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Abstract: The Mach stem height is an important parameter in the Mach reflection of steady supersonic
flow. Various experimental, numerical, and theoretical works have been conducted to study this
parameter in the past. However, much of the established work focuses around a single set of trailing
edge heights. Here, we perform a study to show the dependence of Mach stem height on the trailing
edge height for a wider range of geometry. Through numerical simulation for a set of trailing
edge heights, we found that the normalized Mach stem height is almost linear with respect to the
normalized wedge trailing edge height. The parameter used for normalization can be either the
inlet height or the length of the lower wedge surface. The observation of this linear trend is justified
through a simplified analysis, which leads to an expression of the Mach stem height that linearly
depends on the trailing edge height. The present study extends our knowledge about how the
geometry affects the Mach stem height, and provides a basis for future work to elaborate analytical
models for Mach stem height.

Keywords: gas dynamics; shock waves; shock reflection

1. Introduction

Shock reflection is an important phenomenon in high-speed flow [1]. Both regular
reflection and Mach reflection are possible, and the conditions to have regular reflection
and Mach reflection and their transition have been well studied [1–11]. For instance, the
regions of various forms of reflection were defined for both air and nitrogen by Bazhenova,
Fokeev and Gvozdeva [3].

Figure 1 is a schematic configuration of a typical Mach reflection with some necessary
details. The incident shock wave (i), produced by the wedge (with wedge angle θw) in
supersonic flow (with Mach number M0), reflects over the reflecting surface to produce
a reflected shock wave (r), a Mach stem (m) and a slipline (s). These four discontinuities
are connected by a point (T), known as the triple point. The flow region behind the Mach
stem, bounded by the slipline and the reflecting surface, forms a flow duct that is initially
convergent since the slipline deflects towards the reflecting surface near point T.

The size of the Mach stem in the case of Mach reflection has received great interest.
The mechanism by which the size of a Mach reflection can be estimated is an issue raised
long ago by Courant and Friedrichs [12] and Liepmann and Roshko [13]. This issue was
considered to be unsolved prior to the 1990s [14–16]. Chow and Chang [17] proposed
an integral approach to estimate the Mach stem height for a slightly different problem
where Mach reflection lies in an over-expanded jet flow outside of a nozzle. Hornung and
Robinson [18] performed an experimental study for the Mach stem height, and proposed a
mechanism by which the size of the Mach stem is determined. They pointed out that the
pressure decreasing information from the wedge trailing edge expansion fan is carried out
to the quasi-one-dimensional flow duct, which then moves upstream through the subsonic
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pocket to adjust the position of the triple point, or the Mach stem height. They pointed
out a functional form of the Mach stem height and proposed that the normalized Mach
stem height depends on M0, θw, γ (ratio of specific heats) and g/w (trailing edge height
g normalized by the wedge length w). If viscosity is accounted for, a boundary layer is
attached to the wedge surface. Schmisseur and Gaitonde [19] used numerical simulation
to show that this boundary layer increases the Mach stem height, due to the increased
displacement effect of the wedge boundary-layer to increase the effective shock angle.

Figure 1. Mach reflection configuration. The inflow Mach number M0, the wedge angle θw, the inlet
height HA and the lower wedge surface length w or the trailing edge height g are given conditions.

Since the 1990s, various attempts have been made to derive simplified models for
predicting the Mach stem height [16,20,21]. A key issue in these models is how the pressure
variation inside the expansion fan of the trailing edge (R) is carried out to the slipline,
particularly to the sonic throat, where the height of the duct is minimal and related to the
Mach stem height through the quasi-one-dimensional area Mach number relation plus the
isentropic flow relation for pressure. Azevedo and Liu [20] assumed the sonic throat to be
at point b, where the leading characteristics of the transmitted expansion waves intersects
with the slipline. Li and Ben-Dor [16] allowed the sonic throat to be determined by the
transmitted expansion waves, using the assumption that the flow just above the sonic
throat is parallel to the free stream flow. This assumption was later adopted by Mouton
and Hornung [21], who improved the model of Azevedo and Liu [20] and determined the
Mach stem height using an unsteady approach. In the work of Azevedo and Liu [20], Li
and Ben-Dor [16] and Mouton and Hornung [21], the slipline ahead of point b is treated
as a straight line. Gao and Wu [22] and Bai and Wu [23] considered secondary generated
expansion waves on the initial part of the slipline and demonstrated that the Mach stem
height is sensitive to these pressure waves. Including the influence of these expansion
waves appears to greatly increase the accuracy of the modeling. Recently, these works
were extended to asymmetric shock reflection [24,25].

