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Abstract: We present a stabilized POD–Galerkin reduced order method (ROM) for a Leray model.
For the implementation of the model, we combine a two-step algorithm called Evolve-Filter (EF)
with a computationally efficient finite volume method. In both steps of the EF algorithm, velocity
and pressure fields are approximated using different POD basis and coefficients. To achieve pressure
stabilization, we consider and compare two strategies: the pressure Poisson equation and the
supremizer enrichment of the velocity space. We show that the evolve and filtered velocity spaces
have to be enriched with the supremizer solutions related to both evolve and filter pressure fields in
order to obtain stable and accurate solutions with the supremizer enrichment method. We test our
ROM approach on a 2D unsteady flow past a cylinder at Reynolds number 0 ≤ Re ≤ 100. We find
that both stabilization strategies produce comparable errors in the reconstruction of the lift and drag
coefficients, with the pressure Poisson equation method being more computationally efficient.

Keywords: large eddy simulation; reduced order modeling; pressure stabilization

1. Introduction

For about a couple of decades, reduced order models (ROMs) have emerged as
an efficient tool for the approximation of problems governed by parametrized partial
differential equations. This success is owed to the fact that ROMs can significantly reduce
the computational cost required by classical full order models (FOMs), e.g., finite element
method or finite volume method, when several solutions associated to different parameter
values are needed. The basic ROM framework consists of two steps. During a first phase
(called offline), a database of several solutions is collected by solving a FOM of choice
for different parameter values. Then, during a second phase (called online), the database
collected in the offline phase is used to compute the solution for newly specified values of
the parameters in a short amount of time. For a comprehensive review on ROMs, we refer
the reader to, e.g., [1–8].

The particular ROM we consider in this paper is based on a POD–Galerkin approach,
which consists in extracting of the most energetic modes representing the system dynamics
and projecting the governing equations onto the space spanned by these modes. For
the specific application that we target, i.e., an incompressible fluid flow at moderately
high Reynolds number, and it is well known that standard POD–Galerkin models lead
to instabilities [9,10]. A successful way to cure these instabilities in advection dominated
flows is to adopt subgrid-scale closure models. See, e.g., [11,12]. Thus, we choose to work
with a large eddy simulation (LES) approach.

We focus on a variant of the so-called Leray model [13], where the small-scale effects
are described by a set of equations to be added to the discrete Navier–Stokes equations.
This extra problem acts as a differential low-pass filter [14]. For its actual implementation,
we use the Evolve-Filter (EF) algorithm [15–18]. One of the novelties of our approach is
that we use a finite volume (FV) method [19,20], while the vast majority of the works on
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Leray-type models use a finite element framework. Some of the reasons behind our interest
in a FV approximation are the following: FV schemes are usually favored for practical, real-
life applications; FV methods are considered robust, computationally efficient, and suitable
when the conservation of the numerical flux is a crucial issue, as is the case in problems
arising in fluid dynamics; nowadays many computational codes used in the industry, both
commercial (e.g., CFX, FLUENT, STAR-CD) and open-source (e.g., OpenFOAM), are based
on FV discretizations. Thus, with a FV approximation we hope to broaden the community
of practitioners that use Leray-type models and ROMs. In the context of regularized
ROMs, the Leray model and the EF algorithm have been thoroughly investigated. See,
e.g., [21–25]. In all of these works, the filtering approach is only employed at reduced order
level. In [26,27], for the first time the LES filtering is used also at the FOM level, i.e., to
generate the snapshot data. Such an approach provides a ROM that is fully consistent
with the FOM as the same mathematical framework is used during both the offline and
online stages.

This paper could be seen as an extension of [26]. Therein, we used a pressure Poisson
Equation (PPE) in the online stage [28–30] as a pressure stabilization technique. Here, we
compare the PPE method with the supremizer enrichment of the velocity space [29,31–33],
i.e., another technique that provides pressure stability. The main objective of this work is to
test the accuracy and efficiency of these two methods within our LES filtering approach.
We show that adapting the supremizer enrichment to the EF algorithm is not a trivial
exercise. Indeed, the supremizer method becomes accurate only when the evolve and
filtered velocity spaces are enriched by the supremizer solutions associated to both evolve
and filter pressure fields. Since we are interested in the reconstruction of the pressure
field at reduced order level, time is the only parameter we consider. We vary no physical
and/or geometrical parameters. We test our framework on 2D flow past a cylinder with
time-dependent Reynolds number 0 ≤ Re(t) ≤ 100 [34,35].

The work is organized as follows. Section 2 describes the full order model and the
numerical method we use for it. In Section 3, we describe the reduced order model. The
numerical examples are reported in Section 4. Finally, Section 5 provides conclusions
and perspectives.

