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Abstract: Simulating fluid flows in different virtual scenarios is of key importance in engineering
applications. However, high-fidelity, full-order models relying, e.g., on the finite element method,
are unaffordable whenever fluid flows must be simulated in almost real-time. Reduced order models
(ROMs) relying, e.g., on proper orthogonal decomposition (POD) provide reliable approximations
to parameter-dependent fluid dynamics problems in rapid times. However, they might require
expensive hyper-reduction strategies for handling parameterized nonlinear terms, and enriched re-
duced spaces (or Petrov–Galerkin projections) if a mixed velocity–pressure formulation is considered,
possibly hampering the evaluation of reliable solutions in real-time. Dealing with fluid–structure
interactions entails even greater difficulties. The proposed deep learning (DL)-based ROMs over-
come all these limitations by learning, in a nonintrusive way, both the nonlinear trial manifold and
the reduced dynamics. To do so, they rely on deep neural networks, after performing a former
dimensionality reduction through POD, enhancing their training times substantially. The resulting
POD-DL-ROMs are shown to provide accurate results in almost real-time for the flow around a
cylinder benchmark, the fluid–structure interaction between an elastic beam attached to a fixed, rigid
block and a laminar incompressible flow, and the blood flow in a cerebral aneurysm.

Keywords: fluid dynamics; deep learning; reduced order modeling; proper orthogonal decomposi-
tion; Navier–Stokes equations; fluid–structure interaction

1. Introduction

Computational fluid dynamics nowadays provide rigorous and reliable tools for the
numerical approximation of fluid flows equations that are exploited in several fields, from
life sciences to aeronautical engineering. High-fidelity techniques such as, e.g., finite ele-
ments, finite volumes as well as spectral methods have been extensively applied in the past
decades to the simulation of challenging problems in fluid dynamics, providing quantita-
tive indication about the physical behavior of the system in view of its better understanding,
control, and forecasting. Solving these problems entails the numerical approximation of
unsteady Navier–Stokes (NS) equations in three-dimensional domains, possibly accounting
for fluid–structure interaction (FSI) effects, requiring fine computational meshes, in case
one aims at simulating complex flow patterns, and ultimately yielding large-scale nonlinear
systems of equations to be solved.

Simulating fluid flows in complex configurations through high-fidelity, full-order
models (FOMs) is computationally infeasible if one aims at solving the problem multiple
times for different virtual scenarios or in a very small amount of time—at the limit, in
real-time. This is the case, for instance, of blood flow simulations, for which outputs of
clinical interest shall be evaluated for different flow conditions and in different geometrical
configurations [1]. In this respect, if quantitative outputs are meant to support clinicians’
decisions, each new numerical simulation should be carried out very rapidly on deployed
platforms, rather than exploiting huge parallel hardware architectures, and thus requiring
limited data storage and memory capacity.
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In the case virtual scenarios can be described in terms of—e.g., physical and/or
geometrical—input parameters, reduced order models (ROMs) built, e.g., through the
reduced basis (RB) method [2], can be exploited to reduce the computational complexity
and costs entailed by the repeated solution of parameterized fluid flow problems, enabling
dramatic reduction of the dimension of the discrete problems arising from numerical ap-
proximation of millions to hundreds, or thousands at most, of variables. Several works
have addressed the construction of rapid and reliable ROMs for Navier–Stokes equa-
tions, mainly exploiting either proper orthogonal decomposition (POD) [3–8] or greedy
algorithms [9–12] for the construction of reduced order spaces. However, despite the
general principles behind projection-based reduction techniques—such as, e.g., the use of a
(Petrov–)Galerkin projection onto a low-dimensional subspace, and the use of a set of FOM
snapshots computed for different input parameter values at different times to train the
ROM—that provide a rigorous framework to set up ROMs for fluid dynamics equations,
some distinguishing properties of Navier–Stokes equations for incompressible flow simu-
lations ultimately make their effective realization quite involved [13]. Among them, we
mention the need for (i) efficiently treating nonlinearities and parameter dependencies [14],
(ii) approximating both velocity and pressure [15], (iii) ensuring the ROM stability (with
respect to both the violation of the inf–sup condition and dominating convection) [16,17],
and (iv) keeping error propagation in time under control. The presence of FSI, coupling the
fluid model with a model describing the structural displacement of the non-rigid domain
where the fluid flows, makes the problem even more involved. Several strategies have
been proposed to address these issues: for instance, hyper-reduction techniques have been
devised in a purely algebraic way to treat the nonaffine and nonlinear convective terms
appearing in the NS equations [8]; suitable enrichment of the velocity space can be consid-
ered to ensure the inf–sup stability of the ROM [7,18] as well as alternative, more effective,
stabilization techniques for the ROM [19]; mesh-moving techniques have been exploited
to efficiently parameterize domain shapes to address geometric variability in fluid flow
simulations [8], and either monolithic or segregated strategies have been considered as
first attempts to handle fluid–structure interactions in the RB method for parameterized
fluid flows [20,21].