For symmetrical Mach reflection, past studies have shown how the Mach stem height
depends on the inflow Mach number and the wedge angle. The normalized Mach stem height
is a decreasing function of the inflow Mach number (Gao and Wu [22], Figure14a,b) and is
an increasing function of the wedge angle or shock angle (Gao and Wu [22], Figure 14c,d, as
can also be seen in Hornung and Robinson [18]). However, much of the established literature
studying Mach stem height focused art approximately g/w = 0.4 [16,18,20–23], and the
influence of a geometric setup on shock reflection was considered in the transition study
[6,16]. It is thus desirable to study the Mach stem height for a wide range of geometry.

In this paper, we will use numerical simulation by computational fluid dynamics
(CFD) to show that the normalized Mach stem height is almost a linear function of the
normalized wedge height (Section 2). We then use some assumptions to derive a simplified



Fluids 2021, 6, 313 3 of 14

expression for the Mach stem height, to show that this linearity can be predicted even with
a simplified analysis (Section 3). Finally, we make our conclusions.

In the following, M is the Mach number, p is the pressure, θ is the flow deflection
angle with respect to the free-stream direction which is positive when deflected to towards
the reflecting surface, β is the shock angle, and γ is the ratio of specific heats.

2. Numerical Simulation for Dependence of Mach Stem Height on the Trailing
Edge Height

Numerical results for Mach stem height are obtained through solving the full set of
nonlinear Euler equations in gas dynamics, using the second-order Roe scheme based
on finite difference approximation and second-order upwinding for the flux [26]. The
grid number we used is 400 × 600, which is two times denser than the grid used by
Gao and Wu [22] for similar purposes.

To ensure the accuracy of CFD computation, we performed calculations using various
grid densities or accuracy for g

HA
= 0.6 or g

w = 0.634 or HA
w = 1.05, when M0 = 4, θw = 25◦.

The Mach contours with four different density of grids are displayed in Figure 2.

First order     400 × 600 Second order     200 × 300

(a) (b)

Second order     400 × 600 Second order     600×900

(c) (d)

Figure 2. Mach number contours for M0 = 4, θw = 25◦ and g
HA

= 0.6: (a) first order with a 400× 600
mesh; (b) second order with a 200× 300 mesh; (c) second order with a 400× 600 mesh; and (d) second
order with a 600× 900 mesh.

It can be seen that the global flow structures are similar, but the Mach stem height
with first-order accurate method with a grid 400× 600 and second order method with a
coarse grid 200× 300 yield a Mach stem height much lower than that with the second order
accurate method with grids 400× 600 and 600× 900. Moreover, the second order method
with grids 400× 600 and 600× 900 results in Mach stem heights that are marginally close.
Thus, we will use a second-order method with a grid 400× 600 for simulations, since it
needs less computational time than with the grid 600× 900.

Now we display in Figure 3 the numerical results of normalized Mach stem height as
a function of the normalized wedge trailing height for several different values of the inflow
Mach number and wedge angle.
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Figure 3. Numerical results for normalized Mach stem heights as a function of the normalized wedge
trailing edge height for M0 = 4 and θw = 25◦: (a) HT

HA
versus g

HA
; (b) HT

w versus g
w ; (c) HT

w versus HA
w .

The line e1e2 is a straight line passing through the CFD data. Open circles are CFD data obtained
using grids different to 400× 600 points or a first-order accurate method.