2. The Full Order Model

In this section, we describe our Full Order Model (FOM). We consider a fixed domain
Ω ⊂ RD with D = 2, 3 over a time interval of interest (t0, T) ⊂ R+. The so-called Leray
model couples the Navier–Stokes equations (NSE) with a differential filter as follows:

ρ ∂tu + ρ∇ · (u⊗ u)− 2µ∆u +∇p = 0 in Ω× (t0, T), (1)

∇ · u = 0 in Ω× (t0, T), (2)

− 2α2∆u + u +∇λ = u in Ω× (t0, T), (3)

∇ · u = 0 in Ω× (t0, T), (4)

where ρ is the fluid density, µ is the dynamic viscosity, u is the fluid velocity, p is the fluid
pressure, u is the filtered velocity, and variable λ is a Lagrange multiplier to enforce the
incompressibility constraint for u. Parameter α in Equation (3) can be interpreted as a
filtering radius (that is, the radius of the neighborhood where the filter extracts information
from the unresolved scales). In this paper, α will be constant in space and time. More
sophisticated choices are possible, but will not be considered here. Problem (1)–(4) is
endowed with suitable boundary conditions

u = uD on ∂ΩD × (t0, T), (5)

(2µ∇u− pI)n = 0 on ∂ΩN × (t0, T), (6)

u = uD on ∂ΩD × (t0, T), (7)

(2α2∇u− λI)n = 0 on ∂ΩN × (t0, T). (8)
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and the initial data u = u0 in Ω× {t0}. Here, ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅.
In addition, uD and u0 are given. Note that we restrict our attention to homogeneous
Neumann boundary conditions. Of course, the methodology we propose can be extended
to non-homogeneous Neumann conditions, as well as other boundary conditions (e.g.,
Robin conditions) [36].

2.1. The Evolve-Filter Algorithm

First, we address the time discretization of model (1)–(4). Let ∆t ∈ R, tn = t0 + n∆t,
with n = 0, ..., NT and T = t0 + NT∆t, and let yn denote the approximation of a generic
quantity y at the time tn.

With the aim of decoupling the Navier–Stokes system (1) and (2) from the filter system
(3) and (4) at each time step, we adopt the Evolve-Filter (EF) algorithm [15–17]. This
algorithm reads as follows: given un−1 and un, at time tn+1:

- Evolve: find intermediate velocity and pressure (vn+1, qn+1) such that

ρ
3

2∆t
vn+1 + ρ∇ ·

(
u∗ ⊗ vn+1

)
− 2µ∆vn+1 +∇qn+1 = bn+1, (9)

∇ · vn+1 = 0, (10)

with boundary conditions

vn+1 = un+1
D on ∂ΩD × (t0, T), (11)

(2µ∇vn+1 − qn+1I)n = 0 on ∂ΩN × (t0, T), (12)

and initial condition v0 = u0 in Ω×{t0}. In Equation (9), we set u∗ = 2un− un−1 and
bn+1 = (4un− un−1)/(2∆t). Moreover, we approximated the Eulerian time derivative
with a Backward Differentiation Formula of order 2 (BDF2) [37].

- Filter: find (un+1, λn+1) such that

− α2∆un+1 + un+1 +∇λn+1 = vn+1, (13)

∇ · un+1 = 0, (14)

with boundary conditions

un+1 = un+1
D on ∂ΩD × (t0, T), (15)

(2α2∇un+1 − λn+1I)n = 0 on ∂ΩN × (t0, T). (16)

So, we accept un+1 and qn+1 as the approximation of the fluid velocity and pressure
at the time tn+1, respectively.

Remark 1. Problem (13)-(14) can be seen as a generalized Stokes problem. In fact, by multiplying
Equation (13) by ρ/∆t and with a rearrangement of the terms we get:

ρ

∆t
un+1 − µ∆un+1 +∇qn+1 =

ρ

∆t
vn+1, µ = ρ

α2

∆t
, (17)

where variable qn+1 = ρλn+1/∆t can be regarded as a filtered pressure. Problem (17), (14) can
be seen as a time dependent Stokes problem with viscosity µ and the Eulerian time derivative
approximated by the Backward Euler (or BDF1) scheme. Thus, problem (17) and (14) can be solved
by adapting a standard linearized Navier–Stokes solver.

Remark 2. It is known that the EF algorithm is over-diffusive, also when combined with a FV
method. In [19], we showed that the Evolve-Filter-Relax algorithm [18] with nonlinear differential
filters is a better choice, especially for realistic problems. Both the EF and the EFR algorithm require
pressure stabilization. Thus, in this manuscript, we prefer to focus on the EF algorithm, which
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does not have the complication of non-linearity. For the application of our ROM approach with
pressure stabilization to nonlinear LES filtering and associated assessment for 2D and 3D problems,
the reader is referred to [27].

2.2. Space Discrete Problem by a Finite Volume Method

Concerning the space discretization, we use a FV method for both problem (9) and (10)
and problem (17) and (14). We partition the computational domain Ω into cells or control
volumes Ωi, with i = 1, . . . , Nc, where Nc is the total number of cells in the mesh. Let Aj be
the surface vector of each face of the control volume (i.e., a vector that is perpendicular to
the surface and has magnitude equal to the surface area), with j = 1, . . . , M.