On the other hand, machine learning techniques—in particular, artificial neural net-
works (NNs)—in computational fluid dynamics have witnessed a dramatic blooming in
the past ten years [22,23]. Deep neural networks (DNNs) have been exploited to address
several issues; a nonexhaustive list includes, for instance:

1. The extraction of relevant flow features, such as recirculation regions or boundary
layers through convolutional neural networks (CNNs) [24].

2. The construction of inexpensive, nonintrusive approximations for output quantities
of interest for fluid flows [25], or to velocity and pressure field, obtained through
Reynolds-averaged Navier–Stokes (RANS) equations [26–28].

3. Data-driven turbulence models in RANS equations through a physics-informed
machine learning approach [29], or data-driven eddy viscosity closure models in large
eddy simulations (LES) [30].

4. The setting of closure models to stabilize a POD-Galerkin ROM [31] by using, e.g.,
recurrent neural networks (RNNs) to predict the impact of the unresolved scales on
the resolved scales [32], or correction models to adapt a ROM to describe scenarios
quite far from the ones seen during the training stage [33].

5. The reconstruction of a high-resolution flow field from limited flow information [34]
as well as the assimilation of flow measurements and computational flow dynamics
models derived from first physical principles. This task can be cast in the framework
of the so-called physics-informed neural networks [35,36], where NNs are trained
to solve supervised learning tasks while respecting the fluid dynamics equations, or
tackled by means of Bayesian neural networks [37].

6. The nonintrusive estimation of POD coefficients through, e.g., feedforward NNs [38–40]
or probabilistic NNs [41].
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In this paper, we apply the POD-DL-ROM technique that we recently proposed [42]
to fluid flow problems in order to build nonintrusive and extremely efficient ROMs for
parameter-dependent unsteady problems in computational fluid dynamics by exploiting
(i) deep neural networks as main building block, (ii) a set of FOM snapshots, and (iii)
dimensionality reduction of FOM snapshots through (randomized) POD. Even though a
preliminary example of its application to a benchmark in fluid dynamics has already been
considered in [42] to assess the capability of POD-DL-ROMs to handle vector nonlinear
problems such as the unsteady Navier–Stokes equations, in order to compute the fluid
velocity field only, in this paper we deepen our analysis by considering: (a) the computation
of both velocity and pressure fields in the case of unsteady Navier–Stokes equations, (b)
the extension to an FSI problem, and (c) the application to a real-life application of interest,
namely the simulation of blood flows through a cerebral aneurysm.

Compared to other works that have recently appeared in the literature, our focus is
on parameter-dependent fluid dynamics problems, either involving complex three-dimen-
sional geometries or FSI effects, and on the use of deep learning (DL)-based ROMs for the
sake of real-time simulation of fluid flows, thus relying on nonlinear reduction techniques.
Motivated by similar goals, nonintrusive ROMs for fluid dynamics equations have been
proposed, e.g., in [43–45], where POD has been considered to generate low-dimensional
(linear) subspaces, also in the case of FSI problems, and POD coefficients at each time step
are either computed through a radial basis function multi-dimensional interpolation, or
extrapolated from the POD coefficients at earlier time steps.

Applications of DL algorithms in conjunction with POD have already been proposed
for the sake of long-term predictions in time, however without addressing parameter-
dependent problems. For instance, a long short-term memory (LSTM) network was used
to learn the underlying physical dynamics in [46], generating a nonintrusive ROM through
the solution snapshots acquired over time. Deep feedforward neural networks (DFNNs)
have been used for a similar task in [47] and compared with the sparse identification of
nonlinear dynamics (SINDy) algorithm [48]. This latter defines a sparse representation
through a linear combination of selected functions, and has been used for data-driven
forecasting in fluid dynamics [49]. RNNs have been considered in [50,51] to evolve low-
dimensional states of unsteady flows, exploiting either POD or a convolutional recurrent
autoencoder to extract low-dimensional features from snapshots. DL algorithms have also
been used in [52] to describe the reduced trial manifold where the approximation is sought,
then relying on a minimum residual formulation to derive the ROM—hence, still requiring
the assembling and the solution of a ROM as in traditional POD-Galerkin ROMs.

The structure of the paper is as follows. In Section 2, we sketch the basic features
of projection-based ROMs for fluid flows and recall the main components of the POD-
DL-ROM technique. In Section 3, we show some numerical results obtained for the flow
around a cylinder benchmark, the fluid–structure interaction between an elastic beam
attached to a fixed, rigid block and a laminar incompressible flow, and the blood flow in
a cerebral aneurysm. Finally, a brief discussion of our results and a few comments about
future research directions are reported in Section 4.

2. Methods

In this section, we briefly recall the main components of the POD-enhanced DL-based
ROMs (briefly, POD-DL-ROMs) that we adapt, in the following, to handle problems in
computational fluid dynamics. In particular, we aim at simulating parameter-dependent
unsteady fluid flows, relying on a velocity–pressure formulation in domains that have
either (i) rigid walls or (ii) elastic deformable walls.

