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Abstract: We introduce an improved conservative direct re-initialization (ICDR) method (for two-
phase flow problems) as a new and efficient geometrical re-distancing scheme. The ICDR technique
takes advantage of two mass-conserving and fast re-distancing schemes, as well as a global mass
correction concept to reduce the extent of the mass loss/gain in two- and three-dimensional (2D
and 3D) problems. We examine the ICDR method, at the first step, with two 2D benchmarks: the
notched cylinder and the swirling flow vortex problems. To do so, we (for the first time) extensively
analyze the dependency of the regenerated interface quality on both time-step and element sizes.
Then, we quantitatively assess the results by employing a defined norm value, which evaluates the
deviation from the exact solution. We also present a visual assessment by graphical demonstration of
original and regenerated interfaces. In the next step, we investigate the performance of the ICDR in
three-dimensional (3D) problems. For this purpose, we simulate drop deformation in a simple shear
flow field. We describe our reason for this choice and show that, by employing the ICDR scheme, the
results of our analysis comply with the existing numerical and experimental data in the literature.

Keywords: re-initialization; two-phase flow; finite element method; mass conservation

1. Introduction

The level set (LS) method has been a popular and efficient means to capture interfaces
in different two-phase (or multi-phase) flow fields since being introduced by Osher and
Sethian [1]. In this method, the signed distance function (SDF) is approximated using the
level set function or value (®). Therefore, one can employ the LS values at any arbitrary time
(#) to explicitly estimate the interface without applying rigorous reconstruction algorithms,
as is the case for the volume of fluid (VOF) method [2-6]. Besides, the evaluation of
the interface normal vectors and curvature values are easily attainable, owing to the
smoothness of the signed distance function [7].

The level set values equal the signed distance function at the initiation time (t = 0)
when the interface position is pre-defined. However, after some time steps (At) of the
interface displacement, the LS function deviates from the SDF. Consequently, it is necessary
to re-initialize the LS values to keep them as the signed distance function.

The re-initialization does not violate the overall mass conservation law since both
phases’” mass summation is constant. However, due to the interface displacement after
the re-initialization, the area or the volume occupied by one phase may reduce. On the
contrary, the content of the other phase increases. The unphysical mass loss/gain after the
re-initialization step is a numerical error.

Sussman et al. [8], for the first time, proposed a re-initialization method. They em-
ployed the Eikonal relation to force the Euclidean norm of the LS gradient to be one via
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solving a Hamilton-Jacobi (H-]) equation. Although their re-initialization strategy guar-
antees a finite thickness for the interface, it suffers from an unphysical mass loss/gain.
Therefore, various methods have been proposed to compensate for this shortcoming. To
mention a few, Hou introduced an area-preserving re-initialization, which involves solving
a perturbed form of the H-J equation [9]. Moreover, Sussman et al. [10,11] improved the
conservative properties of their re-initialization method by introducing a new term to
the H-J equation. Yap et al. [12] employed the original H-J] equation followed by a mass
correction step based on a global mass conservation concept. Ville et al. [13] combined the
level set and H-] equations to avoid a separate re-initialization step.

Olsen et al. [14,15] proposed the conservative level set method (CLS). They defined
the level set values by a smoothed Heaviside function. Moreover, they employed the
artificial compression method (ACM) [16]. They added a small diffusion term (artificial
viscosity) to provide a mass-conservative re-initialization procedure, which evaluates a
continuous interface with a constant thickness. Zhao et al. [17,18] then improved the
CLS method (ICLS) by providing a more accurate estimation for the interface normal
vectors and curvature values. Guermon et al. [19] extended the artificial compression and
viscosity method to integrate the level set and the re-initialization equations. By employing
their approach, one equation covers the interface advection and the re-initialization steps.
Different techniques based on CLS are compared in [20] by Chiodi and Desjardins.

Besides the mentioned methods, which consist of solving a partial differential equation
(PDE) as the re-initialization step, hybrid techniques are employed to improve the mass
conservation. The particle level set (PLS) is a Lagrangian—Eulerian method which uses two
groups of massless particles at two sides of the interface to update (re-initialize) the level set
functions [21,22]. Sussman and Puckett [23] suggested another hybrid interface advection
scheme which couples the LS and VOF methods (CLSVOF). Their technique employs the
advantages of LS (explicit interface reconstruction) and VOF (mass conservation) methods.

Geometrical re-initialization is another approach to evaluate the SDF, which employs
the spatial alignment of the interface to update the signed distance values. Therefore, one
avoids the solution of a hyperbolic partial differential equation (e.g., the H-J] equation). For
example, a mass-conserving re-distancing scheme was proposed by Mut et al. [24] that
employs unstructured triangular and tetrahedral meshes for two- and three-dimensional
(2D and 3D) problems, respectively. Their technique, which we name the Mut method,
comprises an iterative element-wise mass correction, followed by an averaging process
between the nodes in a narrow band. Ausas et al. [25] employed the Mut method for a
structured mesh and compared it with the H-J re-initialization. Cho et al. [26] and Ngo and
Choi [27] introduced the direct re-distancing scheme, which provides a faster algorithm to
evaluate each node’s distance function. We use the direct method to recall their algorithm.

This research introduces an improved conservative direct re-initialization (ICDR)
method. The ICDR method is based on the Mut [24] approach. However, it comprises
two improvements. Firstly it employs the direct method for a fast re-distancing [26,27].
Secondly;, it considers a global mass correction [12] technique to reduce the extent of the
mass loss/gain.