Once fully discretized, the Evolve problem (9) and (10) reads

ρ
3

2∆t
vn+1

i + ρ ∑
j

ϕ∗j vn+1
i,j − 2µ ∑

j
(∇vn+1

i )j ·Aj + ∑
j

qn+1
i,j Aj = bn+1

i , (18)

∑
j
(∇qn+1)j ·Aj = ∑

j
(H(vn+1

i ))j ·Aj, (19)

with ϕ∗j = u∗j ·Aj and

H(vn+1
i ) = −ρ ∑

j
ϕ∗j vn+1

i,j + 2µ ∑
j
(∇vn+1

i )j ·Aj + bn+1
i . (20)

In (18)–(20), vn+1
i and bn+1

i denote the average velocity and source term in control
volume Ωi, respectively. Moreover, we denote with vn+1

i,j and qn+1
i,j the velocity and pressure

associated to the centroid of face j normalized by the volume of Ωi.
As for the filter problem (17) and (14), once fully discretized it reads:

ρ

∆t
un+1

i − µ ∑
j
(∇un+1

i )j ·Aj + ∑
j

qn+1
i,j Aj =

ρ

∆t
vn+1

i , (21)

∑
j
(∇qn+1

i )j ·Aj = ∑
j
(H(un+1

i ))j ·Aj, (22)

with

H(un+1
i ) = µ ∑

j
(∇un+1

i )j ·Aj +
ρ

∆t
vn+1

i . (23)

In (21)–(23), we denoted with un+1
i the average filtered velocity in control volume

Ωi, while qn+1
i,j is the auxiliary pressure at the centroid of face j normalized by the volume

of Ωi.
More details on the full discretization of both problems (18)–(20) and (21)–(23) are

available in [19].
The EF algorithm has been implemented within the C++ finite volume library

OpenFOAM® [38]. The linear system related to the problem (18) and (19) has been solved
by using the PISO algorithm [39]. On the other hand, for problem (21) and (22) the
SIMPLEC algorithm [40] (i.e., a slightly modified version of the SIMPLE algorithm [41])
has been chosen. We remark that both PISO and SIMPLEC are partitioned algorithms
that perform a decoupling of the computation of the pressure from the computation of
the velocity.

3. The Reduced Order Model

The Reduced Order Model (ROM) we propose draws inspiration from the framework
introduced in [26]. In Section 3.1, we provide a description of the procedure used to build a
POD–Galerkin ROM, whilst in Section 3.2, we propose two different strategies for pressure
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stabilization at reduced order level. Finally, Section 3.3 is focused on the method we apply
to impose non-homogeneous Dirichlet boundary conditions (5) and (7) at the reduced
order level. All the ROM computations are performed using ITHACA-FV [42], an in-house
open source C++ library.

3.1. A POD–Galerkin Projection Method

We assume that the velocity fields v and u and pressure fields q and q can be approxi-
mated by linear combinations of the dominant modes (basis functions) that are dependent
on space variables only and multiplied by scalar coefficients that depend on the time:

v ≈ vr =
Nvr

∑
i=1

βi(t)ϕi(x), q ≈ qr =
Nqr

∑
i=1

γi(t)ψi(x), (24)

u ≈ ur =
Nur

∑
i=1

βi(t)ϕi(x), q ≈ qr =

Nqr

∑
i=1

γi(t)ψi(x). (25)

In (24) and (25), NΦr denotes the cardinality of a reduced basis for the space field Φ
belongs to. Note that Φ could be either a scalar or a vector field. Using (24) to approximate
vn+1 and qn+1 in (9) and (10), we obtain

ρ
3

2∆t
vn+1

r + ρ∇ ·
(

u∗r ⊗ vn+1
r

)
− 2µ∆vn+1

r +∇qn+1
r = bn+1

r , (26)

∇ · vn+1
r = 0, (27)

where u∗r = 2un
r − un−1

r and bn+1
r = (4un

r − un−1
r )/(2∆t). Then, using (25) to approximate

un+1 and qn+1 in (17) and (14) we get:

ρ

∆t
un+1

r − µ∆un+1
r +∇qn+1

r =
ρ

∆t
vn+1

r , (28)

∇ · un+1
r = 0. (29)

The reader is referred, e.g., to [2,6,43–48] for an overview of several techniques pro-
posed in the literature to generate the reduced basis spaces. Among these, we men-
tion the Proper Orthogonal Decomposition (POD), the Proper Generalized Decomposi-
tion (PGD) and the Reduced Basis (RB) with a greedy sampling strategy. We opt for
the method of snapshots. To this aim, we solve the FOM described in Section 2 for
each time tk ∈ {t1, . . . , tNs} ⊂ (t0, T]. The snapshots matrices are obtained from the
full-order snapshots:

SΦ = [Φ(t1), . . . , Φ(tNs)] ∈ RNΦh
×Ns for Φ = {v, u, q, q}, (30)

where the subscript h denotes a solution computed with the FOM and NΦh is the dimension
of the space field Φ in the FOM. Then, for each value of the dimension of the POD space
NPOD = 1, . . . , Ns one has to find the scalar coefficients a1

