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Abstract: Analytical and numerical investigations were performed to study the influence of the Soret
and Dufour effects on double-diffusive convection in a vertical porous layer filled with a binary
mixture and subject to horizontal thermal and solute gradients. In particular, the study was focused
on the effect of Soret and Dufour diffusion on bifurcation types from the rest state toward steady
convective state, and then toward oscillatory convective state. The Brinkman-extended Darcy model
and the Boussinesq approximation were employed to model the convective flow within the porous
layer. Following past laboratory experiments, the investigations dealt with the particular situation
where the solutal and thermal buoyancy forces were equal but acting in opposite direction to favor
the possible occurrence of the rest state condition. For this situation, the onset of convection could be
either supercritical or subcritical and occurred at given thresholds and following various bifurcation
routes. The analytical investigation was based on the parallel flow approximation, which was valid
only for a tall porous layer. A numerical linear stability analysis of the diffusive and convective
states was performed on the basis of the finite element method. The thresholds of supercritical,
Rsup

TC , and overstable, Rover
TC , convection were computed. In addition, the stability of the established

convective flow, predicted by the parallel flow approximation, was studied numerically to predict the
onset of Hopf’s bifurcation, RHop f

TC , which marked the transition point from steady toward unsteady
convective flows; a route towards the chaos. To support the analytical analyses of the convective
flows and the numerical stability methodology and results, nonlinear numerical solutions of the
full governing equations were obtained using a second-order finite difference method. Overall, the
Soret and Dufour effects were seen to affect significantly the thresholds of stationary, overstable and
oscillatory convection. The Hopf bifurcation was marked by secondary convective flows consisting
of superposed vertical layers of opposite traveling waves. A good agreement was found between the
predictions of the parallel flow approximation, the numerical solution and the linear stability results.

Keywords: Soret; Dufour; double diffusive; porous medium; subcritical convection; supercritical
convection; Hopf bifurcation

1. Introduction

In recent years, combined thermo-diffusion and diffusion-thermal in double-diffusive
convection occurring in fluid mixtures within saturated porous media had attracted many
researchers’ attention, owing to its importance in many applications such as in hydrology,
petrology, geosciences, moisture transport, nuclear waste disposals, and solar ponds. The
convection phenomenon is basically the result of the coexistence of temperature and
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concentration gradients and the species coupling diffusion effects in fluids or in fluid-
saturated porous media, under gravity effect. The coupling effect was described physically
by the induction of a solute transfer caused by a temperature gradient, known as the Soret
effect (thermo-diffusion), and also, a heat transfer caused by a concentration gradient,
the so-called Dufour effect (diffusion-thermal), as reported by Nield and Bejan [1]. Most
of the past investigations on double-diffusive convection carried out so far ignored this
coupling effect to some extent, especially the Dufour effect that was believed to be negligible
compared with heat and mass fluxes quantified by the Fourier’s and Fick’s laws. This
assumption could be true; in fact, it is well known that Dufour effect is weak in liquids
but significant in some gas mixtures and cannot be neglected as reported by Platten and
Legros [2]. In the classical experiments on double-diffusive convection carried out by
Krishnamurti [3,4] with the aim to disregard the Soret and Dufour effects, a removable
barrier was used to separate the salt-stratified fluid from a sugar-stratified fluid. The
removal of the barrier created a continuous horizontal gradient of sugar in the fluid, and
the density was compensated by opposing horizontal gradients of salt, which is different
from the discontinuity of properties in past experiments. First and foremost, the Dufour
effect was discovered in gases by Clusius and Waldman [5], then it was firstly studied in the
laboratory by Waldman [6]. Later on, many experimental studies were carried out which
focused on the Dufour effect in fluids and binary fluids mixtures [7–10]. The principal
purpose was to measure the value of the Dufour effect in the systems considered. The
obtained results indicated that, the Dufour effect had a very small value when the initial
concentration gradient imposed within the system decreased.

The role of the Dufour effect on the Raleigh–Bénard convection in binary gas mixtures
was investigated theoretically by Hort et al. [11] and experimentally by Liu and Ahlers [12].
The Dufour effect had a significant influence on the topology and on the stability properties
in liquid mixtures, while its influence was slightly less in real gas mixtures. The Soret effect
was discovered by Ludwig [13] and studied later in detail by Charles Soret [14], where it
was demonstrated that a salt solution contained in a tube with the two ends at different
temperatures did not remain uniform in composition and a salt flux was generated by a
temperature gradient under steady-state condition [15,16]. Platten [17] presented different
techniques used to measure the Soret coefficient. Weaver and Viskanta [18] studied the
influence of species inter-diffusion; Soret and Dufour effects, on the natural convection due
to horizontal temperature and concentration gradients in a cavity. A recent comprehensive
review of the natural convection due to combined thermal and solute driving forces was
conducted by Nield and Bejan [1], Ingham and Pop [19] and Vafai [20].

Most of the past studies on double diffusive convection were concerned with vertical
rectangular cavities for which the total buoyancy forces generated in the binary mixture
were induced by the imposition of both thermal and solute gradients in the systems
with negligible Soret and Dufour effects. For the particular situation where the thermal
and solute buoyancy forces were opposing each other and of equal intensity, Trevisan
and Bejan [21] developed an analytical solution valid only when the Lewis number is
equal to unity, where the rest state was believed to be the only possible solution. Mamou
et al. [22] analyzed the stability of double diffusive convection in a vertical rectangular
porous enclosure. On the basis of the linear stability theory, the thresholds for the onsets of
supercritical, oscillating, and overstability convection were determined. A threshold for
the onset of subcritical finite-amplitude convection was computed analytically as function
of the Lewis number; see also Mamou and Vasseur [23]. A stability analysis of the pure
diffusive state and fully developed flows within a vertical porous layer was conducted by
Mamou [24]. The same problem was reconsidered by Mamou et al. [25] and Karimi-Fard
et al. [26] for an inclined rectangular cavity. The Brinkman-extended Darcy’s law was
employed by Amahmid et al. [27] to investigate the thermosolutal natural convection
in a vertical porous layer. A linear stability analysis of double diffusive convection in a
vertical Brinkman porous enclosure was performed by Mamou et al. [28]. Furthermore, a
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three-dimensional doubly diffusive convection in a binary fluid was studied by Beaume
et al. [29,30] and Bergeon and Knobloch [31].

Other investigations concerning thermal-diffusion or Soret-induced convection re-
lated to the current subject were carried out in vertical fluid and porous cavities. In these
problems, both thermal and solutal buoyancy forces in the binary mixture were the conse-
quence of the imposition of a temperature gradient only across the system. The condition
of opposing and equal thermal and solutal buoyancy forces was the focus in these inves-
tigations. For this condition, Marcoux et al. [32] investigated numerically the onset of
thermo-gravitational diffusion in a porous medium saturated by a binary mixture subject
to the Soret effect. The separation in an inclined porous cell saturated by a binary mixture
was investigated analytically and numerically, and also experimentally using a solution
of CuSO4 as reported in El Hajjar et al. [33]. The Soret effect in a porous media system
sandwiched between two layers of identical binary hydrocarbon mixture was studied
numerically and experimentally by Ahadi et al. [34]. The Brinkman-extended Darcy model
was used by Joly et al. [35,36] to analyze the Soret effect on the onset of convection in a
vertical porous enclosure. Both double-diffusive and Soret-induced convection in a vertical
porous layer were studied analytically and numerically by Boutana et al. [37]. The results
showed that the flow patterns induced by both double-diffusive and Soret-induced con-
vection were qualitatively similar but quantitatively different. Er-Raki et al. [38] studied
the Soret effect on double-diffusive convection generated in a vertical porous layer. More
recently, the Soret convection in a vertical porous enclosure under the influence of the form
drag was analyzed by Rebhi et al. [39]. The binary fluid flow in the porous medium was
described by the Darcy–Dupuit model. The thermodiffusion phenomenon in binary and
ternary liquid mixtures was well documented by Köhler et al. [40]. Costesèque et al. [41]
indicated the need for more laboratory studies on thermodiffusion and thermodiffusion-
convection transport in porous media to accurately model the phenomenon and understand
the behavior of multicomponent mixtures, and to measure and provide the appropriate
effective values of thermodiffusion, diffusion, and cross-diffusion coefficients.

Recently, a few more studies regarding double-diffusive natural convection of binary
fluids in porous enclosures were accomplished by taking the Soret and Dufour effects into
account. Bella et al. [42,43] investigated the influence of the Soret and Dufour effects on
double diffusive free convection and double diffusive magneto-hydrodynamic natural
convection in an inclined square porous cavity. Dirichlet boundary conditions for temper-
ature and solute were imposed on the two active walls, while the two other walls were
impermeable and adiabatic. Motsa [44] studied the influence of Soret and Dufour effects
on the onset of convection using a linear stability analysis. The result demonstrated that
the Soret and Dufour coefficients had stabilizing and destabilizing effects, respectively, on
stationary instability, while they didn’t have an effect on the onset of overstability. Soret
and Dufour effects on unsteady double diffusive convection in a square cavity filled with a
gaseous binary mixture were examined by Ben Niche et al. [45]. Nithyadevi and Yang [46]
numerically analyzed the effects of various governing parameters on water convective flow
and on heat and mass transfer rates in a partially heated square cavity in the presence of
Soret and Dufour effects. The transient double-diffusive convection in a rectangular vertical
layer, subjected to constant and different temperatures and concentrations on vertical walls,
was analyzed numerically by Ren and Chan [47]. The influence of the governing param-
eters on the resulting fluid flow, temperature, and concentration fields was discussed in
details. More recently, Lagra et al. [48], Attia et al. [49], and Hasnaoui et al. [50] investigated
analytically and numerically the Soret and Dufour effects on thermosolutal convection
induced in a horizontal layer subject to constant heat and mass fluxes. The influence of the
Soret and Dufour effects on the thresholds of stationary convection, subcritical convection,
flow structure, and heat and mass transfer rates were discussed. The thermosolutal natural
convection, generated in an inclined square cavity filled with a binary fluid in the presence
of the Soret and Dufour effects, was investigated numerically by Hasnaoui et al. [51] using
a hybrid Lattice Boltzmann finite difference method.
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Toward knowledge enrichment and physical understanding of the influence of Soret
and Dufour effects on double-diffusive natural convection in vertical fluid or porous layers,
double-diffusive convection in binary mixtures was considered in the present paper. The
convective flow was modeled according to the unsteady Brinkman-extended Darcy law.
Horizontal gradients of temperature and concentration were imposed on the vertical walls.
The particular situation where the thermal and solutal buoyancy forces were equal and
opposing each other was examined. The main objective of the present investigation was to
analyze the influence of the Soret and Dufour effects on the flow structure and on the heat
and mass transfer rates. The investigation is unique and somehow fairly complete as it is
based on various corroborated approaches, which were based on numerical, asymptotic,
and linear and nonlinear stability analyses. The parallel flow approximation was used to
find the threshold of the subcritical convection, which was characterized by the critical
Rayleigh number. On the basis of the finite element method, a linear stability analysis was
performed to predict the thresholds of supercritical, overstable, and oscillatory convection.
A linear stability analysis was conducted as well to find the onset of Hopf bifurcation. The
combined effects of Soret and Dufour and other governing parameters on the induced
convective flows were discussed and analyzed, and they were presented in terms of the
stream function, temperature, and concentration profiles and heat and solute transfer rates,
and stability diagrams.