To provide a readable article, we have arranged the content of the manuscript as
follows. The Section 2 describes the interface advection algorithm using the level set
(LS) method. Section 3 provides a detailed description of the ICDR method and two
other geometrical re-initialization techniques. In Section 4, we have quantitatively (by
defining a norm value) and visually (by graphical demonstration) compared different
geometrical re-initialization methods using a benchmark problem (the notched cylinder).
Then, we have extensively studied the effect of time-step and mesh sizes on the accuracy
of the ICDR method for two benchmark problems (the notched cylinder and swirling flow
vortex). We have shown that the proposed method is applicable for both structured and
unstructured meshes. In this section, we have also employed the ICDR method to study
drop deformation in a simple shear flow field and have compared our results with the
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numerical and experimental data in the literature. Finally, in Section 5, the conclusion
is provided.

2. Interface Advection Algorithm

The level set function (@) in the LS method approximates the signed distance function.
Therefore, a curved line or surface with the property of ® = 0 defines the interface. We
arbitrarily assign the primary phase by & > 0, and ® < 0 holds for the second phase. Since
the LS values are essential in the vicinity of the interface, it is desired to employ a narrow-
band LS method introduced by Chopp [28]. This technique limits the LS calculations to
the interface vicinity instead of the whole domain. Figure 1, in a structured mesh N; x N,
shows a typical interface (the solid line) and the elements in its vicinity. The elements in
the vicinity of the interface are defined using the interface radius (R;), which is twice or
three times the greatest element diameter [7].

N,

Figure 1. The interface and the elements in its vicinity.

In Figure 1, the (light and dark) gray elements demonstrate the vicinity of the interface
(the thick black line). Moreover, the dark gray shows active elements of the grids, which
contain an interface. Here, we normalize the signed distance function as stated in Equation
(1), and name it nodal volume fraction.

1 d> R
f=q1+#% -Ri<d<R 1)
0 d < —R;

In Equation (1), the parameters d and f show the signed distance function and the
nodal volume fraction, respectively. On this basis, the interface advection equation would
be as follows:

of o _,

§+uiafxi—

In Equation (2), which is based on Einstein summation notations over a common

@

index, u; (i = 1, 2, and 3) are the components of the velocity vector (u = (u1,u3,u3)). The
parameter x; (i = 1, 2, and 3) show the coordinates of any arbitrary point in a Cartesian
reference frame.

Several stable strategies to solve the interface advection equation are proposed in the
literature: Streamline Upwind Petrov—-Galerkin [24] and Taylor—Galerkin [26] methods.
In this research, we have employed a least-squares finite element method [7,27]. For this
purpose, the domain is divided into rectangular or hexahedral subdomains or elements
for 2D and 3D cases, respectively. Then, a linear-based shape function (¢) is considered
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to evaluate the volume fraction (f) in each element. Therefore, Equation (2) is discretized

as follows: 5 5
@28 - 0 ®

where {f} and (¢) are the column-wise and row-wise vectors of the calculated volume
fractions and shape function coefficients in each element, respectively. To solve Equation
(3), the explicit values of the velocity components (u;) from the current time step are used.
Additionally, the Crank-Nicolson method is employed to evaluate the nodal values of the
volume fraction, as stated in Equation (4).

f=afV+1-a)f0 )

In this equation, the parameters f(O) and f(!) are the nodal volume fraction values
at the current and next steps, respectively. The term « is the Crank—-Nicolson adjusting
parameters and changes between 0 and 1. # = 1 and a = 0 turn the equation to fully
implicit and explicit methods, correspondingly. Substituting the f from Equation (4) into
Equation (3) results in Equation (5a—c)

(@) {fV} = (@) {r0} (52)

(1) = () + a5 (5b)
(@) = () — (1 — ayu;ar D) (50

axi

The parameter At in Equation (5b,c) is the time-step size. The weighted residual form
of Equation (5a) is:

[ /Q{w}<<1>1>do] {f0} = { [ {wh@a) f<0>}do} ©)

In Equation (6), w is the weight function, which is equal to ®; in our least-square
finite element method [29]. Equation (6) results in a linear set of equations for a known
velocity field.

The time step (At) is an essential parameter in the solution of Equation (6). To find a
suitable time increment, we define a characteristic time for each element. For this purpose,

we assume an arbitrary 3D element, as shown in Figure 2. In this element, three different
- = —

vectors ab, cd and ef can easily be defined by connecting the middle of the front faces. If

the velocity at the center of the element is 1y = (101, Up2, Up3), the projection of the velocity
vector on each vector would be:
oo
Ugp = Uy ab (7a)

—
Uy = 1y cd (7b)

ef = ity of 70)
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Figure 2. An arbitrary 3D element.

In Equation (7a,b), the operator “.” demonstrates the dot product of the vectors. Then,
the element characteristic time (At*) is defined as stated in Equation (8a—c).

Jab]|
ab
At] = (8a)
‘uab|
o]
cd
Aty = 8b
|”cd | ( )
—
aty I 50
uef
AtF = min(Aty, Aty, Atz) (8d)
In Equation (8a,b), the operators || || and | | stand for the Euclidean size of a vector

and the absolute value of a scalar quantity, respectively. Moreover, the operator min shows
the minimum amount. Similarly, we evaluate the characteristic time in a 2D element.
Mathematically, there are no limitations for the time step, when an implicit solution is
used (« = 1). Moreover, the limitation At < min (Atl’-‘) (i: the number of the active elements)
must be considered for an explicit solution (¢ = 0). In our Crank-Nickelson scheme, we
have set « = 1/2 (as selected in [24]), because it can provide more acceptable results based
on our numerical experiments. In this case, the limitation for time step would be as follows:

At < 2min(AL) ©)

From now on, we briefly use At* instead of min (At}), and name it the characteristic
time of the two-phase flow domain

After solving Equation (5a) for each time step, we can easily reconstruct the interface.
For this purpose, we look for the active elements or the subdomains, which contain at
least one node with f > 1/2 and another node with f < 1/2. If f{ > 1/2and f, < 1/2
are the volume fractions of nodes 1 and 2 on an element edge, we can find the interface
intersection point by a simple linear interpolation, as stated in Equation (10).