1, . . . , aNs
1 , . . . , a1

Ns
, . . . , aNs

Ns
and

functions ζ1, . . . , ζNs
that minimize the error between the snapshots and their projection

onto the POD basis. In the L2-norm, we have

ENPOD = arg min
Ns

∑
i=1
||Φi −

NPOD

∑
k=1

ak
i ζk|| ∀NPOD = 1, . . . , Ns

with (ζi, ζ j)L2(Ω) = δi,j ∀i, j = 1, . . . , Ns. (31)

Problem (31) is equivalent to the following eigenvalue problem:
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CΦQΦ = QΦΛΦ, (32)

CΦ
ij = (Φ(ti), Φ(tj))L2(Ω) for i, j = 1, . . . , Ns,

where CΦ is the correlation matrix computed from the snapshot matrix SΦ, QΦ is the matrix
of eigenvectors and ΛΦ is a diagonal matrix whose diagonal entries are the eigenvalues of
CΦ [49]. Once problem (32) is solved, the basis functions are obtained as follows:

ζi =
1

NsΛΦ
i

Ns

∑
j=1

ΦjQΦ
ij , (33)

and the POD modes are:

LΦ = [ζ1, . . . , ζNΦr
] ∈ RNΦh

×NΦr , (34)

where NΦr < Ns are chosen according to the eigenvalue decay. The reduced order
model can be obtained through a Galerkin projection of the governing equations onto
the POD spaces.

Let

Mrij = (ϕi,ϕj)L2(Ω), M̃rij = (ϕi,ϕj)L2(Ω), Arij = (ϕi, ∆ϕj)L2(Ω), (35)

Brij = (ϕi,∇ψj)L2(Ω), Prij = (ψi,∇ ·ϕj)L2(Ω), (36)

where ϕi and ψi are the basis functions in (24). At time tn+1, the reduced algebraic system
for problem (26) and (27) is:

ρ
3

2∆t
Mrβn+1 + ρGr(β

n
, β

n−1
)βn+1 − 2µArβn+1 + Brγn+1 =

ρ

∆t
M̃r

(
2β

n − 1
2

β
n−1
)

, (37)

Prβn+1 = 0, (38)

where vectors βn+1 and γn+1 contain the values of coefficients βi and γi in (24) at time

tn+1. The term Gr(β
n
, β

n−1
)βn+1 in (37) is related to the non-linear convective term:(

Gr(β
n
, β

n−1
)βn+1

)
i
= (2β

n − β
n−1

)TGri.. βn+1 (39)

where Gr is a third-order tensor defined as follows

Grijk = (ϕi,∇ · (ϕj ⊗ϕk))L2(Ω). (40)

See [37,50] for more details.
In order to write the reduced algebraic system for problem (28) and (29), let

Mrij = (ϕi,ϕj)L2(Ω), Arij = (ϕi, ∆ϕj)L2(Ω), (41)

Brij = (ϕi,∇ψj)L2(Ω), Prij = (ψi,∇ ·ϕj)L2(Ω), (42)

where ϕi and ψi are the basis functions in (25). Such system at time tn+1 is

ρ

∆t
Mrβ

n+1 − µArβ
n+1

+ Brγn+1 =
ρ

∆t
M̃

T
r βn+1, (43)

Prβ
n+1

= 0, (44)

where vectors β
n+1

and γn+1 contain the values of coefficients βi and γi in (25) at time tn+1.



Fluids 2021, 6, 302 7 of 16

Finally, we obtain the initial conditions for the ROM algebraic system (37) and (38)
by performing a Galerkin projection of the initial full order condition onto the POD
basis spaces:

β0
i = (v(x, t0),ϕi)L2(Ω), β

0
i = (u(x, t0),ϕi)L2(Ω).

The complete reduced algebraic system at time tn+1 is given by (37)-(38) and (43)-(44).

3.2. Pressure Fields Reconstruction and Pressure Stability

It is well known that the reduced problem (37)-(38) and (43)-(44) presents stability
issues because the approximation spaces need to satisfy the inf-sup (Ladyzhenskaya-Brezzi-
Babuska) condition [51,52]. In a standard finite element (FE) NSE framework, the inf-sup
condition reads:

inf
qh∈Qh

sup
uh∈Vh

< ∇ · uh, qh >

||∇ · uh||||qh||
≥ γ > 0, (45)

where Qh is the FE space for the pressure approximation, Vh is the FE space for the
approximation of the velocity field, and γ is a constant that does not depend on the mesh
size h. In order to obtain a stable and accurate reconstruction of the pressure field at the
reduced level, different approaches have been proposed. One option is to use a global POD
basis for both pressure and velocity field and same temporal coefficients [53,54]. Another
option is represented by the supremizer enrichment method; see, e.g., [29,31–33]. Finally,
one can take the divergence of the momentum equation to obtain a Poisson equation for
the pressure that is projected onto a POD basis; see, e.g., [28,29]. This third method is called
Poisson pressure Equation (PPE).