In the case of rigid walls, for any input parameter vector µ ∈ P ⊂ Rnµ , we aim at
solving the nonlinear unsteady Navier–Stokes equations in a given, fixed domain ΩF ⊂ Rd,
d = 2, 3 (see Section 3.1)

PF(vh, ph; t, µ) = 0 in ΩF × (0, T), (1)
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in the time interval (0, T), provided that suitable initial (at time t = 0) and boundary
conditions (on ∂ΩF, for each t ∈ (0, T)) are assigned. Here, t ∈ (0, T) is the time variable,
vh = vh(t; µ) the velocity field, ph = ph(t; µ) the pressure field; these two latter quantities
are usually obtained through a FOM built, e.g., through the finite element method. Here,
h > 0 denotes a discretization parameter, usually related to the mesh size.

In the case of elastic walls, the fluid domain is unknown, and its deformation intro-
duces a further geometric nonlinearity; the structure displacement dS

h = dS
h(t; µ) might

also be nonlinear, and must match the one of the fluid domain dG
h = dG

h (t; µ) at the fluid–
structure (FS) interface Σ(t). Here, we employ the so-called arbitrary Lagrangian–Eulerian
(ALE) approach, in which an extra problem for the fluid domain displacement (usually a
harmonic extension of the FS interface datum) is solved, thus providing an updated fluid
domain, while the fluid problem is reformulated on a frame of reference that moves with the
fluid domain. Thus, for any input parameter vector µ ∈ P , we consider a fluid–structure
interaction (FSI) model, which consists of a two-field problem, coupling the incompressible
Navier–Stokes equations written in the ALE form with the (non)linear elastodynamics
equation modeling of solid deformation [53]. In particular, we aim at solving the unsteady
Navier–Stokes equations in a varying domain ΩF(t) ⊂ Rd, the elastodynamics equations
in the structural domain ΩS ⊂ Rd, and a geometric problem in the fixed fluid domain
ΩF ⊂ Rd (see Section 3.2),

PF(vh, ph; t, µ) = 0 in ΩF(t)× (0, T),

PS(dS
h ; t, µ) = 0 in ΩS × (0, T),

PG(dG
h ; µ) = 0 in ΩF × (0, T),

coupling conditions on Σ(t)× (0, T),

(2)

for a time interval (0, T), provided that suitable initial (at time t = 0) and boundary condi-
tions (on ∂ΩF(t) \ Σ(t) for the fluid subproblem, on ∂ΩS \ Σ for the structural subproblem,
on ∂ΩF for the geometric subproblem, for each t ∈ (0, T)), are assigned.

2.1. Projection-Based ROMs: Main Features

The spatial discretization of problem (1) or (2) through finite elements yields a nonlin-
ear dynamical system of dimension Nh to be solved for each input parameter value; then, a
fully discretized problem is obtained relying, e.g., on either semi-implicit or implicit meth-
ods introducing a partition of the interval [0, T] in Nt subintervals of equal size ∆t = T/Nt,
such that tk = k∆t. This results in a sequence of either linear or nonlinear algebraic systems
to be solved at each time step tk, k = 1, . . . , Nt—which we refer to as the high-fidelity FOM.
Note that the dimension Nh accounts for the degrees of freedom of either the fluid problem
(involving velocity and pressure) or the FSI problem (also including the structural and the
geometrical subproblem). Building a projection-based ROM through, e.g., the RB method
then requires performing this calculation for ns selected parameter values µ1, . . . , µns , and
to perform POD on the solution snapshots (obtained for each µj, j = 1, . . . , ns, and for each
time step tk, k = 1, . . . , Nt). Focusing, for the sake of simplicity, on the fluid problem (1),
the RB approximation of velocity and pressure fields at time tk is expressed as a linear
combination of the RB basis functions,

vh(tk; µ) ≈ VvvN(tk; µ), ph(tk; µ) ≈ VppN(tk; µ)

where Vv ∈ RNh×Nv and Vp ∈ RNh×Np denote the matrices whose columns form the basis
for the velocity and the pressure RB spaces, respectively, and are selected as the first left
singular vectors of the (velocity and pressure) snapshots matrices. Note that in this case,
the RB approximation is sought in a linear trial manifold. A similar approximation also
holds for the additional variables appearing in the FSI problem (2). The reduced dynamics
are then obtained by solving a low-dimensional dynamical system, obtained by performing
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a Galerkin projecting of the FOM onto the spaces spanned by the RB spaces; alternatively,
a Petrov–Galerkin projection could also be used.

Projection-based ROMs for parameterized PDEs thus rely on a suitable offline–online
computational splitting: computationally expensive tasks required to build the low-
dimensional subspaces and to assemble the ROM arrays, are performed once for all in the
so-called offline (or ROM training) stage. This latter allows us to compute—ideally—in
an extremely efficient way the ROM approximation for any new parameter value during
the so-called online (or ROM testing) stage. This splitting, however, might be compro-
mised if (i) the dimension of the linear trial subspace becomes very large (compared to the
intrinsic dimension of the solution manifold being approximated), such as in the case of
problems featuring coherent structures that propagate over time such as transport, wave,
or convection-dominated phenomena, or (ii) hyper-reduction techniques, required to ap-
proximate µ-dependent nonlinear terms, require linear subspaces whose dimension is also
very large. Even more importantly, two additional issues make the construction of ROMs
quite critical in the case of fluid dynamics problems, especially in the following cases.