- ?2—?1 1 -
xint: fz_f] E_fl +x1 (10)

In Equation (10), ;intr ;1, and ;2 are the spatial coordinates of the intersection point,
the first node, and the second node, respectively.

3. Geometrical Re-Initialization

The solution of Equation (5a), using any stabilized finite element, finite volume, or
finite difference, introduces an artificial diffusion to the problem. Therefore, it is expectable
that the level set function (®) deviates from the signed distance function. Although
employing a narrow-band technique, such as the local least-square finite element method
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(LLSFEM) [7], prevents the excessive interface diffusion, it does not remove the demand
for the re-initialization step.

Different types of re-distancing or re-initialization are discussed in the introduction
section. However, in this research, we concentrate on the geometrical re-initialization.

3.1. The Motivations and Preliminaries

The geometrical re-initialization comprises the methods which calculate the nodal
distance function (DF) using the spatial coordinates of the nodes and the interface. The
sign of the DF is determined by the sign of the nodal level set values.

By introducing a finite number of imaginary particles on the interface and searching
for the shortest distance between each node and the particles, one can simply evaluate the
DF (|d|). The particle-based method is a time-consuming task. However, it could be more
efficient by limiting the search algorithm to the narrow band’s nodes (e.g., Figure 1).

Taking the particle-based scheme to re-initialize the level set values will lead to a severe
mass loss/gain, which is attributed to the interface displacement after re-initialization. To
illustrate the movement of the interface, we provide an example. The problem consists
of a circle with an arbitrary radius (e.g., Rgjrce = 0.15) in a square (1 x 1) flow domain.

The spatial position of the circle center is ?Cime = (0,0.25) as shown in Figure 3a, and a
2D solid-rotational flow around ?o = (0,0) is considered (; = (3&x2, Fgx1)). The circle

rotates two revolutions around ?o = (0,0) in a structured 50 x 50 mesh.

X,l 70

mean curvature deviation
- |
60 mass loss/gain

revolution

() (b)

Figure 3. Two revolutions of a circle using a 50 x 50 structured mesh, where the nodes of active
elements are included in the re-initialization step (a) An original circle before (dashed line) and after
two revolutions (solid line). The normal vectors are shown after rotation, (b) The percentage of
curvature deviation (solid line) and mass change (dashed line).

Figure 3a shows that the reconstructed circle after two revolutions (solid line) is
considerably smaller than the original one (dashed line), which is due to the mass loss in
the circle. The dashed line in Figure 3b quantifies the extent of the mass loss during the
revolutions. The solid line in Figure 3b shows the mean deviation of the active element
curvature (x) from the original one (1/R_jce), which is mainly attributed to the mass loss
and the change of the circle radius. The curvature (x) and normal vector (ﬁ) in each active
element are easily calculated using Equation (11a,b). In these equations, the symbols V
and V are the gradient and divergence operators, respectively.

— Vq) Vf

= = 777 (11a)
Vol V£l
K=V (11b)

A direct re-initialization method is another approach which is proposed by Cho
etal. [26] and Ngo and Choi [27]. In their scheme (the direct method), the DF is the shortest
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perpendicular distance up to the interface segments. If the perpendiculars’ foot is not inside
the interface segments, the DF would be the minimum distance of each node up to the
interface/element intersections. The direct method estimates the distance function equal
to the particle-based scheme. Nevertheless, it requires a shorter computing time because
it limits the number of searches to find the minimum distance. This method excludes
the nodes of active elements from the re-initialization (the nodes in the dark-grey area
of Figure 1) to avoid the displacement of the interface. Therefore, the direct approach
shows good mass-conservative properties, although it does not take any measure for mass
correction. To investigate this problem, in Figure 4a, we can compare the reconstructed
circle (solid line) after five revolutions with the original circle (dashed line). The extent of
the mass loss and the mean curvature deviation, as shown respectively by the dashed and
solid lines in Figure 4b, are smaller than their corresponding values in Figure 3b.

= mean curvature deviation
= = =mass loss/gain

0 0.5 1 15 2 25 3 3.5 4 45 5
revolution

(b)

Figure 4. Five revolutions of a circle using a 50 x 50 structured mesh, using the direct method (a) An

original circle before (dashed line) and after five revolutions (solid line). The normal vectors are shown
after rotation, (b) The percentage of curvature deviation (solid line) and mass change (dashed line).

The solid line in Figure 4b shows an increasing trend for the deviation of the curvature
values, which are calculated using Equation (11a,b). These equations employ the nodal
volume fractions (or the LS values) on each active element and its neighbor elements to
evaluate the value of V f [7] on the nodes. When the nodes of active grids do not participate
in the re-distancing procedure, inaccurate estimation of Vf and « are expected, due to
unsmooth values of f.

Mut et al. [24] introduced a two-step method for estimation of the DF, which comprises
initialization and evaluation stages. The initialization step calculates each node’s distance
function. As described for the particle-based scheme, this step consists of a considerable
mass loss/gain due to the interface displacement. Therefore, during the evaluation step,
the distance function values are corrected. Mut et al. developed the method for triangular
and tetrahedral grids, and we have adapted it to rectangular and hexagonal meshes.

Any interface displacement after the re-initialization step leads to an unwanted vari-
ation of the area (AA) occupied by the primary phase in each active element. Equation
(12a—c) evaluate the mass change in an active element (e.g., element number 7). In these
equations, the superscripts 0 and 1 stand for the values before and after re-initialization,
respectively. Moreover, the operator | | calculates the integer part of a real number and
Q. depicts the element domain. The symbol A is a function that calculates the area (or
volume) of the primary phase in an element with nodal volume factions of {f}.