In this work, we test and compare the performances of two methods: the PPE method
(already combined with the EF algorithm in [26]) and the supremizer enrichment method
(not yet tested for the EF algorithm). As we will show, the extension of the supremizer
enrichment method to the EF algorithm is not straightforward.

3.2.1. Pressure Poisson Equation Method

We take the divergence of Equation (9) and account for conditions (10) to obtain the
Poisson pressure equation for the Evolve step:

∆qn+1 = −ρ∇ ·
(
∇ ·

(
u∗ ⊗ vn+1

))
. (46)

So, at the Evolve step instead of solving (9) and (10), we solve the modified systems
(9), (46) with boundary condition (11) and

∂nqn+1 = −2µn ·
(
∇×∇× vn+1

)
− n ·

(
ρ

3
2∆t

vn+1 − bn+1
)

on ∂ΩN × (t0, T), (47)

where ∂n denotes the derivative with respect to outgoing normal n.
We proceed similarly for the Filter step. We take the divergence of Equation (17) and

account for condition (14) to obtain the Poisson pressure equation:

∆qn+1 = 0. (48)

The Filter step becomes solving (17), (48) with boundary condition (15) and

∂nqn+1 = −2µn ·
(
∇×∇× un+1

)
on ∂ΩN × (t0, T). (49)

The reader interested in enforcing non-homogeneous Neumann conditions for the
pressure fields is referred to [55,56]. We remark that systems (9) and (10) and (17) and (14)
are not equivalent to systems (9) and (46) and (17) and (48) for steady flows [55–57].

Using (24) to approximate vn+1 and qn+1 in (46), we obtain
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∆qn+1
r = −ρ∇ ·

(
∇ ·

(
u∗r ⊗ vn+1

r

))
. (50)

After space discretization, the matrix form of Equation (50) reads:

Drγn+1 + ρJr(β
n
, β

n−1
)βn+1 − 2µNrβn+1 − ρ

2∆t

(
3Frβn+1 − 4Frβn + Frβn−1

)
= 0, (51)

where

Drij = (∇ψi,∇ψj)L2(Ω), Nrij = (n×∇ψi,∇×ϕj)L2(∂Ω), (52)

Frij = (ψi, n ·ϕj)L2(∂Ω), Frij = (ψi, n ·ϕj)L2(∂Ω). (53)

The residual associated with the non-linear term in Equation (51) is evaluated with
the same strategy used for Equation (37). We have(

Jr(β
n
, β

n−1
)βn+1

)
i
= (2β

n − β
n−1

)TJ ri.. βn+1, (54)

where J r is a third-order tensor defined as follows

Jrijk = (∇ψi,∇ · (ϕj ⊗ϕk))L2(Ω). (55)

Using (25) to approximate qn+1 in Equation (48), we get

∆qn+1
r = 0. (56)

Once discretized in space, Equation (56) can be written in the matrix form as:

Drγn+1 − 2µNrβ
n+1

= 0, (57)

where

Drij = (∇ψi,∇ψj)L2(Ω), Nrij = (n×∇ψi,∇×ϕj)L2(∂Ω). (58)

With the PPE method, at every time step the ROM algebraic system that has to be
solved is (37), (51), (43), (57).

3.2.2. Supremizer Enrichment Method

For a given pressure basis function, the supremizer is the solution that permits the
realization of the inf-sup condition (45). One has to find the supremizer for each pressure
basis function. Here, we use an approximated supremizer enrichment procedure: instead
of pressure basis functions we use pressure snapshots. This procedure allows to drastically
reduce the online computational cost. In fact, the supremizer basis functions do not depend
on the particular pressure basis functions, but are computed directly from the pressure
snapshots during the offline phase. The downside of this approximated procedure is that it
is not possible to rigorously show that the inf-sup condition is satisfied. One only relies on
heuristic criteria or checks during a post-processing stage.

For NSE, the supremizer s(ti) relative to pressure snapshot q(ti) is found by solving
the following problem:

∆s(ti) = −∇q(ti) in Ω, (59)

s(ti) = 0 on ∂Ω, (60)
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for i = 1, . . . , Ns. For more details, the reader is referred to [29,31–33]. For the EF algorithm,
in addition to (59) and (60) one has to solve an analogous problem for each auxiliary
pressure snapshot q(ti):

∆s(ti) = −∇q(ti) in Ω, (61)

s(ti) = 0 on ∂Ω, (62)

for i = 1, . . . , Ns. Once problems (59)–(62) are solved, two snapshots matrices of supremizer
solutions are assembled:

Ss = [s(t1), . . . , s(tNs)] ∈ RNvh
×Ns , Ss = [s(t1), . . . , s(tNs)] ∈ RNuh

×Ns .