1. A Galerkin projection onto the RB space built through the POD procedure above
does not ensure the stability of the resulting ROM (in the sense of the fulfillment
of an inf–sup condition at the reduced level). Several strategies can be employed
to overcome this issue such as, e.g., (a) the augmentation of the velocity space by
means of a set of enriching basis functions computed through the so-called pressure
supremizing operator, which depends on the divergence term; (b) the use of a Petrov–
Galerkin (e.g., least squares, (LS)) RB method, or (c) the use of a stabilized FOM (such
as, e.g., a P1-P1 streamline upwind Petrov–Galerkin (SUPG) finite element method);
(d) an independent treatment of the pressure, to be reconstructed from the velocity by
solving a Poisson equation, in the case divergence-free velocity basis functions, are
used—an assumption that might be hard to fulfill.

2. The need for dealing with both a mixed formulation and a coupled FSI problem
requires the construction of a reduced space for each variable, no matter if one is
interested in the evaluation of output quantities of interest only involving a single
variable. For instance, even if one is interested in the evaluation of fluid velocity in
the FSI case, a projection-based ROM must account for all the variables appearing as
unknowns in the coupled FSI problem. The same consideration also holds in the case
of a fluid problem, where the pressure must be treated as an unknown of the ROM
problem even if one is not interested in its evaluation.

2.2. POD-Enhanced DL-ROMs (POD-DL-ROMs)

POD-DL-ROMs are nonintrusive ROMs which aim at approximating the map (t, µ)→
uh(t, µ), for any field variable of interest uh(t, µ) by describing both the trial manifold and
the reduced dynamics through deep neural networks. These latter are trained on a set of
FOM snapshots

Su = [uh(t1; µ1) | . . . | uh(tNt ; µ1) | . . . | . . . uh(t1; µNtrain
) | . . . | uh(tNt ; µNtrain

)], (3)

computed for different parameter values µ1, . . . , µNtrain
∈ P , suitably sampled over the pa-

rameter space at different time instants {t1, . . . , tNt} ⊂ [0, T]. Avoiding the projection stage,
POD-DL-ROMs can be cheaply evaluated once trained, only involving those variables one
is interested in. In case multiple variables are involved (e.g., both velocity and pressure),
the procedure below can be performed simultaneously on each of them.

To reduce the dimensionality of the snapshots and avoid feeding training data of very
large dimension Nh, we first apply POD—realized through randomized SVD (rSVD)—to
the snapshot set Su; then, a DL-ROM is built to approximate the map between (t, µ) and
the POD generalized coordinates. Using rSVD, we build N-dimensional subspace Col(VN)
spanned by the N ≤ Nh columns of VN ∈ RNh×N , the matrix of the first N singular vectors
of the snapshot matrix Su. Here, N denotes the dimension of the linear manifold, which
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can be taken (much) larger than the one of the reduced linear trial manifold used in a
POD-Galerkin ROM.

Hence, the POD-DL-ROM approximation of the FOM solution uh(t; µ) is

ũh(t; µ, θDF, θD) = VN ũN(t; µ, θDF, θD) ≈ uh(t; µ),

that is, it is sought in a linear trial manifold of (potentially large) dimension N,

S̃N
h = {VN ũN(t; µ, θDF, θD) |ũN(t; µ, θDF, θD) ∈ RN , t ∈ [0, T) , µ ∈ P} ⊂ RNh , (4)

by applying the DL-ROM strategy [54] to approximate VT
Nuh(t; µ)—rather than directly

uh(t; µ). The DL-ROM approximation ũN(t; µ, θDF, θD) ≈ VT
Nuh(t; µ) takes the form

ũN(t; µ, θDF, θD) = fD
N(φ

DF
n (t; µ, θDF); θD), (5)

and is sought in a reduced nonlinear trial manifold S̃n
N of very small dimension n � N;

usually, n ≈ nµ + 1—here time is considered as an additional parameter. As for DL-ROMs
(see, e.g., [54]), both the reduced dynamics and the reduced nonlinear manifold (or trial
manifold) where the ROM solution is sought must be learnt. In particular:

• Reduced dynamics learning. To describe the system dynamics on the nonlinear trial
manifold S̃n

N , the intrinsic coordinates of the approximation ũN are defined as

un(t; µ) = φDF
n (t; µ, θDF),

where φn(·; ·, θDF) : [0, T) × Rnµ+1 → Rn is a DFNN consisting of the repeated
composition of a nonlinear activation function, applied to a linear transformation of
the input multiple times. Here, θDF denotes the DFNN parameters vector, collecting
the weights and biases of each of its layers;

• Nonlinear trial manifold learning. To model the reduced nonlinear trial manifold S̃n
N ,

we employ the decoder function of a convolutional autoencoder (CAE), that is,

S̃n
N = {ũN(t; µ) =fD

N(φ
DF
n (t; µ, θDF); θD) |

un(t; µ, θDF) ∈ Rn, t ∈ [0, T) , µ ∈ P ⊂ Rnµ} ⊂ RN ,
(6)

where fD
N(·; θD) : Rn → RN denotes the decoder function of a CAE obtained as the

composition of several layers (some of which are convolutional), depending upon a
vector θD collecting all the corresponding weights and biases.