= a({)) - ((2)) s
() -

{<¢> {f?} + ;J dxydx; (12b)

e
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a({fi}) = /Q L(@{f}} + ;deldxz (12¢)

To our knowledge, the values of AA; are non-zero just for the active elements. To
compensate for the area changes, Mut et al. [24] suggested a mass correction value (J;) for
each active element, which is the root of the area residual (R), as defined in Equation (13):

R(e) =A({£}) - a({f}+a) =0 (13)

They solved Equation (13) for each active element by employing the scant method, as
summarized in Equation (14):

(m+1) _ s(m)
(51'(m+2) = (51'(m+1) - R(‘Sz'(erl)) R((S;rflﬂ)) _ ZE(;,(”‘)) 14

1

In Equation (14), the superscripts (m) to (m + 2) denote the iteration steps. This

equation converges after 2 or 3 iterations ((51.(m+1) - (51.("1) < 0.5 x 107%). The value of J; is
attributed to the nodes of the i*" element, which is zero for any non-active element. By
averaging J; values of active elements that share a node, the nodal mass correction values
(6*) are evaluated. For example, if node j is attached to two active elements 7y and iy, 5]’-‘
would be as follows:

%+
Then, the corrected volume fraction values (f*) are evaluated using Equation (16):
fr=f+p (16)

In Equation (16), the § parameter is a scalar quantity, adjusted using a mass conser-
vation criterion. Mut et al. [24] calculated f by considering Equation (17), which keeps
the main phase area (or volume) unchanged, all over the elements (N), before and after
re-initialization.

i/ﬂ W) {fit+ ;J dxydx; = ﬁ]jl/ﬂ V@{flo} n ;J dxydx )

Figure 5 presents the results of the solid circle revolution, employing Equations (12)-
(17). Comparing the solid line (the circle after five revolutions) and the original circle
(dashed line) in Figure 5a reveals the circle deformation in a solid rotational flow field.
The mass loss shown in Figure 5b by the dashed line does not suggest any improvement
compared to the direct re-initialization method (Figure 4b). We attribute this to the concept
of Equation (17), in which the mass correction is not performed according to the content of
the primary phase at the onset of the problem.

3.2. Improved Conservative Direct Re-Initialization (ICDR)

In this section, we introduce the improved conservative direct re-initialization (ICDR)
method. This approach employs the direct technique [26,27], which is faster than the
particle-based scheme, to find the nodal distance function (DF). To reduce the mass
loss/gain, we take the Mut strategy [24] and modify it using a global mass conserva-
tion concept [12]. The ICDR method, adapted to rectangular and hexagonal elements,
involves four steps, as follows:
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—mean curvature deviation
= = =mass loss/gain

0 0.5 1 15 2 25 3 35 4 45 5
revolution

(b)

Figure 5. Five revolutions of a circle using a 50 x 50 structured mesh, using the Mut method (a) An

original circle before (dashed line) and after five revolutions (solid line). The normal vectors are shown
after rotation, (b) The percentage of curvature deviation (solid line) and mass change (dashed line).

Step 1: We evaluate the nodal distance functions of the active elements (e.g., just the
nodes in the dark gray section of Figure 1) using the direct technique.

Step 2: By employing the nodal values of the volume fraction before and after re-
distancing, we calculate the mass correction value of the node (6*), according to Equations
(12)—(15).

Step 3: We replace Equation (17) with Equation (18), which guarantees global mass
conservation for each phase. Equation (18) forces the content of the primary phase to be
initial value (i.e., t = 0) plus the part, which is lost or gained during the re-initialization

N
step (3 AA)).
i=1

N
T o | @) L)+ 3| dndx, =
N i=1 N
El er U‘P){fi,t:o} + %J dxidx; + ¥ AA;

i=1

(18)

Step 4: To obtain a smoothed set of values for the SD or nodal volume fraction, we
re-distance the nodes in the vicinity of the interface (e.g., the dark and light gray in Figure 1)
using the direct method.

By modifying the mass correction criterion in the third step, we anticipate better mass
conservation properties for the ICDR method. Moreover, with a final re-initialization at
step (4), a smoother set of nodal volume fraction and a better approximation for curvature
values is expectable. These two steps distinguish the ICDR method from the existing
geometrical re-initialization methods. To investigate the expected improvements, we
compare the results for the rotating circle’s problem using the ICDR in Figure 6a,b with the
corresponding results in Figures 4 and 5.

The circle deformation after five revolutions in Figure 6a seems to be less in comparison
to Figures 4a and 5a. Moreover, the dashed line in Figure 6b demonstrates the superior
conservative properties of the ICDR method in comparison to two other methods, as shown
in Figures 4b and 5b. Similarly, the deviation of the mean curvature values from its exact
value (x = 1/R_jycje =4) is less for the ICDR method (the solid lines in Figure 4b, Figure 5b,
and Figure 6b).
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'mean curvature deviation
= = = mass loss/gain

0 - ot At m e i LA e miae ks “
0 05 1 15 2 25 3 35 4 45 5
revolution

(b)

Figure 6. Five revolutions of a circle using a 50 x 50 structured mesh, using the improved conservative

direct re-initialization or ICDR (a) An original circle before (dashed line) and after five revolutions
(solid line). The normal vectors are shown after rotation, (b) The percentage of curvature deviation
(solid line) and mass change (dashed line).

4. Results and Discussion

In this section, we examine the viability of the ICDR method. For this purpose, we
use two benchmark problems to study the interface reconstruction and mass-conservative
properties in two-dimensional form. We show that the new re-initialization algorithm is
applicable for structured and unstructured meshes. Finally, we use the ICDR method for
three-dimensional drop deformation problems.