A POD procedure is applied to the matrices above in order to obtain the supremizer
POD basis functions:

Ls = [χ1, . . . , χNsr
] ∈ RNvh

×Nsr , Ls = [χ1, . . . , χNsr
] ∈ RNuh

×Nsr ,

where Nsr and Nsr
conform to the notation introduced in Section 3.1. These velocity

supremizer basis functions are added to the reduced velocity spaces, which become:

L̃v = [ϕ1, . . . ,ϕNvr
, χ1, . . . , χNsr

] ∈ RNvh
×(Nvr+Nsr ), (63)

L̃u = [ϕ1, . . . ,ϕNur
, χ1, . . . , χNsr

] ∈ RNuh
×(Nur+Nsr

), (64)

Let us call SUP1 the supremizer enrichment method described above. In Section 4,
we will show that SUP1 does not lead to an accurate reconstruction of the pressure fields.
To increase the accuracy, we add the supremizer solutions associated to both pressure fields
to the evolve and filtered velocity spaces, i.e.:

L̃v = [ϕ1, . . . ,ϕNvr
, χ1, . . . , χNsr

, χ1, . . . , χNsr
] ∈ RNvh

×(Nvr+Nsr+Nsr
), (65)

L̃u = [ϕ1, . . . ,ϕNur
, χ1, . . . , χNsr

, χ1, . . . , χNsr
] ∈ RNuh

×(Nur+Nsr
+Nsr ). (66)

We call SUP2 the realization of the supremizer enrichment.
With either SUP1 or SUP2, the ROM algebraic system that has to be solved at every

time step is (37), (38), (43), (44).

3.3. Implementation of Dirichlet Boundary Conditions: The Lifting Function Method

We apply the lifting function method to homogeneize the velocity fields snapshots,
as well as to make them independent of the boundary conditions [29]. We notice that
the lifting functions are problem-dependent, so they have to be divergence free in order
to retain the divergence-free property of the basis functions and they have to satisfy the
boundary conditions of the FOM.

The velocity snapshots are modified as follows:

v′h = vh −
NBC

∑
j=1

vBCj(t)χj(x), u′h = uh −
NBC

∑
j=1

uBCj(t)χj(x),

where NBC is the number of non-homogeneous Dirichlet boundary conditions, χj(x) are
the lifting functions, and vBCj and uBCj are suitable temporal coefficients. We apply the
POD procedure described in Section 3.1 to the snapshots satisfying the homogeneous
boundary conditions. Then, the boundary value is added back in this way:
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vr =
NBC

∑
j=1

vBCj(t)χj(x) +
Nvr

∑
i=1

βi(t)ϕi(x), ur =
NBC

∑
j=1

uBCj(t)χj(x) +
Nur

∑
i=1

βi(t)ϕi(x).

4. Numerical Results

We consider 2D flow past a cylinder [34,35]. This well-known benchmark will allow
us to assess the ability of the ROM approaches presented in Section 3 to reconstruct the
time evolution of the velocity and pressure fields. We have thoroughly investigated the
2D flow past a cylinder with a finite volume FOM in [19] and with a ROM using a PPE
approach in [26,27]. Here, we aim at comparing the supremizer enrichment method and
the PPE method in terms of errors and speed-up.

We consider a 2.2 × 0.41 rectangular channel. Let the origin of the axes be at the
bottom left corner of the channel. Inside the channel, there is a cylinder of radius 0.05 and
center is located at (0.2, 0.2), The fluid filling the channel has density ρ = 1 and viscosity
µ = 10−3. We enforce a no slip boundary condition on the upper and lower walls and on
the cylinder. On the other hand at the inflow, we consider the following velocity profile:

v(0, y, t) =
(

6
0.412 sin(πt/8)y(0.41− y), 0

)
, y ∈ [0, 0.41], t ∈ (0, 8], (67)

and ∂q/∂n = ∂q/∂n = 0. Finally, at the outflow we enforce ∇v · n = 0 and q = q = 0. All
the simulations run starting from the condition of fluid at rest. It should be noted that the
Reynolds number is time dependent, with 0 ≤ Re(t) ≤ 100 [34].

We use a hexaedral computational grid with hmin = 4.2 × 10−3 and hmax = 1.1 × 10−2

for a total of 1.59 × 104 cells. The mesh quality is high: it is characterized by very low
values of maximum non-orthogonality (36◦), average non-orthogonality (4◦), skewness
(0.7), and maximum aspect ratio (2). Figure 1 shows a part of the mesh. We note that this
mesh is the coarsest among all the meshes investigated in [19]. Therefore, it is the most
challenging for our LES approach. We set ∆t = 4 × 10−4, which allows us to obtain a
maximum Courant–Friedrichs–Lewy number CFLmax = 0.2 at the time when the velocity
reaches its maximum value for both FOM and ROM simulations. Concerning the convective
term, we adopt a second-order accurate Central Differencing scheme [58]. With this choice,
we do not have to introduce artificial stabilization. So, the effect of the filter can be assessed.

Figure 1. Part of the mesh under consideration.

We need to enforce a time-dependent non-uniform Dirichlet boundary condition at
the inlet. For this purpose, we consider a divergence free function with the following
non-uniform velocity distribution:

χ(0, y) =
(

6
0.412 y(0.41− y), 0

)
, y ∈ [0, 2.2], (68)

and uniform null values on the rest of the boundary.