2. Problem Description and Mathematical Formulation

The current investigation is on double-diffusive convection instability in a vertical
rectangular porous enclosure having an aspect ratio of A = H′/L′, where H′ is the height
and L′ is the width of the enclosure. The origin of the coordinate system is situated in the
center of the cavity with x′ and y′ representing, respectively, the horizontal axis pointing
to the right and the vertical axis pointing upward, as illustrated in Figure 1. Neumann
boundary conditions for both temperature and concentration q′ and j′ are applied on the
vertical walls of the enclosure. The short horizontal walls of the cavity are considered
adiabatic and impermeable. The porous medium is assumed to be isotropic, homogeneous,
and saturated by a Newtonian and incompressible binary mixture, where the Dufour and
Soret effects are considered. Using the Boussinesq approximation, the density variation ρ
with temperature T′ and concentration S′ is described by the linearized state equation as
ρ = ρ0[1− βT(T′ − T′0)− βS(S′ − S′0)], where βT and βS are the thermal and concentration
expansion coefficients, respectively, and they are defined as:

βT = − 1
ρ0

(
∂ρ

∂T′

)
P′ ,S′

, βS = − 1
ρ0

(
∂ρ

∂S′

)
P′ , T′

where ρ0 is the fluid mixture density at temperature T′0 and concentration S′0, which
represents the temperature and concentration values at the origin of the coordinate system.

The heat flux induced by conduction and diffusion-thermal (Dufour effect) is ex-
pressed as [1]:

→
q′ = −kp ∇T′ − DTS ∇S′

where kP and DTS are the thermal conductivity of the saturated porous medium and the
Dufour coefficient, respectively.

The Fick’s law of mass diffusion [1], in the presence of thermo-diffusion (Soret effect)
induced by the imposition of a temperature gradient, is defined as follows:

→
j′ = −D ∇S′ − DST ∇T′

where D and DST are respectively the mass diffusivity of saturated porous medium and
the thermal-diffusion coefficient.
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Figure 1. The physical model and coordinate system.

Adopting unsteady Brinkman-extended Darcy’s model [1] and taking into account
the Soret and Dufour effects [1], the governing equations expressing conservation of mass,
momentum, energy, and species are given as follows:

∂u′

∂x′
+

∂v′

∂y′
= 0 (1)

K
ε′v

∂u′

∂t′
+ u′ = −K

µ

[
∂P′

∂x′
− µe

(
∂2u′

∂x′2
+

∂2u′

∂y′2

)]
(2)

K
ε′v

∂v′

∂t′
+ v′ = −K

µ

[
∂P′

∂y′
− µe

(
∂2v′

∂x′2
+

∂2v′

∂y′2

)
+ ρ0g

[
βT
(
T′ − T′0

)
+ βS

(
S′ − S′0

)]]
(3)

σ
∂T′

∂t′
+
→
V′ ∇T′ = α ∇2T′ + DTS∇2S′ (4)

ε′
∂S′

∂t′
+
→
V′ ∇S′ = D ∇2S′ + DST∇2T′ (5)

where
→
V′ is the velocity vector, u′ and v′ represent the velocity components, t′ the time,

P′ the pressure, K the porous medium permeability, ε′ the porous medium porosity, v
the kinematic viscosity of the fluid (v = µ/ρ), µ the dynamic viscosity of the fluid, µe
the effective dynamic viscosity, g the gravitational acceleration, σ the saturated porous
medium to fluid heat capacities ratio

(
σ = (ρc)p/(ρc) f

)
, and α the thermal diffusivity of

the saturated porous medium
(

α = kp/(ρc) f

)
.

For a parametric study, the following dimensionless variables are used to put the
above Equations (1)–(5) into a dimensionless form:

(x, y) =
(

x′
L′ ,

y′
L′

)
, (u, v) =

(
u′
U∗ , v′

U∗

)
, t = t′

t∗ , T =
(T′−T′0)

∆T∗ ,

S =
(S′−S′0)

∆S∗ , P = P′
P∗
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where t∗, U∗, P∗, ∆T∗, and ∆S∗ are the characteristic time, velocity, pressure, temperature
and concentration scales defined as:

U∗ =
α

L′
, t∗ = σ

L′

U∗
, P∗ =

ρ0 PrU∗2

Da
, ∆T∗ =

q′L′

kp
, ∆S∗ =

j′L′

D

where Pr = v/α is the Prandtl number and Da = K/L′2 is the Darcy number.
Using the stream-function formulation, the stream-function Ψ is linked to the velocity

components as u = ∂Ψ/∂y and v = −∂Ψ/∂x such that the continuity equation is satisfied.
Eliminating the pressure from Equations (2) and (3), the governing Equations (1)–(5) in
terms of Ψ are rewritten in a dimensionless form as follows:

ξ
∂
(
∇2Ψ

)
∂t

+∇2Ψ = Dae∆2Ψ− RT

(
∂T
∂x

+ N
∂S
∂x

)
(6)

∂T
∂t

+
∂Ψ
∂y

∂T
∂x
− ∂Ψ

∂x
∂T
∂y

= ∇2T + Du∇2S (7)

ε
∂S
∂t

+
∂Ψ
∂y

∂S
∂x
− ∂Ψ

∂x
∂S
∂y

= Le−1
(
∇2S + Sr∇2T

)
(8)

According to Equations (6)–(8), the present problem is governed by nine dimension-
less parameters, which are the Rayleigh number, RT , the effective Darcy number (called
Darcy number hereafter), Dae, the buoyancy ratio, N, the Lewis number, Le, the Soret
parameter, Sr, the Dufour parameter, Du, the aspect ratio of the cavity, A, the porous
medium acceleration coefficient, ξ, and the normalized porosity of the porous medium, ε.
They are expressed by:

RT = ρg βT ∆T∗ L′3
αµ , Dae = rµDa N = βS ∆S∗

βT ∆T∗ , Le = α
D ,

Sr =
DST ∆T∗

D ∆S∗ , Du = DTS ∆S∗
α ∆T∗ , A = H′

L′ , ξ = Da
ε′ σPr , ε = ε′

σ

 (9)

where the parameter rµ = µe/µ is the effective viscosity to fluid viscosity ratio. It was
commonly considered in the past studies as: rµ = 1/ε′ or rµ = 1. For a Brinkman porous
medium, ε′ ≈ 1, the viscosity ratio became close to unity (µe = µ) [1]. Furthermore, Givler
and Altobelli [52] performed an experimental study for the determination of the effective
viscosity for the Brinkman–Forchheimer flow model and found that the parameter rµ ≥ 1.

The experimental values of the Soret and Dufour parameters (Sr and Du) are now
discussed and an explanation on how their values vary is provided. On the one hand, the
Soret number is defined as ST = DST/D, where DST is the physical thermodiffusion coeffi-
cient. For some typical fluid mixtures, such as: water-isopropanol mixtures (water mass
fraction of 0.2), water-isopropanol mixture (water mass fraction of 0.9), water-methanol
(water mass fraction of 0.1), and water-ethanol (water mass fraction of 0.1) the physical
thermodiffusion number, ST , was measured as 3.09× 10−3K−1 [53], −8.47× 10−3K−1 [53],
1.88× 10−3K−1 [54], and 2.71× 10−3K−1 [54], respectively. Thus, the present Soret param-
eter Sr becomes a function of the scaling factors as Sr = ST∆T∗/∆S∗, which could make
Sr vary from 0 to plus or minus large values according to the values of the temperature
and concentration difference and the sign of the Soret number, ST . On the other hand, in
the present notation and according to [55], the contribution to the net heat flux is the heat
transfer by conduction and by Dufour diffusion, where the net heat flux is defined by:

−
→
q′

ρCP
= α ∇T′ + ρ

∂µS′

∂S′
T′0

D′′

ρCP
∇S′ (10)
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where µS′ is the chemical potential and D′′ is the Dufour coefficient. From this net heat flux
relationship, the Dufour parameter Du is related to the Dufour coefficient as follows [12,55]:

Du = Q
β2

S
β2

T

∆S∗

∆T∗
1
Le

D′′

D
with Q =

∂µS′

∂S′
T′0
CP

β2
T

β2
S

(11)

In the 1960s, it was demonstrated that the Dufour effect does exist in liquid mix-
tures [8,56], however, it was discovered in gases a few decades earlier [57]. Some experi-
mental values in liquids mixtures were reported for a large number of mixtures and the
Dufour coefficient D” was significant. In gases mixtures, Liu and Ahlers [12] reported
some typical values of the Dufour effect which were given in terms of Dufour number Q,
as stated in the relationship above, which is a purely thermodynamic quantity. The Soret
coefficient could be negative or positive, however the Dufour number is always positive.
As discussed in Liu and Ahlers [12], the quantity Q could be very large, Q~O (1)–O (2).
The Lewis number is of order O (1) for gases and O (2) for liquids. Other parameters can
be computed for any fluid or gas mixtures and it can be shown that the parameter Du
varies from 0 to large positive values. Liu and Ahlers [12] reported a large number of gases
mixtures with Soret and Dufour coefficient measurements. In the present investigation,
we focus on a parametric study, which could suit any working fluid mixtures, and the
parameters in the Sr and Du expression above could be tuned up to obtain the desired
Soret and Dufour parameters.

