uDnPL2
P. (31)

For a partially clogged mesh with nC clogged pores, the mass flow rate was assumed
to be redistributed uniformly on all the open pores. The total change in the volumetric flow
rate

.
Vc because of clogging nc pores is

.
Vc = nCL2

Pu∞. (32)

Assuming the change in the flowrate is distributed uniformly on the remaining open
pores, the mean velocity at each open pore reads

u′∞ =

(
1 +

nC
nP − nC

)
u∞. (33)

The net force across the domain is

Fnet = ∆p nP L2
P. (34)

The friction force due to the flow in the open pores is

FF = F (ζ)
(

1 +
nC

nP − nC

)
uD(nP − nC)L2

P. (35)

The pressure force which clogs nc pores is

Fc = ∆p nc L2
P. (36)

The effect of the deformation of the droplet was assumed to be negligible. The drag
force on a spherical water droplet was modeled as follows:

FD = CD
π

2
ρDu2

DR2, (37)
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where the drag coefficient was computed using the Rivkind and Ryskin model [59] as follows:

CD =

µW
µD

(
24 Re−1 + 4Re−

1
3

)
+ 14.9Re−0.78

µW
µD

+ 1
, Re =

2 ρDu∞R
µD

. (38)

Applying the force balance and equating the net force with the friction, clogging, and
drag force leads to the following pressure drop model

∆p
∆p0

=
nPL2

P
(nP − nC)L2

P

(
1 +

p∞

∆p0

πR2CD

nPL2
P

)
, (39)

where the free stream pressure is

p∞ =
1
2

ρDu2
∞. (40)

The number of clogged pores was assumed to be computed from the clogged area
as follows:

nc

nP
= C1

πr2
w

S0
, (41)

where S0 = npL2
p is the total projected mesh area and C1 is a fitting parameter, which takes

into account the existence of the ‘shadow region’ between the downstream side of the
droplet and the mesh. For the case of small droplets or negligible drag force, the pressure
drop scales with the normalized clogged area as follows:

∆p
∆p0

' S0

S0 − C1 × πr2
w

. (42)

Using C1 = 1.05 was found to fit the pressure drop values well, as shown in Figure 18.
The relative deviation between the pressure drop model obtained using Equation (39) and
CFD simulations is defined as follows:

ep = 100 ·

∣∣∣(∆p)CFD − (∆p) f itting

∣∣∣
(∆p)CFD

. (43)

The relative deviation was found to be less than 15% with an average deviation of
4.5%. The outliers and deviations in the results are due to the initial random position of
the droplet, which was not always in the center of the domain. Moreover, in the presented
simulations, the drag force was found to be negiligible in comparison to the pressure force
because of partial clogging.
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3.2.3. Breakthrough

The mechanism through which breakthrough occurs is shown in Figure 19. First, the
increase of the pressure drop leads to an increase in the curvature of the fluid–fluid interface
in the clogged pores as shown in Figure 19a. At a threshold value, the sub-droplets collide
with each other and coalescence starts. The droplet starts to move through the pores as
shown in Figure 19b. Finally, the coalescence of sub-droplets propagates until the whole
droplet is in the downstream region of the wire mesh screen. Because of the hydrophobicity
and the existence of pressure drop, the droplet moves downstream and is not captured
anymore as shown in Figure 19c.
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Figure 19. Breakthrough mechanism of a water droplet through a wire mesh screen. (a) Sub-droplets
start to form through clogged pores; (b) Coalescence of sub-droplets; (c) Breakthrough the wire mesh
screen and the droplet is transported downstream.

This mechanism is similar to what was discussed in the bubble point test. Hence,
the same model was adopted to describe the threshold pressure at which breakthrough
occurs. From the approximated Young–Laplace equation (Equation (15)) for a single pore,
the threshold pressure reads

∆p∗ = 0.95 pγ,max = 3.8
γ sin(θYL − 90◦)

L2
P

, (44)

where the maximum capillary pressure in a single pore is

pγ,max = 4
γ sin(θYL − 90◦)

L2
P

, (45)

Figure 20 shows the normalized averaged wetting versus the normalized pressure
drop. All the data points of the captured droplets were found to be bounded with a
pressure value of 0.95 pγ,max and an upper bound of the deformation rw

R ' 0.96. The data
points of the droplets which broke through the mesh are not shown because they leave the
domain and therefore they do not have a measurable clogging pressure or deformation on
the surface of the wire mesh screen.

Instead, Figure 21 shows the two possible outcomes (capture or breakthrough) versus
the normalized predicted pressure drop using Equation (39). It can be seen that the data

points (simulation results) can be separated by the line
∆pFitting

pγ,max
= 0.95.
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Figure 21. Capture–breakthrough regimes for a large water droplet clogging a wire mesh screen
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represent the droplets which are ruptured by the pressure force.

4. Conclusions

The interaction between small droplets or bubbles and wire mesh screens (separa-
tors) is vital for many applications: water–diesel separation, air–oil separation (demister),
aerosol filtration, and solvent extraction. In the special case of water–diesel separation, the
transport phenomena are capillary dominated because of the large viscosities and densities
of both fluids. Fundamentally, the process of liquid–liquid separation combines two scales:
(a) on the microscale, where the dominant length scale is the mean fiber radius, and (b) on
the macroscale, where the overall pressure drop and the separation efficiency are important
to quantify. Although different models describe the collective evolution of the separation
efficiency and the pressure drop of separators, those models are empirical. Such models do
not provide a clear description of the relationship between the interaction on the microscale
and its consequences on the macroscopic model. The main outcomes of this study are:

1. Validation of the two-phase flow simulations by comparing the bubble point test
simulations with experiments. The bubble point test is usually used to find an
empirical parameter which fits the Young–Laplace equation to the measurement. The
simulations showed validity and predictability in computing the threshold pressure.
Hence, the fitting coefficient can be computed with good agreement from direct
numerical simulations.
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2. Quantification of the interaction of a single water droplet with a hydrophobic wire
mesh screen in diesel. The simulations covered a wide range of capillary and Reynolds
numbers. The obtained results were used to find correlations, which describe the
radius of the clogging (wetting) contact line, the change in the droplet height, the
pressure drop because of the reduction of the open surface area, and the criteria for
droplet breakthrough.

Finally, the presented correlations help in understanding the influence of different
parameters on the microscale, such as open area ratio, fiber radius, Young–Laplace contact
angle, surface tension, and the mean inflow velocity on the dynamics and separation
of water droplets. Moreover, the presented correlations can be used as a closure model
for a macroscopic model of water–diesel separation based on the population balance
equation (PBE).
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