Fluids 2021, 6, 302 11 of 16

We will compare our findings with those in [29]. The choice of Ref. [29] is due to the
fact that therein the authors develop a NSE-ROM finite volume framework both with PPE
and supremizer enrichment methods for the reconstruction of the pressure field.

We set α = 0.0032 and refer to [19] for details on this choice. The snapshots are
collected every 0.1 (i.e., Ns = 80) using an equispaced grid method in time. Therefore,
the dimension of the correlation matrix CΦ in (32) is 80× 80. For a convergence test as
the number of snapshots increases, see [26]. Therein, we show that there is no substantial
difference in the errors for the different sampling frequencies. Table 1 reports the first
four cumulative eigenvalues for the velocity, pressure, and supremizer fields, based on (i.e.,
scaled with respect to the sum of) the first 15 most energetic POD modes. In order to retain
99.99% of the energy for the ROM, we need 2 modes for v, 2 modes for q, 2 modes for u,
and 1 mode for q. As for SUP1, we consider a number of supremizer modes greater than
pressure modes as suggested in [29]: four modes for s and three modes for s. On the other
hand, for SUP2 we take into account an equal number of pressure and supremizer modes:
two modes for s and one mode for s.

Table 1. First four cumulative eigenvalues for the velocity, pressure and supremizer fields.

N Modes u v q q s s

1 0.999588 0.999582 0.967431 0.999985 0.736795 0.999899
2 0.999924 0.999924 0.999916 0.999997 0.999594 0.999986
3 0.999998 0.999998 0.999995 0.999999 0.999977 0.999999
4 0.999999 0.999999 0.999998 0.999995 0.999988 0.999999

We calculate the L2 relative error:

EΦ =
||Φh(t)−Φr(t)||L2(Ω)

||Φh(t)||L2(Ω)
, (69)

where Φh and Φr are the FOM approximation of a given field (i.e., vh, uh, qh or qh) and
the corresponding ROM approximation (i.e., vr, ur, qr or qr), respectively. Figure 2 shows
error (69) for the two velocity and pressure fields over time for the three different ROM
techniques under investigation: PPE, SUP1 and SUP2. We also present the errors related
to the ROM computations with no stabilization technique, referred to as NOS. As one
would expect, Figure 2 shows that the model with no stabilization is completely unreliable.
From Figure 2, we see that the SUP1-ROM is a big improvement over NOS-ROM. However,
while the errors for the velocity fields are acceptable, the pressure errors remain large and
far above the values obtained with NSE in [29]. This shows that SUP1-ROM is not a reliable
stabilization of the ROM for the EF algorithm. The SUP2-ROM produces much better
results in terms of the pressure fields, with errors for the velocity fields that are comparable
with those given by the SUP1-ROM. We speculate that the better performance of the SUP2
model (which adds the supremizer solutions related to both pressure fields to the evolve
and filtered velocity spaces) with respect to the SUP1 model could be due to the strong
coupling between the evolve velocity v and the filter velocity u; however, the stability of
the inf-sup ROM formulation for the EF algorithm needs to be investigate in more depth
and will be the object of future work. Finally, from Figure 2, we observe that the PPE-ROM
provides the lowest errors for the velocity fields, while the pressure errors are comparable
(for q) or worse (for q) than the errors given by the SUP2-ROM. Our findings for the EF
algorithm are in agreement with what observed in [29] for NSE. Indeed, therein it is shown
that the PPE model produces better results for the velocity field, but worse results for the
pressure field when compared to the supremizer enrichment model. For insights on the
behavior of the errors at the first and last time steps of the simulation, we refer to [26].
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Figure 2. Time history of L2 norm of the relative error for the velocity fields (top) and pressure fields (bottom) for NOS-ROM,
PPE-ROM, SUP1-ROM, and SUP2-ROM. The legend in the top left panel is common to all the panels.

We report minimum, average, and maximum relative errors for PPE and SUP2 in
Table 2. The average errors for u and q are comparable to the values obtained in [29].

Table 2. Maximum, average, and minimum relative errors for the velocity and pressure fields for PPE-ROM and SUP2-ROM.

v (PPE) v (SUP2) u (PPE) u (SUP2) q (PPE) q (SUP2) q (PPE) q (SUP2)

Maximum EΦ 9.1×10−1 9.1 × 10−1 9.2 × 10−1 9.2 × 10−1 3.6 × 10−1 5.8 × 10−1 5.4 × 10−1 9.4 × 10−1

Average EΦ 2.3 × 10−2 2.6 × 10−2 2.4 × 10−2 2.6 × 10−2 1.4 × 10−1 1.7 × 10−1 1.3 × 10−1 6 × 10−2

Minimum EΦ 7.8 × 10−4 6.3 × 10−3 7.8 × 10−4 6.3 × 10−3 2.7 × 10−2 4.4 × 10−2 1.1 × 10−1 1.7 × 10−2

For a visual comparison, we report in Figure 3 velocity and pressure fields at t = 2
computed by FOM, PPE-ROM, and SUP2-ROM. We observe that both PPE-ROM and
SUP2-ROM can capture well the main flow features.