The boundary conditions imposed on the system are expressed in a dimensionless
form as:

x = ±1
2

: Ψ =
∂Ψ
∂x

= 0,
∂T
∂x

+ Du
∂S
∂x

= 1 ,
∂S
∂x

+ Sr
∂T
∂x

= 1 (12)

for the active vertical walls, and they can be reduced to:

∂T
∂x

= aT and
∂S
∂x

= aS

where aT and aS are defined as:

aT =
1− Du

1− DuSr
, aS =

1− Sr

1− DuSr
(13)

and:
y = ±A

2
: Ψ =

∂Ψ
∂y

= 0,
∂T
∂y

=
∂S
∂y

= 0 (14)

for the adiabatic and impermeable walls.
In the present paper, the case where the resultant of the thermal and solutal buoyancy

forces is nil is considered such that:

N = − aT
aS

(15)

For this particular buoyancy ratio value, the rest state is a possible solution of the
problem, but it becomes unstable above a threshold and can bifurcate toward a convective
state. In this study with the current problem formulation we assume that DuSr 6= 1 to
avoid singular conditions.

The local and average heat and mass transfer rates expressed in terms of the Nusselt
and Sherwood number are defined respectively as:

Nu = 1
∆T+Du∆S , Sh = 1

∆S+Sr∆T

Num = 1
A
∫ A/2
−A/2 Nu dy, Shm = 1

A
∫ A/2
−A/2 Sh dy

 (16)
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where ∆T = T(−1/2, y)− T(1/2, y) and ∆S = S(−1/2, y)− S(1/2, y) are the dimension-
less temperature and concentration differences, respectively. The subscript m denotes an
average value along the vertical walls.

3. Numerical Solution

A finite difference method was used to solve numerically the full governing equa-
tions subject to the prescribed boundary conditions. The energy and concentration,
Equations (7) and (8), together with the boundary conditions, Equations (12) and (14),
were discretized using a second-order finite difference scheme in time and space with a
uniform grid. The alternating direction implicit method (ADI) was employed for a time-
accurate solution. The resulting sets of discretized equations for each variable were solved
by a line-by-line procedure, using the tri-diagonal matrix algorithm (TDMA). However, the
stream function equation, Equation (6), was solved using the successive over-relaxation
method (SOR) with known temperature and concentration distributions from the previous
time step. The temporal terms in all equations were discretized using a second-order
backward difference scheme. The boundary conditions were also discretized using a
second-order backward finite difference scheme. At each new time step the SOR iterative
procedure was repeated until the following convergence criterion is reached:

∑
i

∑
j

∣∣∣Ψk+1
i,j −Ψk

i,j

∣∣∣
∑
i

∑
j

∣∣∣Ψk+1
i,j

∣∣∣ ≤ 10−6 (17)

where k denotes the kth iteration.
Depending on the governing parameters’ values, owing to non-slip boundary condi-

tions and thin viscous flow layers on the walls for small Darcy number, Dae, the grid size
of 200 × 300 was adopted for most of the cases considered in this study.

The accuracy of the present numerical solutions depends on the grid size
(

Nx × Ny
)
.

Thus, a grid sensitivity study is performed to find the adequate grid size beyond which
the solutions become independent of the grid size. Various grid sizes are considered as
shown in Table 1. The predicted numerical results are compared with the exact analytical
solution valid for an infinite layer. For the numerical solution, an aspect ratio of A = 10 is
considered, which nearly mimics the infinite layer flow. The numerical results are obtained
for Dae = 1, RT = 104, Le = 10, and Du = Sr = 0.1. According to Table 1, grid refinement
is seen to improve the results accuracy as they become independent of the grid size beyond
100 × 200. Therefore, to be more conservative, a grid size of 200 × 300 is adopted and it
is believed to provide the numerical solutions with sufficient accuracy.

Table 1. Grid sensitivity study for A = 10, Dae = 1, RT = 104, Le = 10, and Du = Sr = 0.1.

Nx×Ny
Numerical Solution

Analytical Solution
40 × 80 80 × 160 100 × 200 200 × 300

Ψ0 3.7171 3.7861 3.7877 3.7906 3.7911
Error (%) 1.97 0.13 0.09 0.01 Reference

Nu 2.4561 2.4406 2.4362 2.4312 2.4187
Error (%) 1.53 0.90 0.72 0.51 Reference

Num 2.4057 2.3871 2.3824 2.3773 . . .
Sh 3.1944 3.1887 3.1823 3.1730 3.1072

Error (%) 2.77 2.59 2.39 2.10 Reference
Shm 3.4365 3.4108 3.3989 3.3828 . . .

For validation of the present numerical solutions with past study numerical results,
Table 2 illustrates the numerical solution obtained for A = 8, RT = 150, N = −1, Le = 10,
and Du = 0 and Sr = −1, in terms of the maximum stream function value, and the local
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Nusselt and Sherwood number for low and high Darcy number values, as defined in Joly
et al. [36]. The results are compared with those reported by Joly et al. [36] with a very good
agreement.

Table 2. Comparison of the present computed values of Ψmax, Nu, and Sh with a past study of
numerical results for A = 8, RT = 150, N = −1, Le = 10, and Du = 0 and Sr = −1.

Dae = 1 Dae = 0.001

Joly et al.
[36]

Present
Study Error (%) Joly et al.

[36]
Present
Study Error (%)

Ψmax 0.32 0.33 3.08 3.16 3.16 0
Nu 1.03 1.03 0 2.79 2.80 0.36
Sh 2.58 2.63 1.92 4.89 4.92 0.63

Typical numerical results are presented in Figure 2a–e for A = 10, Le = 10, ε = 1
and various values of the effective Darcy and Rayleigh numbers and the Soret and Dufour
parameters. In these graphs, streamlines, isotherms, and isoconcentrations are illustrated
from left to right, respectively. Independently of the governing parameters, the results
distinctly show that the flow in the core region of a tall cavity (A >> 1) is essentially
parallel, while the temperature and concentration are linearly stratified in the y-direction.
These observations, which were reported in the past by several authors [22,27,36] and
confirmed numerically by the results sketched in Figure 2, are the foundations of the
parallel flow assumption, which was considered in the present study.

The effect of the effective Darcy number is depicted in Figure 2c–e for A = 10,
Le = 10, Du = Sr = 0.1, and ε = 1. When the effective Darcy number is relatively
small, the viscous effect (Brinkman term) is negligible and the enclosure walls behave
like non-slip walls as the viscous boundary layer becomes very thin when Dae → 0 . This
effect is illustrated in Figure 2a–c by the streamlines clustered near the walls. As Dae
increases, the influence of the boundary effect on the flow, temperature, and concentration
fields becomes more significant, where the strength of the flow circulation is decreased
and the streamlines become sparsely distributed near the walls, owing to the viscous
effect appearance.

The Soret and Dufour effects are presented in Figure 2a–c, where contours of the
stream function, temperature, and concentration corresponding to Sr = Du = 0.1 are
similar to those obtained when Sr = Du = 0 (not presented here). From Figure 2a,b, when
the Dufour (Soret) effect is equal to 0.8, the thermal (Solute) buoyancy effects are dominant,
which slightly enhances (diminishes) the flow intensity, where the stream function value
increases from Ψ0 = 3.45 to Ψ0 = 3.55. Figure 3a indicates that when the Dufour parameter
increases up to 0.8, the isotherm lines become less distorted due to a decrease in the thermal
gradient, which is apparent from Equation (7). However, the isoconcentration lines are
more distorted due to the increase in the concentration gradient (see Equation (8)), which
increases the mass transfer rate from Sh = 4.89 to Sh = 5.28. Furthermore, Figure 2c clearly
indicates that the Soret effect has an inverse trend.
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Figure 2. Contours of stream function (left), temperature (center), and concentration (right) for:
A = 10, Le = 10, ε = 1: (a) Dae = 10−4, RT = 200, Sr = 0, Du = 0.8: Ψ0 = 3.55, Nu = 3.20, and
Sh = 5.28; (b) Dae = 10−4, RT = 200, Sr = 0.8, Du = 0: Ψ0 = 2.79, Nu = 2.74, and Sh = 2.88;
(c) Dae = 10−4, RT = 200, Sr = Du = 0.1: Ψ0 = 3.45, Nu = 3.22, and Sh = 4.89; (d) Dae = 10−1,
RT = 200, Du = Sr = 0.1: Ψ0 = 1.80, Nu = 1.64 and Sh = 2.91; and (e) Dae = 100, RT = 104,
Du = Sr = 0.1: Ψ0 = 3.79, Nu = 2.43, and Sh = 3.17.
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4. Analytical Solution

For double-diffusion convection in a tall cavity having a large aspect ratio (A >> 1),
several authors developed an approximate analytical solution based on the parallel flow
approximation (see, for instance, Mamou et al. [22], Amahmid et al. [27], and Joly et al. [36]).
For the present problem according to this approach and to the numerical observations
made on Figure 2, the convective flow in the central region of the enclosure is assumed to
be parallel to the vertical walls. Thus, the horizontal velocity component is neglected and
the vertical velocity component depends now only on x. In this way, the stream function,
temperature, and concentration can be approximated and written as follows:

Ψ(x, y) ≈ Ψ(x)
T(x, y) ≈ CTy + ΘT(x)
S(x, y) ≈ CSy + ΘS(x)

 (18)

where CT and CS are, respectively, the unknown constant temperature and concentration
gradients in the y-direction.

Introducing the above approximations, Equation (18), in the governing Equations (6)–(8)
and making use of the boundary conditions (12)–(14), we obtain the following system of
ordinary differential equations:

d2Ψ
dx2 = Dae

d4Ψ
dx4 − RT

(
dΘT
dx
− aTa−1

S
dΘS
dx

)
(19)
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− CT
dΨ
dx

=
d2ΘT

dx2 + Du
d2ΘS
dx2 (20)

− CSLe
dΨ
dx

=
d2ΘS

dx2 + Sr
d2ΘT

dx2 (21)

After performing a first integration of the energy and species Equations (20) and (21),
and making use of the boundary conditions, Equation (12), it is readily found:

dΘT
dx

=
CS DuLe− CT

1− DuSr
Ψ + aT (22)

dΘS
dx

=
CT Sr − CSLe

1− DuSr
Ψ + aS (23)

Substituting Equations (22) and (23) into the momentum Equation (19), we obtain the
following ordinary simplified differential equation:

− Dae
d4Ψ
dx4 +

d2Ψ
dx2 + Ω2Ψ = 0 (24)

where: Ω = [RT(LeCS − CT)/(1− Sr)]
1/2.

The solution of Equation (24), satisfying the boundary conditions in Equation (12),
and the stream function approximation stated in Equation (18), is obtained as follows:

Ψ(x) = Ψ0n
1
√

η1
[cos(θ2x)− η0 cosh(θ1x)] (25)

where the constants θ1, θ2, η0 and η1 are defined by:

θ1 =

(√
1+4DaeΩ2+1

2Dae

) 1
2
, θ2 =

(√
1+4DaeΩ2−1

2Dae

) 1
2
,

η0 = cos(θ2/2)
cosh(θ1/2)

, η1 = 1 + η2
0 +

sin(θ2)
θ2

(
1− θ2

2
θ2

1

)
 (26)

and Ψ0n is the normalized stream function value at the central part of the cavity, and it is
defined as follows:

Ψ0n = Ψ0
√

b0 (27)

where: b0 = η1/(1− η0)
2 and Ψ0 = Ψ(0).