Figure 3a displays the variation of HT
HA

with respect to g
HA

, for M0 = 4, θw = 25◦ and

a set of g
HA

varying from 0.425 to 0.65. Figure 3b is the result for HT
w for various g

w , with
M0 = 4, θw = 25◦ and a set of g

w varying from 0.3124 to 0.7849. Figure 3c displays the
variation of HT

w versus HA
w for M0 = 4, θw = 25◦ and a set of HA

w varying from 0.735 to
1.2075. The additional marks in Figure 3 show that numerical results with a grid of
400× 600 points and with second order of accuracy are acceptable since further refining
the grid does not change the Mach stem height. This supports the previous claim that the
use of a second-order method with the grid 400× 600 is accurate enough.

We observe that, for the conditions tested, the normalized Mach stem height HT
HA

is

almost linear with respect to g
HA

, the normalized Mach stem height HT
w is almost linear

with respect to g
w , and the normalized Mach stem height HT

w is almost linear with respect to
HA
w . In Figure 3, a straight line e1e2 is marked across the numerical data and this straight

line is given by 
HT
HA

= −1.0314 g
HA

+ 0.7227, R2 = 0.9994
HT
w = −0.3087 g

w + 0.3054, R2 = 0.9985
HT
w = −0.3087 HA

w + 0.4359, R2 = 0.9985

where R2 stands for the linear correlation coefficient.
The Mach contours for M0 = 4, θw = 25◦ and g

HA
= 0.425, 0.475, 0.525, 0.575 are

displayed in Figure 4a–d. From the Mach contours, we can see how the Mach stem height
decreases with increasing g

HA
. It is noted that when g

HA
increases, the triple point moves in

the downstream direction and the flow duct below the slipline is narrowed.
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Figure 4. Numerical results for Mach contours with M0 = 4 and θw = 25◦: (a) g
HA

= 0.425; (b) g
HA

= 0.475; (c) g
HA

= 0.525; and (d) g
HA

= 0.575.

The linearity is also observed for another set of M0 and θw. Figure 5a displays the
variation of HT

HA
with respect to g

HA
for M0 = 4, θw = 30◦ and a set of g

HA
varying from

0.55 to 0.62. Figure 5b displays the variation of HT
HA

with respect to g
HA

for M0 = 3, θw = 25◦

and a set of g
HA

varying from 0.57 to 0.70. In Figure 5, a straight line e1e2 is marked across
the numerical data and this straight line is given by{

HT
HA

= −2.3695 g
HA

+ 1.6993, R2 = 0.9996
HT
HA

= −1.8537 g
HA

+ 1.4308, R2 = 0.9990

g/H
A

H
T
/H

A

0.54 0.56 0.58 0.6 0.62 0.64
0

0.1

0.2

0.3

0.4

(a) (b)

Figure 5. Numerical results for normalized Mach stem heights as a function of the normalized wedge
trailing edge height: (a) HT

HA
versus g

HA
for M0 = 4 and θw = 30◦; (b) HT

HA
versus g

HA
for M0 = 3 and

θw = 25◦.

The numerical trend that the normalized Mach stem height decreases with increasing
normalized trailing edge height seems to be counter-intuitive (and this trend has been
demonstrated by Vuillon, Zeitoun and Ben-Dor [6] for a particular set of conditions), since
apparently the Mach stem height should be proportional to the inlet height and one would
expect the Mach stem height increase with increasing wedge trailing edge height. However,
according to a simplified theoretical analysis given in Section 3, this trend can be justified.

3. A Simplified Analysis Showing Linearity of the Mach Stem Height with Geometry

Analytical models of various degrees of accuracy or complexity have been proposed
in the past [16,20–23], none of which have been put into a linear form and have been used
to predict the dependence of the Mach stem height on the wedge trailing length. Here,
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we derive an expression for the Mach stem height, which can be indeed put into a linear
form. This expression is obtained by relating the sonic throat point c to the trailing edge R
and to the triple point T, as done in previous works [16,20–23]. This analysis requires the
slopes of the shock waves and of the slipline in the vicinity of the triple point as shown
in Figure 6, as well as the slopes of the characteristic line R f c as marked in Figure 1. The
method to estimate these slopes is given in Appendix A.