Finally, the encoder function fE
n (·; θE) : RN → Rn—depending upon a vector θE of

parameters—of the CAE can be used to map the intrinsic coordinates VT
Nuh(t, µ) associated

to (t, µ) onto a low-dimensional representation

ũn(t; µ, θE) = fE
n (V

T
Nuh(t; µ); θE).

Hence, training a POD-DL-ROM requires to solve the optimization problem

min
θ
J (θ) = min

θ

1
NtrainNt

Ntrain

∑
i=1

Nt

∑
k=1
L(tk, µi; θ), (7)

where the per-example loss function L(tk, µi; θ) is given by the sum of two terms,

L(tk, µi; θ) =
ωh
2
Lrec(tk, µi; θ) +

1−ωh
2
Lint(tk, µi; θ); (8)

the former is the reconstruction error between the FOM and the POD-DL-ROM solutions,

Lrec(tk, µi; θ) = ‖VT
Nuh(tk; µi)− ũN(tk; µi, θDF, θD)‖2;
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the latter is the misfit between the intrinsic coordinates and the output of the encoder,

Lint(tk, µi; θ) = ‖ũn(tk; µi, θE)− un(tk; µi, θDF)‖2.

Finally, ωh ∈ [0, 1] is a prescribed weighting parameter. The architecture of the
POD-DL-ROM neural network is shown in Figure 1.

Figure 1. POD-DL-ROM architecture. Starting from the FOM solution uh(t; µ), the intrinsic coordinates VT
Nuh(t; µ) are

computed by means of rSVD; their approximation ũN(t; µ) is provided by the neural network as output so that the
reconstructed solution ũh(t; µ) = VN ũN(t; µ) is recovered through the rPOD basis matrix. In particular, the intrinsic
coordinates VT

Nuh(t; µ) are provided as input to block (B) which outputs ũn(t; µ). The same parameter instance associated
to the FOM, i.e., (t; µ), enters block (C) which provides as output un(t; µ), and the error between the low-dimensional
vectors is accumulated. The minimal coordinates un(t; µ) are given as input to block (D) returning the approximated
intrinsic coordinates ũN(t; µ). Then, the reconstruction error is computed.

Computing the POD-DL-ROM approximation ũh(t; µtest) of uh(t; µtest), for any t ∈ (0, T)
and µtest ∈ P , corresponds to the testing stage of the DFNN and of the decoder function
of the CAE, and does not require the evaluation of the encoder function. Finally, the
POD-DL-ROM approximation of the FOM solution is recovered as

ũh(t; µ, θDF, θD) = VN ũN(t; µ, θDF, θD).

In the formerly proposed DL-ROM methodology [54,55], we employed a convolu-
tional AE due to the fact that, thanks to the shared parameters and local connectivity
properties [56], convolutional layers are better suited than dense layers to handle high-
dimensional spatially correlated data. Regarding instead the description of the reduced
dynamics, we introduced a DFNN since no particular data structure must be exploited in
the learning task, which is indeed simpler than the nonlinear trial manifold learning.

Let us remark that the former construction of a POD-DL-ROM can be extended to
the case of p > 1 (either scalar or vector) field variables of interest in a straightforward
way. In this case, provided a snapshot set Si and a corresponding basis VN,i ∈ RNh,i×N ,
i = 1, . . . , p, for each of the variables uh,1, . . . , uh,p, the POD-DL-ROM approximation of
the field variable uh,i(t; µ) ∈ RNh,i is given by

ũh,i(t; µ, θDF, θD) = VN,iũN,i(t; µ, θDF, θD) ≈ uh,i(t; µ),
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where a DFNN and a CAE are trained by considering simultaneously all the p field vari-
ables. Due to its data-driven nature, each variable can be approximated in an independent
way—in other words, there are no physical constraints appearing in the loss function, thus
making the p approximated field variables uncoupled, despite they might be originally
coupled. For instance, p = 2 field variables are considered if we aim at approximating both
the velocity and the pressure fields in the case of fluid flows.

Another noteworthy aspect deals with the way snapshots are handled when consider-
ing convolutional layers in the NNs, in presence of either vector and/or coupled problems.
Exploiting the analogy with red–green–black images in image processing, each snapshot
computed for a variable of interest is reshaped in a square matrix of dimension (

√
N,
√

N),
where N = 2(2m) with m ∈ N (if N 6= 2(2m) the input is zero-padded), and stacked together
forming a tensor with k ≤ 3 channels. The latter tensor is then provided as input to the
POD-DL-ROM neural network architectures when dealing with vector and/or coupled
problems; as a result, the output of the network, for each sample (t, µ), takes a form similar
to (5), collecting the approximation of all the field variables,

ũN(t; µ, θDF, θD) = [ũN,1(t; µ, θDF, θD) | . . . | ũN,p(t; µ, θDF, θD)] ∈ RN×p.