In Equation (27), Ψ0 is the stream function at the center of the cavity. From the
boundary conditions for Ψ and its derivative ∂Ψ/∂x at x = ±1/2, it is found that:

θ2 tan
(

θ2

2

)
+ θ1tanh

(
θ1

2

)
= 0 (28)

The relationship between, θ1, θ2, and Ω is given by:

θ2
1 = θ2

2 +
1

Dae
, Ω2 = θ2

2

(
Daeθ2

2 + 1
)

(29)

Upon solving (22) and (23), one obtains the following solution:

T(x, y) = CTy− 1
√

η1

(
CT − CsDuLe

1− DuSr

)(
sin(θ2x)

θ2
− η0

sinh(θ1x)
θ1

)
Ψ0n + aTx (30)

S(x, y) = CSy− 1
√

η1

(
CSLe− CTSr

1− DuSr

)(
sin(θ2x)

θ2
− η0

sinh(θ1x)
θ1

)
Ψ0n + aSx (31)

In the past, Trevisan and Bejan [21] demonstrated that the parallel flow approximation
is only applicable in the central region of the enclosure, but in the end regions where the
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flow is more complicated, the boundary conditions in the y-direction, Equation (14), cannot
be applied exactly with this approximation. For this reason, these conditions are replaced
by the energy and species balances at a given transversal section of the enclosure. With this
procedure and the fact that the quantities of heat and mass flowing through the horizontal
section are equal to zero, the following expressions for the energy and species balances
are obtained:

+1/2∫
−1/2

(
∂T
∂y

+ Du
∂S
∂y

)
dx +

+1/2∫
−1/2

∂Ψ
∂x

T dx = 0 (32)

+1/2∫
−1/2

(
∂S
∂y

+ Sr
∂T
∂y

)
dx + Le

+1/2∫
−1/2

∂Ψ
∂x

S dx = 0 (33)

After substituting Equations (25), (30), and (31) into Equations (32) and (33) and
performing the integration, the constant temperature and concentration gradients along
the y-direction, CT and CS are respectively obtained as:

CT =
c0 Ψ0n

(
aT − asLeDu + bLe2Ψ2

0n
)(

1 + bΨ2
0n
)(

1 + bLe2Ψ2
0n
)
− DuSr

(
1− bLeΨ2

0n
)2 (34)

Cs =
c0 Ψ0n

(
asLe− aTSr + bLeΨ2

0n
)(

1 + bΨ2
0n
)(

1 + bLe2Ψ2
0n
)
− DuSr

(
1− bLeΨ2

0n
)2 (35)

where:

b =
1

2(1− DuSr)
, c0 =

η2√
η1

, η2 =
2 sin(θ2/2)

θ2

(
1 +

θ2
2

θ2
1

)
(36)

Substituting expressions of CT and CS in the Ω definition, Equation (24), we obtain
the following polynomial equation:

b2Le2 Ψ4
0n + 2 d1b2 Ψ2

0n − 4b2d2R0
T Ψ0n + 1 = 0 (37)

where: d1 = 1 + Le2 + 2 LeDuSr d2 = Le2 + N + Le (Du + NSr) and R0
T being defined as:

R0
T = RT/R0 with R0 = Ω2/c0.

Equation (37) is solved numerically using the Newton–Raphson method. In this way,
the value of CT and CS, and the stream function, temperature, and concentration fields can
be obtained for any combination set of the controlling parameters RT , Le, Dae, Du, and Sr.

From Equation (37), it is found that a non-zero solution exists only beyond a threshold.
Subsequently, the normalized threshold Rayleigh number which characterizes the onset of
convective motion is obtained by deriving Equation (37) with respect to R0

T and setting the
derivative dΨ0n

dR0
T

. After some algebra, it is found that:

Rsub,0
TC =

Le2Ψ3
0nC +

(
1 + Le2 + 2LeDuSr

)
Ψ0nC

Le2 + N + Le(Du + NSr)
(38)

where Ψ0nc is the critical finite stream function value at the bifurcation point, which
constitutes a saddle-node point characterizing the subcritical bifurcation. The expression
of Ψ0nc is obtained as:

Ψ0nC =
1

Le
√

3b

[√
b2(1 + Le2 + 2LeDuSr)

2 + 3Le2 − b
(

1 + Le2 + 2LeDuSr

)] 1
2

(39)
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The threshold of the subcritical convection is computed from Equation (38), where
the relationship between the normalized critical Rayleigh number, Rsub,0

TC , and the critical
Rayleigh number, Rsub

TC , which characterizes the onset of convective motion, is given by:

Rsub
TC = R0 Rsub,0

TC (40)

According to the temperature and concentration profiles, Equations (30) and (31), the
local Nusselt and Sherwood numbers expressions, Equation (16), are reduced to:

Nu =
1

1− c0CTΨ0n
(41)

Sh =
1

1− c0CSLeΨ0n
(42)

In the above equations, the parameters b0, c0, and R0 depend on the Darcy number,
Dae, as depicted in Figure 3a–c. From Figure 3a, when the Darcy number is very small(

Dae ≤ 10−6) the variation of the constant b0 tends asymptotically toward b0 = 1 and the
normalized stream function can be rewritten as: Ψ0n = Ψ0 which corresponds to the pure
Darcy situation. Upon increasing the value of the Darcy number, b0 decreases and tends
asymptotically toward a constant value: b0 = [cosh2 (ω/2) + cos2 (ω/2)]/[cosh (ω/2) −
cos (ω/2)]2 = 0.793, which corresponds to the clear fluid case. A similar trend is observed
for the evolution of the constant c0, as illustrated in Figure 3b, where the limiting values
c0 = 0.636 and c0 = 0.588 correspond to the Darcy and the clear fluid media, respectively.
In addition, the effect of Dae on the constant R0 is depicted in Figure 3c. As expected, the
graph indicates that the constant R0 decreases towards a constant value R0 = π3/2 = 15.581

when Dae → 0 , and to R0/Dae = ω5
√

1 + [cos(ω/2)/cosh(ω/2)]2/[4 sin(ω/2)] when
Dae → ∞ .

4.1. Case of Darcy Flow (Dae << 1)

The Darcy situation can be deduced from the Brinkman model when Dae → 0 . For
this condition, Equation (29) indicates that the parameter θ1 tends to +∞, and Equation (28)
leads to tan(θ2/2)→ − ∞ , which allows to define the parameter θ2 as: θ2 ≈ π(1 + 2n),
and from Equation (29), Ω ≈ θ2 ≈ π(1 + 2n). Thus, in these conditions, for a monocellular
flow (n = 0), where Ω ≈ θ2 ≈ π, the expressions of the constants: η0, η1, and η2 are reduced
to: η0 ≈ 0, η1 ≈ 1, η2 ≈ 2/π. Using the above expressions, the definition of b0 is reduced
to b0 = 1 and Ψ0n = Ψ0.

The Darcy solution of the present problem (i.e., Dae = 0) is obtained by introducing
the above results into the expressions (Equations (25), (30) and (31)) presented in Section 4,
which can be reduced to the following equations:

Ψ(x) = Ψ0 cos(Ωx) (43)

T(x, y) = CTy− Ψ0

Ω

(
CT − CsDuLe

1− DuSr

)
sin(Ωx) + aTx (44)

S(x, y) = CSy− Ψ0

Ω

(
CSLe− CTSr

1− DuSr

)
sin(Ωx) + aSx (45)

In this situation CT, CS, Ψ0, Nu, and Sh are evaluated from Equations (34), (35), (37),
(41) and (42) respectively. The critical Rayleigh number is then given by:

Rsub
TC = R0 Le2Ψ3

0C +
(
1 + Le2 + 2LeDuSr

)
Ψ0C

Le2 + N + Le(Du + NSr)
(46)

where R0 = Ω3/c0 ≈ π3/2.
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4.2. Case of Fluid Flow (Dae >> 1)

When Dae → ∞ , the current Brinkman model is reduced to a parallel flow solution
in a vertical cavity filled with a clear fluid.

For this condition, Equation (29) indicates that θ1 ≈ θ2, and Ω2 = Daeθ
4
2 or Ω2 = Daeω

4,
where ω = 4

√
RaT(LeCS − CS)/(1− Sr) with RaT = RT/Dae being the thermal Rayleigh

number for a clear fluid medium.
In this regard, Equation (28) reduces to:

tan
(ω

2

)
+ tanh

(ω

2

)
= 0 (47)

For n= 0, the flow is monocellular and a numerical solution of Equation (47) is ob-
tained as ω0 ≈ 4.73. For n >> 1, an approximate asymptotic solution is obtained as:
ωn = π (4n + 3)/2, where each value of n (n = 1, 2, 3, 4 . . . ) corresponds to a different convec-
tive mode. The expressions of the constants η0, η1, and η2 stated in Equations (26) and (36)
are reduced to:

η0 =
cos(ω/2)

cosh(ω/2)
, η1 = 1 + η2

0 , η2 =
4 sin(ω/2)

ω
(48)

In this way, the expressions of Ψ (x), T(x, y), and S (x, y) corresponding to the pure
fluid medium are given by:

Ψ(x) =
Ψ0

1− η0
[cos(ωx)− η0 cosh(ωx)] (49)

T(x, y) = CTy− Ψ0

ω(1− η0)

(
CT − CsDuLe

1− DuSr

)
[sin(ωx)− η0sinh(ωx)] + aTx (50)

S(x, y) = CSy− Ψ0

ω(1− η0)

(
CSLe− CTSr

1− DuSr

)
[sin(ωx)− η0sinh(ωx)] + aSx (51)

For the clear fluid limit, CT , CS, Ψ0, Nu, and Sh expressions can be easily derived from
Equations (34), (35), (37), (41), and (42), respectively.