Figure 6. Triple point solution.

3.1. Preliminary Geometric Relations

Here, we establish geometric relations that relate the sonic throat position c to the
trailing edge R through the characteristic line R f c (called the critical characteristic line)
and to the triple point T through the slipline Tbc. Notations can be seen in Figure 1. The
critical characteristic line brings the required pressure to the sonic throat c on the slipline to
balance the critical pressure p∗ in the quasi-one-dimensional flow duct below the slipline.

The critical characteristic line R f c intersects with the reflected shock wave at point f
and is composed of two segments R f and f c, both of which are assumed to be straight as
by Bai and Wu [23]. Point f lies on the reflecting shock wave, which is generally curved
according to Li and Ben-Dor [16]. Bai and Wu [23] gave a differential relation for the curved
shape of this reflected shock. Here, for the purpose of evaluating the position of f within
the present context of a simplified analysis, we omit the curvature of the shock segment T f
and relate the position of f to the triple point as

y f − yT = (x f − xT) tan(βT
2 − θw) (1)

where βT
2 is the shock angle of the reflected shock wave as shown in Figure 6.

The position of point c at the sonic throat is related to the positions of the intersection
point f and the trailing edge R by{

y f − yR = −(x f − xR)SR f
yc − y f = −(xc − x f )S f c

(2)

where SR f is the slope of the critical characteristic line R f upstream of the reflected shock
wave and is determined by

SR f = tan(θ∗f + µ∗f ) (3)

and S f c is the slope of the transmitted critical characteristic line f c which is given by

S f c = tan(θ∗r + µ∗r ). (4)

The parameters θ∗f and µ∗f are the flow deflection angle and Mach angle along the
critical characteristic line R f . The parameters θ∗r and µ∗r are the flow deflection angle
and Mach angle along the critical characteristic line f c. The method to evaluate these
parameters is given in Appendix A.
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Solving (1) and (2) gives the following geometric relation that relates the sonic throat
point c to the trailing edge R via the critical characteristic line R f c :

L1yc + L2xc = O1yR + O2xR + N1yT + N2xT , (5)

Here: 

L1 = 1 +
S f c
Ψ +

tan(βT
2−θw)
Ψ

L2 = S f c +
S2

f c
Ψ +

S f c tan(βT
2−θw)

Ψ

O1 =
S f c
Ψ +

tan(βT
2−θw)
Ψ

O2 =
SR f S f c

Ψ +
SR f tan(βT

2−θw)

Ψ
N1 = 1
N2 = − tan(βT

2 − θw)

(6)

and:
Ψ = tan(µ∗f + θ∗f )− tan(µ∗r + θ∗r ) (7)

Now, we establish a geometric relation that relates the sonic throat c to the triple point
T through the slipline. This slipline is assumed to be composed of two segments Tb and bc,
where b is the intersection of the slipline and the leading characteristics Rab.

Since the intersection point b also lies on the leading characteristics Rab, we have the
following geometric relations for point b:

ya − yT = (xa − xT) tan(βT
2 − θw)

yb − ya = −(xb − xa) tan(µT
2 + θT

2 )
ya − yR = −(xa − xR) tan(µ1 + θw)

(8)

where µ1 = arcsin 1
M1

and µT
2 = arcsin 1

MT
2

are the Mach angles. Solving (8) yields:

l1yb + l2xb = m1yR + m2xR + n1yT + n2xT (9)

where: 

l1 = 1
Φ2 tan(µT

2 +θT
2 )

+
tan(βT

2−θw)
Φ1

l2 = 1
Φ2

+
tan(βT

2−θw) tan(µT
2 +θT

2 )
Φ1

m1 = 1
Φ2 tan(µ1+θw)

+
tan(βT

2−θw)
Φ1

m2 = 1
Φ2

+
tan(µ1+θw) tan(βT

2−θw)
Φ1

n1 = −1
n2 = tan(βT

2 − θw)

(10)

with: {
Φ1 = tan(µT

2 + θT
2 )− tan(µ1 + θw)

Φ2 = 1
tan(µ1+θw)

− 1
tan(µT

2 +θT
2 )

(11)

Gao and Wu (2010) found that the segment Tb has some curvature due to secondary
expansion waves which serve to balance the pressure change in the quasi-one-dimensional
flow duct. Here, we omit this curvature in order to have an explicit relation between c
and T. Notations can be seen in Figure 1.