In the case of vector field variables, such as the fluid velocity or the structure displace-
ment, different variable components are usually grouped together and treated in the same
channel. In the case of p field variables, each one with at most d components, many of them
can be grouped together and assigned to the same channel; in the case of p ≤ 3 scalar field
variables, or when dealing with vector field variables involving at most 3 components—as
in the case of the velocity and the pressure fields in dimension d = 2, or in the case of the
velocity field in dimension d ≤ 3—different components/field variables can be assigned to
different channels.

We remark that considering vector and/or coupled problems does not entail main
changes in the architecture of the POD-DL-ROM as well as in the total number of param-
eters of the neural network. Indeed, only the first layer of the encoder function and the
last one of the decoder function are responsible for the handling of different channels of
the input/output. This implies that training the neural network by providing data with
k channels is remarkably less computationally expensive than training several indepen-
dent POD-DL-ROMs, each of them responsible for a single component/field variable of
the solution.

3. Results

In this section, we show several numerical results obtained with the POD-DL-ROM
technique. In particular, we focus on the solution of three problems: (i) the unsteady
Navier–Stokes equations for a two-dimensional flow around a cylinder, (ii) an FSI problem
for a two-dimensional flow past an elastic beam attached to a fixed, rigid block, and (iii)
the unsteady Navier–Stokes equations for blood flow in a cerebral aneurysm. To evaluate
the performance of POD-DL-ROM, we rely on the loss function (8) and on:

• the error indicator εrel ∈ R given by

εrel = εrel(uh, ũh) =
1

Ntest

Ntest

∑
i=1


√

∑Nt
k=1 ||u

k
h(µtest,i)− ũk

h(µtest,i)||2√
∑Nt

k=1 ||u
k
h(µtest,i)||2

; (9)

• the relative error εk ∈ R∑d
i=1 Nh,i , for k = 1, . . . , Nt, defined as

εk = εk(uh, ũh) =
|uk

h(µtest)− ũk
h(µtest)|√

1
Nt

∑Nt
k=1 ||u

k
h(µtest)||2

. (10)

Note that (9) is a scalar indicator, while (10) provides a spatially distributed error field.



Fluids 2021, 6, 259 9 of 25

The configuration of the POD DL-ROM neural network used in our test cases is the
one given below. We choose a 12-layer DFNN equipped with 50 neurons per hidden layer
and n neurons in the output layer, where n represents the dimension of the (nonlinear)
reduced trial manifold. The architectures of the encoder and decoder functions are instead
reported in Tables 1 and 2. No activation function is applied at the last convolutional layer
of the decoder neural network, as usually done in AEs.

Table 1. Attributes of convolutional and dense layers in the encoder fE
n .

Layer Input Output Kernel #of Filters Stride PaddingDimension Dimension Size

1 [N, N, d] [N, N, 8] [5, 5] 8 1 SAME
2 [N, N, 8] [N/2, N/2, 16] [5, 5] 16 2 SAME
3 [N/2, N/2, 16] [N/4, N4, 32] [5, 5] 32 2 SAME
4 [N/4, N/4, 32] [N/8, N/8, 64] [5, 5] 64 2 SAME
5 N 64
6 64 n

Table 2. Attributes of dense and transposed convolutional layers in the decoder fD
N .

Layer Input Output Kernel #of Filters Stride PaddingDimension Dimension Size

1 n 256
2 256 Nh
3 [N/8, N/8, 64] [N/4, N/4, 64] [5, 5] 64 2 SAME
4 [N/4, N/4, 64] [N/2, N/2, 32] [5, 5] 32 2 SAME
5 [N/2, N/2, 32] [N, N, 16] [5, 5] 16 2 SAME
6 [N, N, 16] [N, N, d] [5, 5] d 1 SAME

To solve the optimization problem (7) and (8), we use the ADAM algorithm [57],
which is a stochastic gradient descent method computing an adaptive approximation of
the first and second momentum of the gradients of the loss function. In particular, it
computes exponentially weighted moving averages of the gradients and of the squared
gradients. We set the starting learning rate to η = 10−4, and perform cross-validation in
order to tune the hyperparameters of the POD-DL-ROM by splitting the data in training
and validation sets with a proportion 8:2. Moreover, we implement an early-stopping
regularization technique to reduce overfitting [56], stopping the training if the loss does
not decrease over a certain amount of epochs. As nonlinear activation function, we employ
the ELU function [58]. The parameters, weights, and biases are initialized through He
uniform initialization [59]. The rPOD dimension N is selected, in all test cases, in order to
fulfill the condition εrel(uh, VNVT

Nuh) ≈ 10−3. The interested reader can refer to [42] for a
detailed version of the algorithms used for the training/testing phases. These latter have
been carried out on either a GTX 1070 8 GB or a Tesla V100 32 GB GPU by means of the
Tensorlow DL framework [60] for the cases described in the following subsections. The
Matlab library redbKIT [2,61] has been employed to carry out all the FOM simulations.