For this situation, the critical Rayleigh number, Rsub
TC , is expressed by:

Rasub
TC =

√
b0Ra0 b0Le2Ψ3

0C +
(
1 + Le2 + 2LeDuSr

)
Ψ0C

Le2 + N + Le(Du + NSr)
(52)

where: Ra0 = ω4/c0, and

Ψ0C = ± 1
Le
√

3bb0

[√
b2(1 + Le2 + 2LeDuSr)

2 + 3Le2 − b
(

1 + Le2 + 2LeDuSr

)] 1
2

(53)

In the past, the parallel flow concept used to predict the asymptotic analytical solution
presented in this paper was validated by many authors. Most of these validations were per-
formed for the case of double diffusive convection without Soret and Dufour effects [22,27]
or with only the Soret effect [36]. Figure 4 illustrates the effect of the enclosure aspect
ratio on the stream function value at the center of the enclosure and the local and average
heat and mass transfer rates for RT = 50, Le = 5, ξ = 1 and Du = Sr = 0.2, within a Darcy
porous medium. From the Figure, it is observed that the flow intensity and the local
Nusselt number increase monotonically and sharply at the beginning as the aspect ratio
increases beyond 1 and then tend asymptotically toward constant values as the aspect
ratio becomes very large (A ≥ 6). The same trend is observed for the averaged Sherwood
number. However, for the local Sherwood number, first it increases drastically with the
aspect ratio and then passing through a maximum it drops toward a constant value. The
constant values are reached at A = 6 and they become independent of the aspect ratio of the
enclosure; they compare well with the analytical solution. For this reason, and to be more
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conservative, most of the numerical results presented in this paper are obtained for A = 0 to
ensure the validity of the asymptotic analytical solution in the core region of the enclosure.
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rates for: RT = 50, Le = 5, ε = 1 and Du = Sr = 0.2.

5. Linear Stability Analysis

In this section, a two-dimensional stability analysis of the binary flow system is
considered. The overall unsteady solution of the problem consists of a basic solution (Ψb,
Tb, Sb) representing the pure diffusive rest state solution or the steady-state convective
solution, and a perturbation solution (Ψp, Tp, Sp). The basic rest state solution is given by
(Ψb = 0, Tb = aTx, and Sb) = asx, and the basic convective steady state solution is obtained
from the parallel flow asymptotic approach. For an infinite porous layer, this assumption
allowed to define the perturbations, as follows:

Ψp(x, y, t) = ψ0ept+iky f (x)

Tp(x, y, t) = θ0ept+ikyg(x)

Sp(x, y, t) = φ0ept+ikyh(x)

 (54)

where k is the wave number, f (x), g(x) and h(x) are functions describing the pertur-
bation profiles, and p = pr + ipi, is a complex number indicating the growth rate of
the perturbation, pr, and the oscillation frequency, pi, and ψ0, θ0, and φ0 are unknown
infinitesimal amplitudes.
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Substituting Equation (54) into the governing Equations (6)–(8) and after dropping
second-order nonlinear terms, it yields the following linear stability equations:(

D2 − k2 − Dae
(

D4 − 2k2D2 + k4))F + RT D
(

G− aTa−1
S H

)
= −ξ p

(
D2 − k2)F

(CT D− ik(aT + Dθb))F + ikgDΨb +
(

D2 − k2)(G + Du H) = pG

(CSD− ik(aS + Dϕb))F + ikhDΨb + Le−1(D2 − k2)(SrG + H) = εpH

 (55)

with F = ψ0f, G = θ0g, H = φ0h and D = d/dx.
The new perturbation boundaries conditions are defined as follows:

x = ±1
2

: F =
∂F
∂x

= 0,
∂G
∂x

= 0 ,
∂H
∂x

= 0 (56)

The above linear system (55) subject to boundary conditions Equation (56) is solved
numerically using a finite element method based on the cubic Hermite element. The
numerical procedure is described in detail in Mamou [58] and Mamou et al. [59]. Since
there is a slight difference between the current problem and that analyzed in [58,59], some
details are omitted. The discretized linear equations are assembled into a global eigenvalue
system as follows:

[
Kψ

]
−RT

[
Bψ

]
RT

aT
aS

[
Bψ

]
−[Bθ ] [Kθ ] Du[Lθ ]

−
[
Bφ

] Sr
Le
[
Lφ

] 1
Le
[
Kφ

]



F
G
H

 = p

 −ξ
[
Mψ

]
0 0

0 −[Mθ ] 0
0 0 −ε

[
Mφ

]


F
G
H

 (57)

where F, G, and H are the unknown eigenvectors of dimension m = 2Nex + 1, where Nex is
the number of elements in x direction, and [Kψ], [Kθ]

[
Kφ

]
,
[
Bψ

]
, [Bθ],

[
Bφ

]
, [Lθ], [Lφ], [Mψ],

[Mθ] and
[
Mφ

]
are square matrices of dimension m × m, whose elementary matrices are

defined as follows:[
Kψ

]e
=
∫

∆xe

[
dHj
dx

dHl
dx + k2HjHl + Dae

(
d2Hj
dx2

d2Hl
dx2 + 2k2 dHj

dx
dHl
dx + k4HjHl

)]
d x,

[
Bψ

]e
=
∫

∆xe

d Hj
d x Hl dx,

[
Mψ

]e
=
∫

∆xe

( dHj
dx

dHl
dx + k2HjHl

)
dx,

[Kθ ]
e =

∫
∆xe

( dHj
dx

dHl
dx + k2HjHl − ik ∂Ψb

∂x HjHl

)
dx,

[Bθ ]
e =

∫
∆xe

[
CT

∂Hj
∂x − ik

(
aT + dθT

dx

)
Hj

]
Hldx, [Mθ ]

e =
∫

∆xe

Hj Hl dx,

[
Kφ

]e
=
∫

∆xe

( dHj
dx

dHl
dx + k2HjHl − ikLe ∂Ψb

∂x HjHl

)
dx,

[
Bφ

]e
=
∫

∆xe

[
CS

dHj
dx − ik

(
aS +

dθS
dx

)
Hj

]
Hldx



(58)

5.1. Stability of the Rest State

The stability of the motionless state: (Ψ = 0, T = ax and S = ax) is now considered.
The methodology for obtaining the thresholds of various types of convective modes is
described hereafter. The eigenvalue problem, Equation (57), in its general form is valid for
any governing parameters value.

To explicitly determine the thresholds of stationary and oscillatory convection, the
Galerkin method is the most suitable provided that the eigenvectors are predetermined
through the numerical analysis given in Section 5.

Now assuming that the eigenvectors (F, G, H) are obtained from Equation (57) so
they can be used as the weighing functions, and substituting the rest state solution (Ψ = 0,
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Tb = aTx, Sb = asx) in to the general stability Equation (55) and performing the Galerkin
integration, the following scalar linear equations are obtained:

pξψ0Mψ + ψ0Kψ = RT

(
θ0 − φ0aTa−1

S

)
B (59)

pθ0Mθ − ψ0aT Lθ = −(θ0 + φ0Du)Kθ (60)

pεφ0Mφ − ψ0aSLφ = −Le−1(φ0 + θ0Sr)Kφ (61)

where Mψ, Mθ , Mφ K, Kθ , Kφ, Lθ , Lφ and B are constants which can be computed from the
following Galerkin integrals:

Kψ =
∫ 1/2
−1/2

[(
dF
dx

)2
+ k2F2 + Dae

( (
d2F
dx2

)2
+ 2k2

(
dF
dx

)2
+ k4F2

)]
d x,

Kθ =
∫ 1/2
−1/2

((
dG
dx

)2
+ k2G2

)
dx, Kφ =

∫ 1/2
−1/2

((
dH
dx

)2
+ k2H2

)
dx,

Lθ =
∫ 1/2
−1/2 ikGFdx, Lφ =

∫ 1/2
−1/2 ikHFdx, B =

∫ 1/2
−1/2

d G
d x F dx,

Mψ =
∫ 1/2
−1/2

((
dF
dx

)2
+ k2F2

)
dx, Mθ =

∫ 1/2
−1/2 G2dx, Mφ =

∫ 1/2
−1/2 H2dx


(62)

with Kθ = Kφ = K, Lθ = Lφ = L and Mθ = Mφ = M.
Substituting Equations (60) and (61) into Equation (59) we readily arrive to the follow-

ing dispersion relationship:

γ γψξε Le
(

p
γ

)3
+ p2

(
p
γ

)2
− p1

(
p
γ

)
− p0 = 0 (63)

where
p0 = R0

T

(
aTa−1

S − Le
)
− (1− DuSr)

p1 = R0
TaT Le(ε− 1)− (εLe + 1)− (1− DuSr)γψγξ

p2 = εLe
(
1 + γψγξ

)
+ γψγξ

R0
T = RT

R0 , R0 =
KψK
BL , γψ =

Mψ

Kψ
, γ = K

M


(64)

From Equation (63), the onset of overstabilities and stationary convection can be
determined.

5.1.1. Onset of Stationary Convection

The determination of the thresholds of stationary and overstable convection are
discussed. In general, the threshold of stationary convection is obtained when the marginal
stability occurs (p = 0). After introducing the boundary conditions in the general linear
system, Equation (57), the eigenvalue problem can be reduced to:

[E− λI]{F} = 0 (65)

with E = [Kψ]−1 [K]−1 [Bψ] [B] and λ = 1−Sr
RT(aT−aS Le) , where [I] is the identity matrix and F

is the eigenvector. The above equation has a nontrivial solution, ({F} 6= 0), only when the
determinant of [E − λI], which yields m eigenvalues which can be reorganized as λ1 ≤ λ2
≤ . . . ≤ λm, and their corresponding eigenfunctions are given by {F}i where i = 1, 2, . . . ,
m. Thus, from Equation (65), the threshold for stationary convection is given by:

Rsup
TC = R0 1− Sr

aT − aSLe
(66)
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where the constant R0 takes positive values (R0 = 1/λm) for Le < aTa−1
S and negative

values (R0 = 1/λ1) for Le > aTa−1
S . When Sr = Du = 0, the above supercritical Rayleigh

number expression is reduced to that reported by Mamou et al. [28]. For an infinite
vertical Brinkman layer, the constant R0 is a function of the effective Darcy number, Dae,
as also demonstrated by Mamou et al. [28] and Joly et al. [36]. The Darcy situation is
obtained for Dae ≤ 10−6 with slip boundary conditions where the constant R0 is given
by R0 = +105.33(−105.33) for Le < aTa−1

S

(
Le > aTa−1

S

)
, these values were reported by

Mamou et al. [22] and Joly et al. [36]. The expression in Equation (66) can be obtained from
Equation (63) when p = 0 (i.e., p0 = 0).