4.1. Comparison of the Geometrical Re-Initialization Methods in 2D

To compare different re-initialization strategies, we use the notched cylinder problem,
which was initially introduced by Zalesak [30]. In this problem, a notched cylinder with
pre-defined dimensions revolves in a solid-rotational flow field, as introduced in Section 3.1.
We expect the notched cylinder to comply with its original shape after each revolution.
However, there exists some deviation when using any advection and re-initialization
method. A defined norm value of ¢; in Equation (19) is the criteria for quantifying the
mentioned deviation. In Equation (19), the interface length is shown by L;;.

N
1= p LIAWfis-oh) ~ AUAD) (19)

int j—

To have a comparison with the literature, we choose the domain with N; x N =
200 x 200 rectangular elements, which is the closest one to the cases with 80,000 and
79,668 triangular elements in [24,27], respectively. Besides the time step At = 0.5, we have
considered At = 1.0 to compare the effect of time steps in different methods. Notably, all of
the results are generated using rectangular sub-domains or elements.

Figure 7a,b show the rotated cylinder after the first and fifth revolutions, respectively.
In these figures, the dotted and solid lines show the results for At = 1.0 and At = 0.5,
correspondingly. As depicted in Figure 7a, the direct method after the first revolution
shows some unevenness at the lower part of the notched cylinder. The jagged area, which
is similarly reported in Figure 8 of [27], expands during the second to fifth revolutions,
as shown in Figure 7b. We attribute this to the nodes of the active elements, which are
not re-initialized. We do not expect such deviations for two other methods, as shown in
Figure 7a,b, since all of the nodes in the narrow-band are re-initialized.
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Mut Method

Mut method

Direct method ICDR

(a) After one revolution

Direct method

(b) After five revolutions

Figure 7. Revolution of the notched cylinder in a Ny x N = 200 x 200 rectangular domain. In these

figures, the dashed line shows the original shape. Also, the solid line and dotted line are the results
for At = 0.5 and At = 1.0, respectively.
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X 2 . : . ; . — =
T:’ = = Mut method Pie
E Y S L Direct method -
[o] -
> ICOR .-
= - -
a1 - st (U —
o ORI WEET e = = Mutmethod |]
» 05f e e T O Direct method | |
%] T N T e CDR
Q el L e . " . n n j
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(a) The extent of the mass loss/gain

(b) The first and second norms

Figure 8. Comparison of the mass loss/gain and the norm values for different methods.

Besides the visual assessment of the different techniques in Figure 7a,b, the extent of
mass loss/gain, and the norm values, are presented in Figure 8a,b to provide a quantitative
evaluation. Figure 8a shows that the Mut method has more mass loss than the direct
approach. Moreover, the ICDR method has nearly no mass loss/gain due to the global mass
correction stated in Equation (18). Figure 8b reveals that the norm values are roughly similar
for the ICDR and the Mut methods, and the direct approach has the lowest values. However,
this does not mean that the direct method provides better results when considering the
reconstructed shapes in Figure 7a,b. Notably, the value of the norm for the Mut approach
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using rectangular mesh is €; = 1.00 x 1073, which is very close to the calculated value
using triangular meshes [24] (e; = 1.2 x 1073).

4.2. The Notched Cylinder Problem

The displacement of a free surface, such as a notched cylinder’s revolution, comprises
interface advection Equation (2) and interface re-initialization. Decreasing the time-step
size (At) improves the interface advection’s accuracy; also, it increases the demand for the
re-initialization step. The mass loss/gain during re-initialization and its correction can
introduce some new sources of error. Therefore, small time-step sizes can decrease the
accuracy due to the extra re-initialization steps.

To describe this problem in more detail, we examine different time steps in the allow-
able range (At < 2At*), based on Equation (8) for the notched cylinder problem. Moreover,
we consider various structured mesh sizes N; X N, as depicted in Figure 1, to investigate
the mesh dependency of the regenerated interface. The results are summarized in Table 1.

Table 1. The values of the first norm (e7) for different time steps and mesh spacings.

At

N1 XNy
50%50 100% 100 200%200 300%300 400% 400 500 %500
0.25A¢* 1.80 x 1072 417 x 1073 9.14 x 104 7.52 x 1074 759 x 1074 7.60 x 1074
0.50A#* 1.13 x 1072 410 x 1073 751 x 1074 561 x 1074 4.64 x 1074 419 x 1074
0.75A¢* 7.90 x 1073 258 x 1073 6.36 x 1074 511 x 1074 458 x 1074 4.05 x 1074
0.90A* 8.00 x 103 248 x 1073 6.22 x 1074 4.75 x 1074 417 x 1074 3.62 x 1074
1.00A+* 7.90 x 1073 243 %1073 6.20 x 1074 457 x 1074 3.75 x 1074 332 %1074
1.10A+ 871 x 103 250 x 1073 6.65 x 1074 537 x 1074 471 x 1074 434 x 1074
1.25A¢* 1.03 x 1072 2.85x 1073 7.58 x 10~4 5.66 x 104 6.36 x 1074 477 x 1074
1.50At 1.52 x 1072 394 x 1073 941 x 104 6.71 x 1074 7.04 x 1074 549 x 1074
1.75A¢* 204 x 1072 5.08 x 1073 122 x 1073 8.66 x 1074 751 x 1074 7.14 x 1074
2.00At* 2.56 x 1072 6.69 x 1073 1.66 x 1073 1.22 x 1073 1.07 x 1073 1.03 x 1073

Table 1 quantitatively show that the increase or decrease of the time increment can
destroy the results of an interface advection problem. However, there exists an optimum
choice for the time increment (At = 1.00At*), which is highlighted by gray color in the
tables. Notably, the solution is less sensitive to the time-step size when a finer mesh is
employed. For example, for the cases with N7 x Np = 300 x 300, 400 x 400, and 500 x 500,
time-step sizes in the range of 0.5At* to 1.75At* provide acceptable results.