Since b lies on Tb, which is treated to be a straight line, we have:

yT − yb = (xb − xT) tan δT
s (12)

Meanwhile, the slipline bc is a curve that has a vanishing slope at point c (throat). We
approximate bc by a second order curve:

y− yb = −(x− xb) tan δT
s + τ(x− xb)

2 (13)
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Here, τ is a parameter ensuring that the second order curve has a vanishing slope at point
c (throat), i.e., dy

dx

∣∣∣
x=xc

= 0, which, when (13) is used, gives − tan δT
s + 2τ(xc − xb) = 0, or:

τ =
tan δT

s
2(xc − xb)

Using this value of τ, (13) takes the following simple form:

yc − yb = −1
2
(xc − xb) tan δT

s (14)

Solving (12) and (14) gives:{
xb = (yT − yc)

2
tan δT

s
+ 2xT − xc

yb = 2yc − yT − xT tan δT
s + xc tan δT

s
(15)

Now, putting (15) into (9) gives the geometric relation that relates the sonic throat to
the triple point via the slipline:

X1yc + X2xc = Y1yR + Y2xR + Z1yT + Z2xT (16)

where: 

X1 = 2l1 − 2l2
tan δT

s
X2 = l1 tan δT

s − l2
Y1 = m1
Y2 = m2

Z1 = l1 − 2l2
tan δT

s
+ n1

Z2 = l1 tan δT
s − 2l2 + n2

(17)

In summary, the geometric relation (5) connects the sonic throat c to the trailing edge
R following the critical characteristic line, and the relation (16) connects the sonic throat c
to the triple point T following the slipline. They will be used to derive the expression for
the Mach stem height below.

3.2. Mach Stem Height Expression Showing Linearity

In the following, we will use:

yT = HT , yC = H∗ =
HT

ψ(Mm)
, yR = g, xR − xA = L =

HA − g
tan θw

, xA = 0, yA = HA (18)

Here, H∗ is the height of the sonic throat which can be related to the Mach stem height
HT by the quasi-one-dimensional area Mach number relation HT

H∗ = ψ(Mm) where:

ψ(Mm) =
1

Mm

(
2

γ + 1

(
1 +

γ− 1
2

M2
m

)) γ+1
2(γ−1)

(19)

The triple point is on the incident shock wave, so that yA − yT = (xT − xA) tan β1,
meaning that:

xT = xA +
yA − yT
tan β1

(20)

For xA = 0, the expression (20) simplifies to:

xT =
HA − HT

tan β1
(21)
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Solving (5) and (16) gives:

Qyc = C1yR + C2xR + D1yT + D2xT (22)

where: 

Q = X2
L1
L2
− X1

C1 = X2
O1
L2
−Y1

C2 = X2
O2
L2
−Y2

D1 = X2
N1
L2
− Z1

D2 = X2
N2
L2
− Z2

(23)

Using (21) to replace xT in (22), we obtain:

Qyc = C1yR + C2xR +

(
D1 −

D2

tan β1

)
yT + D2xA +

D2

tan β1
yA (24)

Putting (18) into (24) yields:

HT
HA

= A(M0, θw)
g

HA
+ B(M0, θw)

A(M0, θw) =
C1−

C2
tan θw

Q
ψ(Mm)

−D1+
D2

tan β1

B(M0, θw) =
C2

tan θw +
D2

tan β1
Q

ψ(Mm)
−D1+

D2
tan β1

(25)

The expression (25) indeed shows the linearity of HT
HA

with respect to g
HA

, for fixed M0, θw.
This linearity has been observed in numerical simulation, as shown in Figure 3a.