5.1.2. Onset of Oscillatory Convection

The marginal state of overstability corresponds to the condition pr = 0 (i.e., p = ipi).
Substituting the relation p = ipi in Equation (63), and after separating the imaginary and
real parts, we find two expressions of pi as follows:

p2
i = −γ2 p0

p2
, p2

i = −γ
p1

ε Le γψξ
(67)

The critical Rayleigh number Rover
TC , which characterizes the onset of oscillatory con-

vection is obtained by equalization the two expressions stated in Equation (67), this leads
to the critical Rayleigh number of the onset of the overstable regime as:

Rover
TC = R0 (1−Sr)εLeγψγξ−aS[(εLe+1)+(1−DuSr)γψγξ] [(εLe+1)γψγξ+εLe]

(aT−aS Le) εLeγψγξ−aT aS Le(ε−1) [(εLe+1)γψγξ+εLe]
(68)

For the case where (ξ = 0), the critical Rayleigh number is reduced to:

Rover
TC = R0 εLe + 1

aT Le(ε− 1)
(69)

The existence of the oscillatory convection mode is only possible when the condition
p2

1 + p0 < 0 is satisfied, i.e., Rover
TC < RT < Rosc

TC, where the value of Rosc
TC is determined when

p2
1 + p0 = 0. Additionally, and for the same situation (ξ = 0), the critical Rayleigh number,

Rosc
TC, characterizing the upper limit of the oscillatory convection regime, where transition

from oscillatory to stationary mode occurs, is obtained as follows:

Rosc
TC = R0

(
ε(aSLe− aT)

2aSa2
T Le(ε− 1)2 +

1 + εLe
aT Le(ε− 1)

−
√

∆

2[aT Le(ε− 1)]2

)
(70)

where: ∆ = ε2Le2
(

aTa−1
S − Le

)2
− 4 aT ε Le2(ε− 1)

[
aTa−1

S − DuLe + ε Le
(

SraTa−1
S − Le

)]
.

The value of Rover
TC and Rosc

TC are also computed numerically from Equation (57) when
pr = 0 and pi 6= 0, respectively, and minimized according to the optimal wavenumber.

5.2. Stability Analysis of the Convective State: Hopf Bifurcation

The stability of the basic finite amplitude convection solution, which is given by the
parallel flow assumption developed in Section 4, is considered. Thus far, it is well known
that when the Rayleigh number is increased above a critical value, the convective flow
becomes oscillatory and the onset of oscillation is marked by a critical value known as the
threshold of Hopf bifurcation. In order to find the threshold of a Hopf bifurcation, RHop f

TC ,
a stability analysis of the flow pattern is required. Table 3 shows the numerical results
obtained using a non-uniform sinusoidal mesh. The effect of the grid size on the threshold
of Hopf bifurcation is illustrated for an infinite vertical layer with Dae = 10−4, Le = 2,
Sr = Du = 0.1, ξ = 0, and ε = 1. The aim of the grid sensitivity study is to determine the best
compromise between the accuracy of the results and the computational time. The results
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are presented in terms of the critical Rayleigh number, RHop f
TC , critical wave number, AC,

and the oscillation frequency, fr. The critical Rayleigh number value is seen to be accurate
enough with a grid size of 32 finite elements. For Dae = 10−4, the Brinkman viscous layer is
very thin and requires grid point clustering near walls.

Table 3. Effect of the grid size on the threshold of the Hopf bifurcation in an infinite vertical layer for
Dae = 10−4, Le = 2, Sr = Du = 0.1, ξ = 0, and ε = 1.

Grid Size 4 8 12 16 32 64

RHop f
TC

1454.37 872.54 866.39 864.33 863.52 863.43
AC 2.73 2.90 2.91 2.91 2.89 2.91
fr 5.50 4.34 4.32 4.31 4.34 4.32

The effects of the Soret and Dufour parameters, Sr and Du, on the threshold of the
Hopf bifurcation are shown in Table 4 for Dae = 10−4, Le = 2, ξ = 0, and ε = 1, with Sr and
Du varying from −1 to 0.6 and from 0 to 1, respectively. For this condition, an increase
in Sr delays the threshold of Hopf bifurcation up to Sr = 0.5 where RHop f

TC → ∞ . When

Sr > 0.5, RHop f
TC decreases with the increase in Sr, i.e., causing an early Hopf bifurcation.

Thus, the Soret parameter has a stabilizing effect if Sr < 0.5, otherwise, it has a destabilizing
effect. Furthermore, from the right side of Table 4, it is clear that the critical Rayleigh
number RHop f

TC decreases considerably with the increase in Du. This follows from the fact
that any increase in the Dufour parameter results in a destabilizing effect and enhances
the convective flow. In general, the stability analysis leads to two conjugate solutions at
the onset of the Hopf bifurcation. The perturbation flow patterns depicted in Figure 5 (for
Dae = 10−4, Le = 2, Du = Sr = 0.1, ξ = 0 and ε = 1) show that the two solutions (with negative
and positive values of pi) are mirror images of each other and once superposed could lead
to traveling waves in the vertical direction.

Table 4. Effects of the Soret, Sr, and Dufour, Du, parameters on the threshold of the Hopf bifurcation
in an infinite vertical layer for Dae = 10−4, Le = 2, Sr = Du = 0.1, ξ = 0, and ε = 1.

Du Sr

Sr RHopf
TC

Ac fr Du RHopf
TC

Ac fr

−1.0 582.08 2.91 4.33
−0.6 635.00 2.91 4.33
−0.2 748.39 2.91 4.33 0.0 873.12 2.91 4.33
0.0 873.12 2.91 4.33 0.2 727.60 2.91 4.33
0.2 1164.16 2.91 4.33 0.6 545.70 2.91 4.33
0.6 1746.26 2.91 4.33 1.0 436.56 2.91 4.33

The effect of the acceleration parameter, ξ, on the onset of Hopf bifurcation is presented
in Table 5 for Dae = 10−4, Le = 2, Du = Sr = 0.1 and ε = 1. These results indicate clearly
that when the acceleration parameter, ξ, increases from the 0 to 0.1, both the critical
Rayleigh number, RHop f

TC , and wavelength, AC, increase and the oscillation frequency, fr,
decreases. Thus, the acceleration parameter has a strong stabilizing effect on the onset of
Hopf bifurcation, which delays the appearance of the oscillatory flows. These results are
similar to those presented by Mamou [24] for double diffusive convection in the absence of
both Soret and Dufour effects.
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(b) pi = −27.13.

Table 5. Effects of acceleration parameter ξ on the threshold of the Hopf bifurcation in an infinite
vertical layer for Dae = 10−4 Le = 2 Du = Sr = 0.1, and ε = 1.

ξ RHopf
TC

fr Ac

0 863.49 2.92 4.32
10−3 872.09 2.94 4.28

5 × 10−3 913.70 3.06 4.16
10−2 982.20 3.27 3.97

5 × 10−2 2114.62 7.99 2.08
10−1 3832.36 16.73 1.20

6. Results and Discussion

The main objective of the present investigation is to examine the influence of the Soret
and Dufour effects on the convective flow and on heat and mass transfer rates near the
onset of convection, and on the threshold of supercritical, overstable, and Hopf bifurcation
convection. The Soret and Dufour parameters are varied within the ranges: −1 < Sr < +1
and 0 < Du < +1. As previously mentioned, this investigation is focused on the situation
where the resultant of the thermal and solutal buoyancy forces is zero in the pure diffusive
regime (N = −aT/aS).

The effect of the Soret and Dufour parameters on the stream function, vertical velocity,
temperature, and concentration profiles at the mid-height of the porous layer (i.e., y = 0)
are illustrated in Figures 6 and 7 for 0 < Du < +1, Dae = 1, Le = 10, RT = 10−4, ξ = 0, and ε = 1.
From these figures, it is clear that the asymptotic analytical solution, which is depicted
in solid lines, is in good agreement with the numerical results presented by black circles.
Figure 6a indicates that the flow intensity is clearly decreasing with the increase in the
Soret effect and therefore reduces the flow circulation intensity inside the cavity, where the
flow velocity for Sr = 0.8 is smaller than that corresponding to the case of double diffusive
convection (Sr = 0), as shown in Figure 6b. At the same time, a little increase is observed
in the flow intensity and the velocity magnitude with an increase in the Dufour effect, as
shown in Figure 7a,b. Figure 6c shows that the effect of the Soret parameter causes a slight
increase in the temperature difference between the two walls, which is clearly noticeable at
Sr = 0.8. The effect of the Soret parameter on the concentration profiles, as illustrated in
Figure 6d, causes a significant concentration difference decrease across the vertical walls as
the Soret parameter is increased. The Dufour effect on the temperature profiles is depicted
in Figure 7c, and its influence appears very similar to the effect of the Soret parameter
on the concentration profiles. The presence of the Soret effect creates a solute deficit and
surplus on the right and left walls, respectively, which becomes important with high values
of Sr. Furthermore, the presence of the Dufour effect creates a heat deficit and surplus on
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the right and left walls, respectively, which become enhanced as well at high values of Du.
However, for this particular situation, it appears that the Dufour parameter has no effect
on the concentration profile, as depicted in Figure 7d.
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Figures 8 and 9 show the effects of the Rayleigh number and the Soret and Dufour
parameters on the stream function at the center of the cavity, Ψ = 0, and on the heat and
mass transfer rates, Nu and Sh, respectively, for Le = 2, Dae = 10−4, ξ = 0 and ε = 1. The
curves depicted in the graphs are the predictions of the nonlinear parallel flow theory,
which is developed in Section 4. Figures 8a and 9a show that for a given value of Sr
and Du, there exists a Rayleigh number, Rsub

TC , for the onset of subcritical finite amplitude
convection, where its value increases with the increase in the Soret parameter, while it
decreases when the Dufour number increases. The strength of the convection intensity, Ψ0,
increases monotonously with the Rayleigh number, RT, increase, and it becomes enhanced
when the Soret parameter takes negative values, while it weakens for positive values.
Furthermore, the strength of convection increases with an increase in the Dufour number.
According to the results depicted in Figures 8 and 9b,c, it is obvious that when the Rayleigh
number tends toward large values, whatever the values of the Soret and Dufour parameters
are, both the heat and mass transfer rates tend asymptotically toward a constant value
(Nu = Sh = 4.88), which depends on the Darcy number. From a physical point of view,
this limit cannot be sustained as the flow becomes unstable for high values of RT and
transition toward turbulence is imminent. For negative values of Sr, Sh seems to exceed
the asymptotic limit for small values of RT, where it increases with the increase in RT until
it reaches a maximum value, Sh = 13.87 at RT = 36 for Sr = −0.6, and then drops later
on towards the asymptotic value for large RT. For Sr = −0.4, the maximum value of Sh
decreases to Sh = 6.61, and is reached at a slightly high Rayleigh number, RT = 50.
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The effects of the Soret and Dufour parameters on the evolution of the subcritical
Rayleigh number with the Lewis number are illustrated in Figure 10 for the case of a
monocellular flow. These results were evaluated from the analytical nonlinear theory
model by searching numerically for the value of R0