For a quantitative comparison of FOM, PPE-ROM, and SUP2-ROM, we consider the
quantities of interest for this benchmark, i.e., the drag and lift coefficients [34,35]:

Cd(t) =
2

ρLrU2
r

∫
S
((2µ∇u− qI) · n) · t dS, Cl(t) =

2
ρLrU2

r

∫
S
((2µ∇u− qI) · n) · n dS, (70)

where Ur = 1 is the maximum velocity at the inlet/outlet, Lr = 0.1 is the cylinder diameter,
S is the cylinder surface, and t and n are the tangential and normal unit vectors to the
cylinder, respectively. See Figure 4 for the coefficients in (70) computed by the three
approaches. We observe that the amplitude of both coefficients is slightly underestimated
(resp., overestimated) by the PPE-ROM (resp., SUP2-ROM) over the entire time interval.
The ROM reconstruction of the lift coefficient appears to be more critical, especially for the
SUP2-ROM and around the center of the time interval. We note that, as expected [19], the
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over-diffusive nature of the EF algorithm (see Remark 2) used for both FOM and ROM
smooths out the vortex shedding and completely dampens the related oscillations in the Cl .

vFOM vPPE vSUP2

uFOM uPPE uSUP2

qFOM qPPE qSUP2

qFOM qPPE qSUP2

Figure 3. Velocity fields u (first row) and v (second row) and pressure fields q (third row) and q (fourth row) at time t = 2
computed by FOM (left), PPE-ROM (center), and SUP2-ROM (right).

Figure 4. Aerodynamic coefficients Cd (left) and Cl (right) computed by FOM (solid line), SUP2-ROM (dotted line), and
PPE-ROM (dashed line).

For a further quantitative assessment of the reconstruction of the coefficients in (70),
we computed the following errors

Ecd =
||cd(t)FOM − cd(t)ROM||L2(0,8)

||cd(t)FOM||L2(0,8)
, Ecl =

||cl(t)FOM − cl(t)ROM||L2(0,8)

||cl(t)FOM||L2(0,8)
. (71)

We notice that errors defined in (71) are different from the ones in [26], which are
related to the maximum values only. Table 3 reports the errors (71) for PPE-ROM and
SUP2-ROM. We see that the two ROM strategies provide comparable results: slightly lower
than 9% relative error for the the drag coefficient and around 14% relative error for the
lift coefficient.
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Table 3. Relative errors (71) for lift and drag coefficients for PPE-ROM and SUP2-ROM.

Ecd Ecl

PPE-ROM 0.088 0.144

SUP2-ROM 0.086 0.139

Finally, we provide some information on the computational cost. The total CPU time
required by a FOM simulation is about 1900 s. The solution of the PPE-ROM algebraic
systems (37), (51), (43) and (57) takes 1.61 s (resulting in a speed-up of about 1180), while
the solution of the SUP2-ROM systems (37), (38), (43) and (44) takes 2.56 s (resulting in
a speed-up of about 742). So, the SUP2-ROM is less efficient than the PPE-ROM. The
additional cost of the SUP2-ROM comes from the supremizer modes, which increases the
size of the reduced dynamical system. However, it is possible to assert that both ROMs
allow to obtain a considerable speed-up.

5. Conclusions and Future Perspectives

We presented a POD–Galerkin based reduced order method for a Leray model imple-
mented through the Evolve-Filter (EF) algorithm. Unlike the large majority of the works on
Leray-type models, we choose a Finite Volume method for the space discretizaion because
of its computational efficiency. The novelty of this work is the investigation and comparison
of two techniques for the stabilization of the pressure fields: (i) Poisson Pressure equation,
and (ii) supremizer enrichment. We showed that the standard supremizer enrichment,
which works well for the Navier–Stokes equations with no filter, needs to be modified
in order to obtain stable and accurate solutions with the EF algorithm. The modification
consists in adding to the evolve and filter velocity spaces the supremizer solutions related
to both evolve and filter pressure fields. We assessed our ROM through the classical 2D
flow past a cylinder benchmark. We found that our ROM with both Poisson Pressure
equation and modified supremizer enrichment captures the flow features with an accuracy
comparable to ROMs applied to the Navier–Stokes equations with no filter [29]. Moreover,
we quantified the relative error of the drag and lift coefficients computed by ROM and
FOM and found that both stabilization approaches produce comparable errors. We have
limited our assessment to a 2D problem, although obviously more interesting applications
of LES arise in 3D. We have no reason to believe that the conclusions drawn here do apply
to 3D problems. The reader interested in 3D applications of our ROM approach with the
Poisson Pressure equation is referred to [26,27].

In the future, we would like to investigate in more depth the inf-sup stability of a
ROM formulation with supremizer enrichment for the EF algorithm. In addition, we would
like to extend to the EF algorithm other efficient stabilization techniques, such as the one
proposed in [59].
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