If we introduce the obvious geometric relation HA = g + w sin θw into (25), we obtain
an equivalent form: 

HT
w = D(k)(M0, θw)

g
w + E(k)(M0, θw)

D(k) = A(k)(M0, θw) + B(k)(M0, θw)

E(k) = B(k)(M0, θw) sin θw

(26)

which shows the linearity of HT
w with respect to g

w , for fixed M0, θw. This linearity was
observed in numerical simulation, as shown in Figure 3b.

If we put g = HA − w sin θw into (26), we obtain another equivalent form:

HT
w

= D(k)(M0, θw)
HA
w

+ E(k)(M0, θw) (27)

where E(k) = B(k)(M0, θw) sin θw. Thus, if normalized inlet height HA
w is used as an input

parameter representing geometry, HT
w is still a linear function of HA

w , for fixed M0 and θw.
This linearity has been observed in numerical simulation, as shown in Figure 3c. Note
that Li and Ben-Dor [16] considered a situation where the wedge length w is fixed and the
height g is increased, and showed that the foot of the Mach stem follows a linear trajectory.
This observation, which they pointed out needs to be explained, may be associated with
the linearity pointed out by the present work.

3.3. Assessment of the Accuracy of the Mach Stem Height Expression

The Mach stem height expressions (25)–(27) were obtained under some simplifications
as stated in Appendix A. It is thus interesting to see whether these are also accurate enough
for quantitative prediction. Here, we will assess their accuracy by comparing them with
previous results and the present CFD data.

The experimental data of Hornung and Robinson [18] are usually used for comparison.
Here, we consider their case with M0 = 3.98 and g/w = 0.4, with the varying incident
shock angle (β1). Figure 7 displays the comparison of the Mach stem height expression (25)
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with some various previous works. In Figure 7, the experimental data of Hornung and
Robinson [18] and Mouton and Hornung [27], and the CFD data of Mouton and Hornung
[21], and Vuillon et al.[6] are displayed. It can be seen that the expression (25) provides a
curve lying between the curves of Bai and Wu [23] and Gao and Wu [22].

β
1

H
T
 /
 w

33 33.5 34 34.5 35 35.5 36 36.5 37
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 Present linear model

Bai & Wu (2017) Theory

Gao & Wu (2010) Theory

Mouton & Hornung (2007) Theory

Azevedo & Liu (1993)Theory

Li & BenDor (1997) Theory
Mouton & Hornung (2007) Amrita Computation

Mouton & Hornung (2008) Experiments

Hornung & Robinson (1982) Experiments

Vuillon et al. (1995) Computation

Gao & Wu (2010) Theory

Bai & Wu (2017) Theory
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Figure 7. Comparison of the linear model (25) against previous authors for M0 = 3.98 and g/w = 0.4.

The comparison of linear expression (25) with the present numerical solutions (already
shown in Figure 3a–c and Figure 5a,b of Section 2) is given in Figure 8a–e. It is seen that,
though the expression (25) displays linearity as CFD simulation, the slopes of the linear
curves signficantly differ from the CFD results.
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Figure 8. Comparison between the linear model (25) and CFD data: (a) HT
HA

versus g
HA

for M0 =

4, θw = 25◦; (b) HT
w versus g

w for M0 = 4, θw = 25◦; (c) HT
HA

versus g
HA

for M0 = 4, θw = 30◦; (d) HT
HA

versus g
HA

for M0 = 3, θw = 25◦; and (e) HT
w versus HA

w for M0 = 4, θw = 25◦.

3.4. Summary and Significance of the Linear Analysis

The linearity predicted in the present simplified analysis appears to suggest that
the linearity observed in the CFD simulation for a finite number of input parameters
has some generality.

A comparison of the linear model (25) obtained from the simplified analysis of CFD
data suggests that the slope, say A(M0,θw)

B(M0,θw)
, in the linear curve does not yet have the required

accuracy to be comparable with CFD data. The factors A and B in the expression (25) thus
need elaboration before the expression (25) can be used for accurate prediction.