T for which the inverse of the derivative
of Ψ0n with respect to R0

T is equal to zero. Figure 10a,b indicate that, for a given value of
the Soret and Dufour parameters, Rsub,0

TC → ∞ when Le→ Le*, at which the convection is
absent. From Equation (38), the subcritical Rayleigh number tends to infinity for Le→ Le*,
which is defined as follows:

Le∗ =
−(Du + NSr) +

√
(Du + NSr)

2 − 4N

2
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According to the above expression, the value of the Lewis number Le* for which the
system is stable depends on the values of the Soret and Dufour parameters; where it is
equal to unity (Le* = 1) for Sr = Du = 0, and it increases and becomes superior to unity
(Le* > 1) when the Soret parameter takes positive values, while it decreases below unity for
negative values and with the increase in the Dufour number. For a given value of Sr and Du,
upon decreasing the value of the Lewis number below Le*, the subcritical Rayleigh number
decreases towards a constant value, while it tends to zero Rsub,0

TC → 0 when the Lewis
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number increases above Le*. Figure 10a shows that the negative (positive) value of the Soret
parameter has a stabilizing (destabilizing) effect. The value of Rsub,0

TC increases (decreases)
with a decrease (increasing) in the Soret parameter when Le < Le*. However, when Le > Le*,
it has a destabilizing (stabilizing) effect and the value of Rsub,0

TC decreases (increases) with
the decrease (increase) in Sr. From Figure 10b, it is clear that when Le < Le*, the subcritical
Rayleigh number increases with the Du increase, the Dufour parameter increase thus has a
stabilizing effect. When when Le > Le*, Rsub,0

TC decreases with the increasing of the Dufour
parameter, the Du increase thus has a destabilizing effect. For large values of Le, the Soret
and Dufour parameters have a weak effect on the Rsub,0

TC .
The influence of the Soret effect on the flow intensity and the heat and mass transfer

rates is illustrated in Figure 11 for Dae = 10−4, RT = 103, Le = 2, ξ = 0, ε = 1, and
Du = 0. Results are obtained for values of Sr ranging from −1 to 1, exclusively. As can be
observed, a good agreement is obtained between the parallel flow approximation presented
by solid lines and the numerical solution displayed by solid symbols. Very distant from
the onset of convection, a large value of Sr induces oscillatory flows and transition towards
chaos. The absence of the convective solution is noticeable for 0.495 ≤ Sr ≤ 0.505, where
the rest state prevails since, for this range of Sr, RT = 103 is below the Rayleigh number,
Rsub

TC , Equation (40). At Sr = 0.495 and 0.505, a bifurcation from conductive to convective
regime occurs (Ψ0 = 0.755, Nu = 1.214 and Sh = 1.218 for Sr = 0.495 and Ψ0 = −0.783,
Nu = 1.229 and Sh = 1.225 for Sr = 0.505). Figure 11a indicates that, as the Soret
parameter increases above 0.5, the strength of the convective motion increases progressively
and it becomes more and more important as the value of the Soret parameter approaches
unity. The local Nusselt and Sherwood numbers (Figure 11b,c) are increasing sharply from
the bifurcation point with the increase in Sr, where the heat transfer rate is more important
than the mass transfer rate (Nu > Sh). As the value of the Soret parameter is made smaller,
the convective flow intensity and the heat transfer rate become relatively independent of
the Soret parameter, while the heat transfer rate is increased with a decrease in the value of
the Soret parameter. From Figure 11b,c, it can be clearly observed that the faster diffusive
component is the solute for Sr > 0.5, where the heat transfer is due mainly by convection
(Nu > Sh), while for Sr < 0.5, the solute transfer is dominated by convection (Sh < Nu)
as the heat is now the faster diffusing component. In addition, Figure 11a shows that the
convective flow changes its rotation direction from counter-clockwise to clockwise when
the Soret parameter varies from −1 to +1; counterclockwise for Sr < 0.5 and clockwise for
Sr > 0.5, as shown in the flow patterns in Figure 11a. Furthermore, Figure 12 displays the
influence of the Dufour effect on the flow behavior, Ψ0, and the heat and mass transfer
rates, Nu and Sh, respectively, for Dae = 10−4, RT = 103, Le = 2, ξ = 0, ε = 1 and Sr = 0.
A good agreement is noticed between the asymptotic and numerical solutions. Figure 12a
shows that, the convective flow intensity increases as Dufour effect increases. At the same
time, the increase in the Dufour effect caused a little increase and decrease on the local
Sherwood and Nusselt numbers, respectively, see Figure 12b. When Du increases from
Du = 0 to Du = 1, the solute transfer rate increases slightly, while the heat transfer rate
dwindles progressively.
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Figure 11. Effect of Soret parameter, Sr, on (a) stream function at the center of the cavity, Ψ0, (b) local
Nusselt number, Nu, and (c) local Sherwood number, Sh, for Dae = 10−4, RT = 103, Le = 2, ξ = 0,
ε = 1 and Du = 0.
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Figure 12. Effect of Dufour parameter, Du, on (a) stream function at the center of the cavity, Ψ0,
(b) local Nusselt number, Nu, and local Sherwood number, Sh, for Dae = 10−4, RT = 103, Le = 2,
ξ = 0, ε = 1 and Sr = 0.

Figure 13a,b exemplify the effects of the Soret and Dufour parameters on the thresholds
of bifurcations Rsub

TC , Rsup
TC and RHop f

TC for Dae = 10−4, Le = 2, ξ = 0 and ε = 1. The critical
Rayleigh numbers for the onset of stationary convection, Rsup

TC , and for the onset of Hopf

bifurcation, RHop f
TC , are predicted by the linear stability theory. However, the onset of
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subcritical finite amplitude convection occurring at a Rayleigh number, Rsub
TC , is predicted

by the present nonlinear model, Equation (40), such that upon decreasing the value of
the Rayleigh number below Rsub

TC , the convective flow is at rest, which corresponds to the
stable diffusive regime in which all perturbations decay (region I). In region (II), the linear
theory predicts a stable rest state with possible finite amplitude convection according to the
non-linear theory. In region (III) the system is unstable; any arbitrary dynamic perturbation
can initiate a convective flow. Region (V) corresponds to the oscillatory finite amplitude
convection that occurs right above the threshold for Hopf bifurcation. In general, it is
seen from Figure 13a that the thresholds

(
Rsub

TC , Rsup
TC , RHop f

TC

)
decrease sharply towards

a constant value as the Soret parameter is decreased below Sr = 0.5. On the other hand,
upon increasing the value of the Soret parameter above 0.5, the thresholds of bifurcation
decrease monotonously toward

(
Rsub

TC , Rsup
TC , RHop f

TC

)
→ 0 . It can be clearly observed that(

Rsub
TC , Rsup

TC , RHop f
TC

)
→ ∞ when Sr = 0.5, which results in a stable system. This value

varies dependently on the value of the Lewis number and the Dufour parameter which is
expressed according to Equation (38) as follows:

Sr = 1 +
Du − 1

Le
(72)
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For the case with Du = 0 as considered in Figure 13a, the above expression reduces
to Sr = 1− 1/Le, i.e., the value of Sr where

(
Rsub

TC , Rsup
TC , RHop f

TC

)
→ ∞ depends only on

the value of the Lewis number. For Dufour induced convection, Figure 13b shows that the
thresholds

(
Rsub

TC , Rsup
TC , RHop f

TC

)
decrease monotonously upon an increase in the value of

Du. It follows that the steady parallel flow is destabilized earlier with an increase in Sr and
Du. In other words, a decrease in the Soret and Dufour numbers results in a weakening of
the convective flow and thus stabilizes the system.

Figure 14 shows the stability diagram in terms of RTC versus Le, as predicted by
the linear stability analysis and the parallel flow model, Equations (40), (66) and (70), for
Dae = 10−4, Du = Sr = 0.1, ξ = 0 and ε = 0.5. In fact, the evolution of the curves depicted
in the graph with the critical Rayleigh numbers,Rsub

TC , Rsup
TC and RHop f

TC is quite similar
to that discussed in Figure 13a while studying the effect of Soret, Sr. As expected, the
graph indicates that the critical Rayleigh numbers for the onset of subcritical, supercritical,
and Hopf bifurcation convection decreases sharply toward a constant value as the Lewis
number is decreased below unity. On the other hand, upon increasing the value of the
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Lewis number above unity, the onset of convection decreases monotonously toward zero:(
Rsub

TC , Rsup
TC , RHop f

TC

)
→ 0 . In general, it is observed that

(
Rsub

TC , Rsup
TC , RHop f

TC

)
→ ∞ when

Le→ 1 , which results from the inexistence of any convection state. This result has been also
reported by Mamou et al. [22], Amahmid et al. [27] and Rebhi et al. [39] while investigating
the thresholds of bifurcation in a fluid and porous layer under various thermal and solutal
boundary conditions with ε = 1. For a given value of the normalized porosity ε = 0.5,
the linear stability theory predicts the existence of oscillating flow patterns within the
overstable regime (zone (IV)), which is marked by the hatched area (i.e., delineated by
Rover

TC and Rosc
TC, Equations (69) and (70)). In the overstable region, convection is triggered

from the rest state and it is amplified in an oscillatory manner.

Fluids 2021, 6, x FOR PEER REVIEW 31 of 38 
 

410eDa −= , 0.1u rD S= = , 0=ξ  and 0.5ε = . In fact, the evolution of the curves depicted 
in the graph with the critical Rayleigh numbers, sub

TCR , sup
TCR  and Hopf

TCR  is quite similar to 
that discussed in Figure 13a while studying the effect of Soret, rS . As expected, the graph 
indicates that the critical Rayleigh numbers for the onset of subcritical, supercritical, and 
Hopf bifurcation convection decreases sharply toward a constant value as the Lewis num-
ber is decreased below unity. On the other hand, upon increasing the value of the Lewis 
number above unity, the onset of convection decreases monotonously toward zero: 

( ), , 0sub sup Hopf
TC TC TCR R R → . In general, it is observed that ( ), ,sub sup Hopf

TC TC TCR R R → ∞  when 

1Le → , which results from the inexistence of any convection state. This result has been 
also reported by Mamou et al. [22], Amahmid et al. [27] and Rebhi et al. [39] while inves-
tigating the thresholds of bifurcation in a fluid and porous layer under various thermal 
and solutal boundary conditions with 1ε = . For a given value of the normalized porosity 

0.5ε = , the linear stability theory predicts the existence of oscillating flow patterns within 
the overstable regime (zone (IV)), which is marked by the hatched area (i.e., delineated by 

over
TCR  and osc

TCR , Equations (69) and (70)). In the overstable region, convection is triggered 
from the rest state and it is amplified in an oscillatory manner. 