In Figure 9, we visually investigate the effect of the time-step size and mesh spacing
by comparing the notched cylinder after one revolution. The thick lines with light grey and
dark grey colors are for the cases with N; x Ny = 50 x 50 and 100 x 100, respectively. The
regenerated interfaces in this figure reveal that the reconstructed surfaces are nearly similar
when N; x N > 200 x 200. That is why it is difficult to distinguish between dashed,
dash-dotted, dotted, and solid lines, which are for 200 x 200, 300 x 300, 400 x 400, and
500 x 500 meshing systems, respectively. The mesh independence of the results is more
considerable for the case with At = 1.00At*. Notably, At = 1.00At* is also the best choice
for time-step size according to Table 1.
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At=0.25x At At=1.00 x At At=1.75x At

Figure 9. The reconstructed notched cylinder after one revolution for different time increments
(At = 0.25At%,1.00t* and 1.75At*) and mesh spacing: N; x N = 50 x 50 (light-grey), N7 x Np =
100 x 100 (dark-grey), Ny x N = 200 x 200 (dashed), N; x Ny = 300 x 300 (dash-dotted), N x N =
400 x 400 (dotted), N1 x N = 500 x 500 (solid line).

Now we take the best choice for the time step (At = 1.00At*), and visually investigate
the mesh dependency of the regenerated notched cylinder after the first, third, and fifth
revolution, in Figure 10a—f. The mesh dependency analysis in these figures shows that the
interface prediction is improved by mesh refinement. Moreover, comparing the regenerated
notched cylinders after the first, third and fifth revolutions shows an increasing deviation
from the original shape over time (revolution), which is less significant for finner meshes.

(b) N; x N, = 100 x 100

(¢) N; x N, = 200 X 200

Figure 10. Cont.
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DAY

(d) N; X N, = 300 x 300

DAL

(e) Ny X N, = 400 x 400

(AP

(f) N; x N, = 500 x 500

Figure 10. The Notched cylinder after first (left picture), third (middle picture), and fifth (right
picture) revolutions with different structured mesh spacing. The solid lines show the results after the
evolutions and the dashed lines are the original notched cylinder.

To quantify the observations of Figure 10, we show the defined norm value (e1) during
the revolutions for different mesh sizes in Figure 11a. These figures reveal that the mesh
spacings of 50 x 50 and 100 x 100 do not provide a good prediction for the interface
displacement. Moreover, for the range of 200 < Nj the regenerated notched cylinders are
nearly independent of the mesh size.

-------- -~
1.8F  aeeeee™ b first revolution
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278 23 _second revalution 16} - K ==="=third revolution
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Figure 11. (a), The values of the €] norm during the revolutions for various structured mesh spacing,
as well as the comparison with PDE-based re-initialization methods [14,22,31] (b), The values of the
convergency order during the revolutions for various structured mesh spacing.
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Although the main focus of this research is the geometrical re-initialization, we have
provided some data based on the PDE re-initialization in Figure 11a. By comparing
the norm values after the first revolution and PDE-based results, we can infer that the
geometrical re-initialization does not always provide better results. However, the ICDR
method leads to an acceptable solution (as discussed in the following sections) with less
mathematical effort.

Figure 11b also shows the convergency order values for different mesh sizes and
revolutions.

4.3. Swirling Flow Vortex

The swirling flow vortex is another benchmark problem used to evaluate the advection
method and re-initialization scheme. This problem comprises a circle in a square flow
domain, as introduced in Section 3.1. Similar to the notched cylinder problem, the flow
field is independent of the interface shape. Equation (20a,b) define the velocity vectors’
components as a function of time and spatial coordinates. In this flow field, the circle
stretches like a snake up to t = T/2, and after that time, it returns to its original position.
In this research, we assume T = 8.

uy = —sin®(7t(x + 0.5))sin(27(x; 4 0.5))cos(rtt/ T) (20a)

uy = —sin?(7(xy +0.5))sin(27(x; +0.5))cos(tt/ T) (20b)

Figure 12a—f provide a graphical evaluation for the interface calculation results at t = 4
and t = T for structured meshes with different spacing. The dashed line shows the interface’s
exact shape at the end of the stretching (t = 4) and coming back (t = 8) stages. These
figures also contain the values of the defined norm for a quantitative comparison. The mesh
dependency analysis in these figures shows that by decreasing the mesh sizes, better results
for the interface prediction are achieved. However, we must consider the capacity of our
computing system and calculation time before choosing a suitable grid spacing.

_____ €, =8.379-02 T £, =4.730e-02

(@)N; XN, =75x%x75

(b)N; x N, = 100 x 100

£, =8.731e-03

£, =3.737e-03

(¢) N; X N, = 200 X 200

Figure 12. Cont.

(d) N; x N, = 300 x 300
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€, =2.345e-03 €, 1.223e-03

(&) N; X N, = 400 x 400 (f) Ny x N, = 500 x 500

Figure 12. The interface shape in swirling flow vortex at t = 4 and ¢ = 8 for structured meshes with
different spacing. The values of the €1 norm is also presented.

4.4. Unstructured Meshes

Notwithstanding that the description of the ICDR method in the Section 3 does not
rely on a structured mesh, we provide some examples to evaluate the capability of the
introduced method in unstructured meshes. In this section, we take the assumption of

At = At*. Note that the values of Nj and N, are the integer part of the second root of the
total element numbers.