Despite the difference between the slope in the model (25) and the slope in CFD results,
the agreement of linearity is meaningful in the future study of model elaboration since in
the suggested linear model, the influence of wedge height and the influence of the inflow
Mach number M0 and wedge angle θw are separate. For model elaboration, one can focus
on working out more accurate A and B, which only depend on the inflow Mach number
M0 and wedge angle θw. Moreover, even without knowing the exact values of the linear
coefficients A and B, the conclusion that the normalized Mach stem height is linear with
respect to the normalized wedge height is already useful in specific application to consider
the precise influence of geometry, since one can just perform numerical or experimental
work for the two sets of wedge height to fit the values of the slope in the linear model and
then apply this linear model to predict the Mach stem height for other wedge height. This
could greatly reduce the cost.

4. Conclusions

In this paper, we considered the dependence of the Mach stem height on the geometry
when the geometry parameter (such as the trailing edge height) has a wide range. Such a
study complements the past studies since many of the previous studies have focused on a
narrow range of geometry.

Numerical simulation showed that the normalized Mach stem height is almost linear
with respect to the normalized trailing edge height, independently of how they are normal-
ized. When the trailing edge height is increased, keeping the inflow Mach number and the
wedge angle fixed, the triple point moves in the downstream direction and the flow region
between the slipline and the reflected surface is narrowed.

A simplified analysis showed that the linearity observed in CFD could be explained.
This analysis leads to an expression of the normalized Mach stem height with respect
to the normalized trailing edge height, which has the linear form HT

HA
= A g

HA
+ B or

HT
w = A g

w + B. The coefficients A and B only depend on the inflow Mach number and the
wedge angle.
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The present work suggested that a Mach stem height model can be expressed as a
linear function of the geometry. Further work could be done by working out more accurate
coefficients A and B for purpose of quantitative prediction. In a specific application to
consider the precise influence of geometry, one can also perform numerical or experimental
work for two sets of wedge height to fit the values of the slope in the linear model and then
apply this linear model to predict the Mach stem height for other wedge height.
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Appendix A. Method to Evaluate the Slopes of Shock Waves and Critical
Characteristic Line

In this Appendix A, we provide the estimation of the slopes of various waves required
in the Mach stem height model presented in Section 3.

Appendix A.1. Slopes of Waves in the Vicinity of Triple Point

The triple point theory, due to von Neumann[28], provides solutions in the vicinity of
the triple point (T) as shown in Figure 6. The solutions in regions (1), (2) and (3), in the vicinity
of the triple point, follow from the oblique shock wave relations for shock i, r and m:


tan θw = fθ(M0, β1), M2

1 = fM(M0, β1), p1 = fp(M0, β1) (i)
tan
(
θw − θT

2
)
= fθ

(
M1, βT

2
)
,
(

MT
2
)2

= fM
(

M1, βT
2
)
, pT

2 = fp
(

M1, βT
2
)

(r)
tan θT

3 = fθ

(
M0, βT

3
)
,
(

MT
3
)2

= fM
(

M0, βT
3
)
, pT

3 = fp
(

M0, βT
3
)

(m)
(A1)

Here, the flow parameters in the vicinity of the triple point are denoted with super-
script T, and fθ(M, β), fM(M, β), fp(M, β) are functions for oblique shock waves defined by

fθ(M, β) = 2 cot β
M2 sin2 β−1

M2(γ+cos 2β)+2

fM(M, β) =
M2+ 2

γ−1
2γ

γ−1 M2 sin2 β−1
+ M2 cos2 β

γ−1
2 M2 sin2 β+1

fp(M, β) = 2γ
γ+1 M2 sin2 β− γ−1

γ+1

(A2)

For shock i and r, the oblique shock wave relations are solved for weak solutions (i.e.,
for the smaller value of shock angle β). For shock m, the oblique shock wave relations are
solved for strong solution (i.e., for the larger value of shock angle β).