3.1. Test Case 1: Flow around a Cylinder

In this first test case, we deal with the unsteady Navier–Stokes equations for incom-
pressible flows in primitive variables (fluid velocity v and pressure p). We consider the
flow around a cylinder test case, a well-known benchmark problem for the evaluation of
numerical algorithms for incompressible Navier–Stokes equations in the laminar case [62].
The problem reads as follows:
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

ρ
∂v
∂t

+ ρv · ∇v−∇ · σ(v, p) = 0 (x, t) ∈ ΩF × (0, T),

∇ · v = 0 (x, t) ∈ ΩF × (0, T),

v = 0 (x, t) ∈ ΓD1 × (0, T),

v = h (x, t) ∈ ΓD2 × (0, T),

σ(v, p)n = 0 (x, t) ∈ ΓN × (0, T),

v(0) = 0 x ∈ ΩF, t = 0.

(11)

The domain consists of a two-dimensional pipe with a circular obstacle, i.e., ΩF =
(0, 2.2)× (0, 0.41)\B̄0.05(0.2, 0.2)—here Br(xc) denotes a ball of radius r > 0 centered at xc,
see Figure 2 for a sketch of the geometry. The boundary is given by ∂ΩF = ΓD1 ∪ ΓD2 ∪ ΓN ,
where ΓD1 = {x1 ∈ [0, 2.2], x2 = 0} ∪ {x1 ∈ [0, 2.2], x2 = 0.41} ∪ ∂B0.05((0.2, 0.2)), ΓD2 =
{x1 = 0, x2 ∈ [0, 0.41]}, and ΓN = {x1 = 2.2, x2 ∈ [0, 0.41]}, while n denotes the (outward
directed) normal unit vector to ∂ΩF. We denote by ρ the fluid density, and by σ the
stress tensor,

σ(v, p) = −pI + 2νε(v); (12)

here, ν denotes the dynamic viscosity of the fluid, while ε(v) is the strain tensor,

ε(v) =
1
2
(
∇v +∇vT).

Figure 2. Test case 1: geometrical configuration, domain and boundaries [m].

Here, we take ρ = 1 kg/m3 as fluid density, and assign no-slip boundary conditions
on Γ1, a parabolic inflow profile

h(x, t; µ) =

(
4U(t, µ)x2(0.41− x2)

0.412 , 0
)

, where U(t; µ) = µ sin(πt/8), (13)

on the inlet ΓD2 , and zero-stress Neumann conditions on the outlet ΓN . We consider as
parameter (nµ = 1) µ ∈ P = [1, 2] m/s, which reflects the Reynolds number varying in the
range [66, 133]. Equations (11) have been discretized in space by means of linear–quadratic
(P2 − P1), inf–sup stable, finite elements, and in time through a backward differentiation
formula (BDF) of order 2 with semi-implicit treatment of the convective term (see, e.g., [63])
over the time interval (0, T), with T = 8 s, and a time step ∆t = 2× 10−3 s. This strategy
allows us to mitigate the computational cost associated with the use of a fully implicit
BDF scheme by linearizing the nonlinear convective terms; this latter task is realized by
extrapolating the convective velocity through an extrapolation formula of the same order
of the BDF introduced.

We already analyzed this test case in [42], where we were interested in approximating
only the velocity field. Here, we aim at assessing the performance of POD-DL-ROM neural
network in approximating both the velocity and the pressure fields. In particular, we
provide, to the network, data under the form of a tensor with 3 channels—that is, we set
the dimension equal to k = 3. The FOM dimension is equal to Nh = [32, 446, 32, 446, 8239]
(for the two velocity components and the pressure, respectively) and we select N = 256
as dimension of the POD basis for each component of the solution. We choose n = 5
as dimension of the nonlinear trial manifold S̃n. We uniformly sample Nt = 400 time
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instances and consider Ntrain = 21 and Ntest = 20 training- and testing-parameter instances
uniformly distributed over P . The total number of parameters (i.e., weights and biases) of
the neural network is equal to 295,337.

In Figures 3 and 4, we compare the FOM and POD-DL-ROM pressure and velocity
fields, these latter obtained with n = 5, together with the relative error εk in Figure 5, for
the testing-parameter instance µtest = 1.975 m/s (Re = 131) at t = 1.062 s and t = 4.842 s.
We highlight the ability of the POD-DL-ROM approximation to accurately capture the
variability of the solution: indeed, in the case t = 1.062 s (Figure 3), we do not assist any
vortex shedding; this latter is instead present in the case t = 4.842 s (Figure 4), and is
correctly reproduced.

Figure 3. Test case 1: FOM and POD-DL-ROM solutions for the testing-parameter instance µtest = 1.975 m/s at t = 1.062 s,
with N = 256 and n = 5. Left: velocity field magnitude; right: pressure field.