We start with the notched cylinder problem. To make the results visually comparable
with corresponding regenerated interfaces in Figure 10, we have performed a mesh de-
pendency analysis, as shown in Figure 13a—e. Similar to Figure 10, these figures show the
regenerated notched cylinder after the first, third, and fifth revolutions.

(@) Ny x N, = 102 x 102

(b) N; X N, = 204 X 204

Figure 13. Cont.
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(¢) N; X N, = 297 x 297

(d) N, x N, = 395 x 395

(] (] )

(e) Ny X N, = 497 x 497

Figure 13. The Notched cylinder after first (left picture), third (middle picture) and fifth (right
picture) revolutions with different unstructured mesh spacing. The solid lines show the results after
the evolutions and the dashed lines are the original notched cylinder.

As it was reported for the structured meshes, we observe in Figure 13a—e that the re-
produced interfaces comply better with the original shape by increasing the mesh numbers.
To quantify the results of these figures, the values of the defined norm during the first to
fifth revolutions are reported in Figure 14a,b also shows the order of the convergency for
the €1 norm.

22
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(5]
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Figure 14. (a), The values of the €] norm during the revolutions for various structured mesh spacing,
(b), The values of the convergency order during the revolutions for various structured mesh spacing.
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Figure 14a shows that for the range of 204 < Nj the regenerated interfaces are nearly
independent of the mesh size, similar to the cases with structure mesh in Figure 11. By
comparing the data of Figures 11a and 14a, we can surprisingly find that the values of the
€1 norm of the unstructured meshes is less than the equivalent norms for the structured
meshes.

Figure 15a—e illustrate the results of our mesh dependency analysis for the swirling
flow vortex using unstructured meshing systems. As expected, better results go for the
cases with finer mesh. Paralleling the norm values in Figures 12 and 15 reveals that for the
swirling flow vortex problem, a structured mesh can provide better results.

i~

B €, =4.001e-02 €, =7.726e-03

(@) N; x N, = 102 x 102 (b)N 4 X N, = 204 X 204
€, =4.803¢-03 €1 =2.896e-03

() N; X N, = 297 X 297 (d) N; x N, = 395 x 395

€,=2.133e-03

(e) Ny X N, = 497 x 497

Figure 15. The interface shape in swirling flow vortex at t = 4 and ¢ = 8 for unstructured meshes with
different spacing. The values of the €; norm is also presented.
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4.5. The Extension to Three-Dimensional (3D) Problems

Aside from the benchmark problems, the main target of a re-initialization method is
to predict the interface position in a physical phenomenon accurately. Various applications
involve two-phase flow problems. However, we focus on the deformation of a drop (the
second phase) in a simple shear flow. We have two reasons for this choice. The first reason
is that in the drop deformation problem, despite the benchmark problems, the interface’s
curvature influences the flow field via surface tension forces. Expectedly, an inaccurate
interface displacement during re-initialization and mass correction can destroy the flow
field calculations and the predicted drop shape. Therefore, a drop deformation problem
is a good checkpoint for our re-initialization method. Secondly, there exist equivalent
numerical and experimental data in the literature to compare our results with them and
validate the ICDR method in 3D.

Figure 16 shows a typical two-phase simple shear flow field. In this picture, a drop
with the radius of Ry is assumed in the middle of a channel with the dimensions of
W x H x L. The upper and lower plates are assumed to move in channel longitudinal
direction with the velocities of +-U/2 and —U/2; respectively. The extent of the drop
deformation or breakup is a function of the viscosity ratio (1) and Capillary number (Ca),
which are defined in Equation (21a,b), where the parameters 31 and p» show the viscosity
of the matrix (the primary phase)and drop (the second phase), respectively. Moreover, the
parameter y stands for the surface tension coefficient.

A= % (21a)
U/H)R
Ca = W (21b)

.
H |

=

Figure 16. A schematic illustration of the two-phase simple shear flow.

By taking the assumptions of the creeping flow and incompressible fluids, the govern-
ing equations, including the equation of motion and mass conservation criterion, would be

as follows:
a0 ij .

o, E,. (22a)
aui -
Froilt (22b)

The Equation (22a,b) are based on Einstein summation notations over a common
index. The components of the total stress tensor ((:r) are denoted by ¢;j, which are described
in Equation (23a—c).

Oij = Tij + Pli]‘ (23a)
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Tjj = —uD;j (23b)
. aui aM]
ij — Tx] + aixl (23C)

where 7;; and Dj; are components of the viscous stress (;) and deformation rate (D) tensors;
respectively. P and y are hydrostatic pressure and Newtonian viscosity, correspondingly.
I;j is the unit tensor (I) component (Kronecker delta), such that [;; is 1if i = jand is 0 if
i #j.

Fy, in Equation (21a) is the component of the surface tension force per unit volume

—
(F ) and is easily calculated using Equation (23) [32].

R
Fo = yxn (24)

The solution strategy is to employ the Galerkin finite element method (FEM) for
Equation (22a,b). Moreover, we consider a periodic boundary condition on the front/back

and the left/right sides. The surface tension force (?g) is considered as a source term,
which is non-zero in the active elements. Mostafaiyan et al. have described the solution
method’s detail (for the two-dimensional case) in [7].

Our setup in this section is to employ a structured mesh in the flow domain with
hexagonal elements. We assume 40 grids in the depth of the channel (element size is H/40),
for which we have obtained mesh-independent results in our two-dimensional analysis [7].
We assume the time increment to be slightly smaller than the characteristic time (e.g.,
At = 0.9At").

In this section, we examine the proposed method by juxtaposing our results with
some numerical and experimental data in the literature. For this purpose, the extent of the
drop deformation and its breakup are presented for unit and non-unit viscosity ratios.