Across the slipline, the flow streams are parallel, i.e.,

θT
3 = θT

2 = δT
s (A3)

and the pressures are balanced, meaning that:

pT
2 = pT

3 (A4)
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Giving M0 and θw, Equations (A1)–(A4) form a closed set to determine the flow
parameters near the triple point, i.e., the Mach numbers MT

2 , MT
3 , the pressures pT

2 = pT
3 ,

the initial shock angle βT
2 of the reflected shock wave and the initial angle of the slipline

δT
s . The shock angle βT

2 and the slipline angle δT
s were used in Equations (6) and (17) to

establish the required geometrical relations for the Mach stem height model.

Appendix A.2. Slopes of the Critical Characteristic Line

In order to compute the slopes SR f and S f c of the critical characteristic line R f c by
Equations (3) and (4), we need to evaluate θ∗f , µ∗f , θ∗r and µ∗r . Here, θ∗f is the local flow
deflection angle inside the trailing edge expansion fan, at which the pressure p∗f , when
amplified through the reflected shock wave to become p∗r , will be carried out through the
critical characteristic line f c to the sonic throat to balance the critical pressure p∗s (pressure
at the sonic throat in the quasi-one-dimensional flow duct), meaning that:

p∗r = p∗s (A5)

The critical pressure p∗s can be determined by using an isentropic flow assumption for
pressure. This gives a relation between the pressure p∗s at the sonic point (M∗s = 1) and the
pressure pm behind the Mach stem:

p∗s
pm

=

(
1 + γ−1

2 M2
m

1 + γ−1
2

) γ
γ−1

. (A6)

where Mm is the Mach number behind the Mach stem. The parameters pm and Mm can be
computed as pm = 1

2 (pT
3 + pn), Mm = 1

2 (MT
3 + Mn), where pn and Mn are normal shock

solutions computed as pn = fp
(

M0, π
2
)
, M2

n = fM
(

M0, π
2
)
.

The amplified pressure p∗r , the pressure along the critical characteristic line f c, depends
on the interaction between the expansion fan and the reflected shock wave. Bai and Wu
[23] gave a differential form to predict this. Here, within the present context of simplicity,

we assume that p∗r =
pT

2
p1

p∗f , i.e., the pressure at point f , is amplified by the reflected shock
wave by the same factor as through the initial segment Ta of the reflected shock wave.

Using (A5), p∗r =
pT

2
p1

p∗f , and (A6), we obtain:

p∗f =

(
1 + γ−1

2 M2
m

1 + γ−1
2

) γ
γ−1 p1 pm

pT
2

(A7)

which is the pressure at θ = θ∗f . This pressure is further related to the pressure p1 in region
(1) by the Prandtl–Meyer relation: p∗f =

(
1+ γ−1

2 M2
1

1+ γ−1
2 M∗2f

) γ
γ−1

p1

ν(M∗f )− ν(M1) = θw − θ∗f

. (A8)

where ν(M) =
√

γ+1
γ−1 arctan

√
γ−1
γ+1 (M2 − 1)− arctan

√
M2 − 1 is the Prandtl–Meyer func-

tion. Once (A7) is used to obtain p∗f , the first expression in (A8) is used to obtain the Mach
number M∗f and the last expression in (A8) is used to obtain θ∗f . The Mach angle µ∗f can
then by computed through sin µ∗f = 1/M∗f . These provide values of θ∗f and µ∗f , needed in
(3), to compute the slope of the segment R f of the critical characteristic line.

By (A5) and by (A6), we obtain:

p∗r =

(
1 + γ−1

2 M2
m

1 + γ−1
2

) γ
γ−1

pm
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We then consider the oblique shock wave relation across the reflected shock wave
at point f . After solving the pressure relation p∗r = fp

(
M∗f , β∗r

)
to obtain the local shock

angle β∗r , we then solve tan(θ∗r − θ∗f ) = fθ

(
M∗f , β∗r

)
to obtain the local flow deflection angle

θ∗r , and then solve M∗2r = fM

(
M∗f , β∗r

)
to obtain the Mach number M∗r , before finally using

sin µ∗r = 1/M∗r for the Mach angle. These provide values of θ∗r and µ∗r , needed in (4), to
compute the slope of the segment f c of the critical characteristic line.
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