 
Figure 14. Stability diagram as a function of the Lewis number, Le , for 410eDa −= , 0.1u rD S= =
, 0ξ = , and 0.5ε = . 

Figure 15 exemplifies the effect of the normalized porosity, ε , on the onset of Hopf 
bifurcation, Hopf

TCR . The bifurcation diagram is presented in terms of 0Ψ , Nu  and Sh  
as a function of TCR  for 410eDa −= , 2L e = , 0ξ =  and 0.1u rD S= = . In the graph, 

0Ψ  is the flow intensity at the center of the cavity, 0
τΨ  is the averaged flow intensity 

over a time period of the oscillation, Nu  and S h  are the local Nusselt and Sherwood 
numbers at the mid-height of the cavity, and Nuτ  and Shτ  are the time-averaged local 
Nusselt and Sherwood numbers, respectively. The computation of the time period aver-

aged results is performed as follows: 1
t

t

f fdt
τ

τ τ
+

−=  , where f  stands for 0Ψ , Nu  
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ξ = 0, and ε = 0.5.

Figure 15 exemplifies the effect of the normalized porosity, ε, on the onset of Hopf
bifurcation, RHop f

TC . The bifurcation diagram is presented in terms of Ψ0, Nu and Sh as a
function of RTC for Dae = 10−4, Le = 2, ξ = 0 and Du = Sr = 0.1. In the graph, Ψ0 is
the flow intensity at the center of the cavity, Ψτ

0 is the averaged flow intensity over a time
period of the oscillation, Nu and Sh are the local Nusselt and Sherwood numbers at the
mid-height of the cavity, and Nuτ and Shτ are the time-averaged local Nusselt and Sherwood
numbers, respectively. The computation of the time period averaged results is performed
as follows: f τ = τ−1

∫ t+τ
t f dt, where f stands for Ψ0, Nu and Sh, and τ is the oscillation

time period. The curves depicted in the graphs are the predictions of the present analytical
and numerical nonlinear theories. The solid lines correspond to the stable branches and the
dot-dot-dashed lines to the unstable ones. The steady and unsteady numerical solutions of
the full governing equations, obtained for A = 10, are shown by symbol (solid symbols for
steady state solution and empty symbols with dashed lines for unsteady solution). In the
steady state regime, a good agreement is observed between these two nonlinear theory results.
The intersection between the solid symbols and the empty symbols curves represents the
critical Rayleigh number for the onset of Hopf bifurcation, RHop f

TC , at which the transition from
stationary to oscillatory convection occurs. In the graphs, only four data points are presented
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for the oscillatory solutions. It is noticed that a further increase in the Rayleigh number
beyond RHop f

TC leads very quickly to periodic followed by chaotic oscillatory convective

flows. At ε = 0.6, 0.8, and 1.0, it is found that RHop f
TC = 75, 305 and 910, respectively.

These values were obtained by trial and error method by narrowing the gap where the
transition occurs. For this value, the flow remains unicellular but the parallel nature of the
streamlines is slightly distorted, which indicates the existence of a trail of small vortices in
the core of the layer traveling along the vertical walls, as depicted in Figure 15c, while the
time-averaged streamlines, Ψm, isotherms, Tm, and isoconcentrations, Sm, are displayed in
Figure 15d for RT = 910 and ε = 1. The critical Rayleigh number, RHop f

TC , predicted by the
linear stability theory is obtained as 74.96, 314.27 and 863.44 for ε = 0.6, 0.8 and 1, respectively.
A reasonable agreement between the different methods of solution is observed. This result
indicates that the critical Rayleigh number, RHop f

TC , is strongly dependent on the value of
the normalized porosity, ε, which plays the role of a stabilizing factor. A similar trend has
been reported recently by Mamou et al. [22] while investigating the effect of the normalized
porosity on double-diffusive convection induced by thermal and solutal gradients in a vertical
porous layer.
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For a physical explanation of the transitional convective flow, unsteady solutions
are presented in Figure 16a–d. The time histories of the flow intensity, Ψ0, obtained
for RT = 910 and ε = 1, just above the critical Rayleigh number of Hopf bifurcation
predicted by the linear stability theory, RHop f

TC = 863.44, is displayed in Figure 16a for a
few cycles. The resulting oscillatory flow is found to be simply periodic. In Figure 16b–d,
time-snapshots of the perturbations of the stream function, Ψp, temperature, Tp, and
concentration, Sp, contours are displayed at different time steps during a time-period
of oscillation, points (1)–(6). At each given time step, the stream function, temperature
and concentration perturbation profiles are computed as fp = f τ − τ−1

∫ t+τ
t f dt where fp

stands for Ψ, T and S. The critical wave length and oscillatory frequency, which could be
translated into a traveling wave speed, is obtained as AC = 2.5 and fr = 5.63 from the full
numerical solution at RT = 910, and as AC = 2.91 and fr = 4.31 from the linear stability
analysis at RHop f

TC = 863.44. The small difference seen between the two approaches can be
attributed to the finite aspect ratio considered, here A = 10. The wave length from the
numerical solution is computed as the distance between two consecutive cells rotating in
the same direction in the central part of the enclosure. As known, because of the relatively
large value of AC = 2.91 predicted by the linear stability analysis, an aspect ratio of AC = 10
may be relatively small to simulate the infinite layer. It is expected that increasing the
enclosure aspect ratio may improve the results, and the wavelength value variation may
experience a jump as the convective perturbation cells increase oddly in numbers and
the jump dwindles as we approach the situation of an infinite layer. In Figure 16b–d, the
convection perturbation patterns are exemplified by two layers consisting of a series of
small counter-rotating vortices traveling along the vertical walls in both ways, upwards
near the right wall and downwards near the left wall. The vortices trail is seen to travel
in a clockwise circulation. The vortices are seen to become weak as they negotiate their
way through the end walls of the enclosure and regain their strength progressively later
on as they quit the end regions. In general, it is seen from Figure 16b,d that the shape of
the formed vortices is approximately the same as those predicted by the stability analysis
when superposing the two conjugate solutions, Figure 5a,b.

A more complete view of the effect of the normalized porosity, ε, on the thresholds
of bifurcation

(
Rsub

TC , Rover
TC , Rosc

TC, Rsup
TC , RHop f

TC

)
is presented in Figure 17 for Dae = 10−4,

Le = 2, and Du = Sr = 0.1. The stability diagram is built according to the linear stability
analysis and the parallel flow approximation predictions, Equations (40), (66), (69) and (70).
According to Equations (40) and (66), for the values of the governing parameters considered
here, the onsets of subcritical and supercritical motions are given by Rsub

TC = 18.12 and
Rsup

TC = 106.90, respectively, which are independent of ε. As expected, the graph indicates

that the onset of Hopf bifurcation, RHop f
TC , decreases sharply upon decreasing the value of

the normalized porosity, ε. Upon decreasing the normalized porosity further, it is seen
that the onset of Hopf bifurcation tends toward RHop f

TC ≈ Rsub
TC = 18.12 as ε→ 0.21 . Upon

decreasing further the value of ε, it is observed that, in the range 0 ≤ ε ≤ 0.21 there
exists a threshold for the onset of the overstable regime, delineated by the hatched area.
Furthermore, the overstable regime is shown to exist up to a critical Rayleigh number,
Rosc

TC, at which the transition from the oscillatory to direct mode convection occurs. It
is also observed that, for ε = 0.21, the condition for a codimension-2 point is reached
Rover

TC = Rosc
TC = Rsup

TC = 106.90. Furthermore, the results presented for ε = 0.21 indicate that

the condition Rsub
TC = RHop f

TC is reached, as well.
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7. Conclusions

The combined Soret and Dufour effects on double diffusive convection in a vertical
porous layer filled by a binary mixture was investigated analytically and numerically
using the Darcy–Brinkman model. The particular situation where the buoyancy ratio
was given by N = −aT/aS was considered. The governing parameters of the problem
were the Rayleigh number, RT , effective Darcy number, Dae, buoyancy ratio, N, Lewis
number, Le, Soret parameter, Sr, Dufour number, Du, normalized porosity of the porous
medium,ε, porous medium acceleration coefficient, ξ, and the aspect ratio of the cavity, A.
The influence of the Soret and Dufour effects on the strength of convective motion, heat
and mass transfer rates, and on the onset of various convective modes was investigated.
The main conclusions of the current study are itemized below:

1. For the large aspect ratio of the enclosure, an excellent agreement was obtained
between the resulting steady state solution predicted by the asymptotic analytical
theory and the numerical solution of the full governing equations. For given values
of the governing parameters Dae, Le, RT , ε, Sr and Du, the strength of the convection
intensity, Ψ0, increased with the increase in the Rayleigh number, RT and the Dufour
number,Du, for Sr < 0, while, it decreased when Sr > 0. Thus, when the Rayleigh
number was very large, both heat and mass transfer rates tended asymptotically
toward a constant value Nu = Sh→ 4.88 , independently of the value of both the
Soret and Dufour parameters.

2. The linear stability analysis of the diffusive state was performed. For an infinite

layer, the critical Rayleigh numbers characterizing the onset of stationary
(

Rsup
TC

)
and

oscillatory
(

Rover
TC
)

convection was determined as a function of Le, ε, Sr and Du. The
nonlinear stability analysis of the parallel flow solution indicated the existence of
a subcritical Rayleigh number

(
Rsub

TC

)
for the onset of finite amplitude convection,

which was a function of Le, Sr and Du. The subcritical bifurcation was found to occur
well below the thresholds of stationary convection. Additionally, a linear stability
analysis of the steady convective solution was performed to determine the threshold
of Hopf bifurcation and the results were corroborated by the numerical solution of
the full governing equations.

3. The porous medium normalized porosity increase was found to have a stabilizing
effect and delayed the onset of Hopf bifurcation. The Dufour parameter had a
destabilizing effect, where it quickened the occurrence of the onset of the subcritical
and supercritical convection and Hopf bifurcation. The Soret parameter had both
stabilizing and destabilizing effects according to its value; it delayed the appearance
of the subcritical and supercritical convection and Hopf bifurcation (stabilizing effect)
when Sr < 0.5, while it reduced all the thresholds (destabilizing effect) when Sr > 0.5.

4. The acceleration parameter had a stabilizing effect on the convective flow and delayed
transition towards oscillatory convective state.
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