4.5.1. Comparison of the Geometrical Re-Initialization Methods in 3D

We consider a case with Ca = 0.4 and 2R 4., = 0.5H. Figure 17a shows the results of
our calculations, which are re-initialized using the ICDR method. In this figure, a binary
breakup is observed, which complies with the reported data in [33] (Figure 13). Notably,
for this problem the Capillary number of 0.4 is a critical value, below which no break up
will happen [33].

Simulation of the problem using the Mut method does not lead to a breakup, as shown
in Figure 17b. The simulation time equals in Figure 17a,b. However, in the recent case, the
drop reaches its equilibrium before any breakup. We attribute the difference between the
two figures to the second phase’s mass loss during deformation. The drop losses part of
its mass and converts to a smaller one (i.e., a drop with a smaller Ry;,,) in the simulation
course. Thus, according to Equation (21b), the Capillary number drops below the critical
value and will not break up, as a result.

We have also employed the direct re-initialization algorithm to estimate the extent
of the drop deformation. In this case, the interface is destroyed during the deformation,
as shown in Figure 17c, and we cannot continue simulation up to the breakup time in
Figure 17a, due to the numerical errors. The unsuccessful simulation’s main reason is the
inaccurate prediction of the surface tension forces due to the volume fraction’s unsmooth
values in the interface’s vicinity. It is worth reminding that the active elements’ nodal
values are not re-initialized in the direct algorithm.
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Figure 17. The shapes of the drops with the diameter of 2R, = 0.5H and Ca = 0.4, (a): ICDR, (b):
Mut et al. [1], (¢): Direct re-initialization [2,3].

4.5.2. Case Study for Drop Deformation with a Unit Viscosity Ratio

Figure 17a shows that our analysis complies with the numerical results in the litera-
ture [33]. In this section, we use our two-phase flow strategy to simulate an experimental
task of Sibillo et al. [34] with 2R ., = 0.7H and Ca = 0.46. Their result (a quinary breakup)
are reproduced by our simulation and compared in Figure 18a,b.

4.5.3. Case Study for Drop Deformation with Non-Unit Viscosity Ratios

Since the flow field contains two different fluids with the viscosity values of y; and 5
(#1 # pp), an appropriate viscosity estimation (y) in Equation (23b) is required. We have
estimated the viscosity using the area portion of an element occupied by the primary and
second phases, as shown in Equation (25a,b).

p=fep1+ (11— fe)pua (25a)

Jo | @) fi} + 3| axidz,
fe= er dxydx, (25b)
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Figure 18. The evolution of the drop shape with the diameter of 2R, = 0.7H and the Capillary
number of Ca = 0.46, (a): Generated in the present research, (b): Reported by Sibillo et al. [34],
(Reproduced with permission from physical review letters; published by the American Physical
Society, 2006).

To evaluate our re-initialization method for problems with non-unit viscosity ratio, we
evaluate the steady shape a drop with 2R, = 0.9H and Ca = 0.3 for different viscosity
ratios (i.e, A = 10 and A = 1/10) and compare it with similar data in the literature.
Figure 19a,b show the shape of the drops at equilibrium, generated using the Boundary-
integral method [35]. Figure 19¢,d present the corresponding results while using our finite
element strategy.

& &

@) 1=1/10 (b) =10
(c) A=1/10 (d) 1=10

Figure 19. The steady shapes of the drops with the diameter of 2R;,,, = 0.9H and Ca = 0.3 for
different values of the viscosity ratios (A = 0.1 and 10), (a,b): Reported by Janssen and Anderson [35]
(Reproduced with permission from Author; published by Elsevier, 2008), (c,d): Generated in the
present research.
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For drop deformation with a non-unit viscosity ratio, the breakup is possible. Vanan-
roye et al. [36] have experimentally reported such a breakup for a drop with 2R,,, = 0.75H,
Ca = 0.6, and A = 11.7, as shown in Figure 20b. Figure 20a depicts the reproduced results
using our FEM formulation and the ICDR technique.

— —
—
D

(b) Reported by Vananroye et al. [36],
(Reproduced with permission from
Langmuir; published by the American
Chemical Society, 2006)

(a) Generated in the present research

Figure 20. The different states of the deformation before the breakup of a drop with 2R, = 0.75H,
Ca=0.6,and A = 11.7.

The similarity between our calculations and different experimental and numerical data
in the literature (A = 1 or A # 1) reflects the ICDR technique’s capability in conjunction
with our FEM in analyzing two-phase flow problems.

It is worth mentioning that we have performed several successful comparisons for the
drop deformation problems (with the unit and non-unit viscosity ratios). However, they
are not reported here for conciseness.

5. Conclusions

We have introduced an improved mass-conservative direct re-initialization method
(ICDR) based on two existing geometrical re-initialization methods (the Mut and the direct
method) and a global mass correction concept. This method has excellent mass-conservative
properties and provides a smooth set of nodal volume fractions in the interface’s vicinity.
We have shown that the ICDR method is applicable for 2D and 3D flow problems.

To assess the validity of the ICDR method in 2D, we have employed two benchmark
problems. Then the dependency of the results on the element and time-step size has
been extensively examined. A visual assessment using graphical demonstrations of the
regenerated interfaces, as well as a quantitative evaluation via the definition of a norm
value, have been provided.

Aside from the benchmark problems, we have decided to use an actual physical
phenomenon to examine the ICDR method’s applicability in 3D. For this purpose, a
drop deformation in a simple shear flow field has been selected. Comparing our results
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with various numerical and experimental data in the literature has shown that, using
the introduced strategy, one can predict the droplet equilibrium or break up for unit and
non-unit viscosity ratios.

The 3D flow fields in this research are limited to creeping flow. However, the ICDR
algorithm’s evaluation by considering the inertial terms (e.g., bubble rising and dam-break
problems) can be a subject of further studies.
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