Figure 4. Test case 1: FOM and POD-DL-ROM solutions for the testing-parameter instance µtest = 1.975 m/s at t = 4.842 s,
with N = 256 and n = 5. Left: velocity field magnitude; right: pressure field.

To assess the ability of the POD-DL-ROM to provide accurate evaluations of output
quantities of interest, we evaluate the drag and lift coefficients related to the drag and lift
forces around the circular obstacle; these are defined, in our case, as

FD =
∫

∂Br

(
ν

∂u2

∂η
η2 − pη1

)
dσ, and FL =

∫
∂Br

(
ν

∂u1

∂η
η1 − pη2

)
dσ (14)
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where η = (η1, η2)
T denotes the (outward directed) normal unit vector to ∂Ω. From (14),

the dimensionless drag and lift coefficient can be obtained as

CD =
2

U2
meanL

FD, and CL =
2

U2
meanL

FL,

where Umean is the parabolic input profile mean velocity.

Figure 5. Test case 1: Relative errors εk for the testing-parameter instance µtest = 1.975 m/s, with N = 256 and n = 5.
Relative errors at t = 1.062 s (left) and t = 4.842 s (right) for velocity (top) and pressure (bottom).

The drag and lift coefficients coefficients computed over time by the FOM and the
POD-DL-ROM, for the testing-parameter instances µtest = 1.975 m/s, are reported in
Figure 6. The POD-DL-ROM technique is also able to accurately capture the evolution
of CD and CL, related to the prescribed µ-dependent input profile in (13), in both cases.
Indeed, we remark that the oscillatory behavior observed over time, due to vortex shedding,
is fully reconstructed by the POD-DL-ROM and is consistent with the results obtained at
low Re numbers reported in literature (see, e.g., [64]).

Figure 6. Test case 1: FOM and POD-DL-ROM drag (left) and lift (right) coefficients for the testing-parameter instance
µtest = 1.975.

Furthermore, the testing computational time, i.e., the time needed to compute Nt time
instances for an unseen testing-parameter instance, of the POD-DL-ROM on a GTX 1070
8 GB GPU is given by 0.2 s, thus implying a speed-up equal to 1.25× 105 with respect to
the time needed for the solution of the FOM. For test case 1, the FOM simulations have
been performed on 20 cores of 1.7 TB node (192 Intel® Xeon Platinum® 8160 2.1 GHz cores)
of the HPC cluster available at MOX, Politecnico di Milano.

We also highlight that the application of POD-DL-ROMs to fluid problems showing
a dominant transport behavior, such as reacting fluid flows, would require only slight
modifications. For instance, a larger rPOD dimension, a more careful selection of the
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training-parameter instances, and an increase of the number of parameters of the neural
network might be required, thus yielding longer training computational times, though
without dramatically impacting the overall accuracy and efficiency of the methodology. In
this respect, preliminary results obtained with POD-DL-ROMs in the case of a dominant
transport problem can be found, e.g., in [42].

3.2. Test Case 2: Fluid–Structure Interaction

We now focus on the case of a two-dimensional flow past an elastic beam attached
to a fixed, rigid block [65–67] (see Figure 7 for a sketch of the geometry). The FSI model
that we consider consists of a two-field problem, where the incompressible Navier–Stokes
equations written in the arbitrary Lagrangian–Eulerian (ALE) form for the fluid are coupled
with the nonlinear elastodynamics equation modeling the solid deformation [53]. Because
of the ALE approach we employ, a third non-physical geometry (or mesh motion) problem
is introduced, which accounts for the fluid domain deformation and in turn defines the
so-called ALE map.

Figure 7. Test case 2: Geometrical configuration and domains.

Let ΩF and ΩS be the domains occupied by the fluid and the solid, respectively, in
their reference configuration. We denote, by Σ = ∂ΩF ∩ ∂ΩS, the fluid–structure interface
on the reference configuration. At any time t, the domain occupied by the fluid ΩF(t) can
be retrieved from ΩF by the ALE mapping

At : ΩF → ΩF(t), X 7→ At(X) = X + dG(X),

where dG(X) represents the displacement of the fluid domain. The coupled FSI problem
thus consists of the following set of equations.

• Navier–Stokes in ALE form governing the fluid problem:ρF ∂vF

∂t

∣∣∣
X
+ (vF −wG) · ∇vF −∇σF(vF, pF) = 0 in ΩF(t),

∇ · vF = 0 in ΩF(t);
(15)

• nonlinear elastodynamics equation governing the solid dynamics:

ρS ∂dS

∂t2 −∇ · P(d
S) = 0 in ΩS; (16)

• coupling at the FS interface Σ:vF =
∂dS

∂t
,

σF(vF, pF)nF + σS(dS)nS = 0;
(17)
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• linear elasticity equations modeling the mesh motion problem:{
−∇ · σG(dG) = 0 in ΩF,
dG = dS on Σ,

(18)

where σF(vF, pF) = −pFI + 2µFε(vF) is the fluid Cauchy stress tensor, σS(dS) = J−1PFT

is the solid Cauchy stress tensor, F = I +∇dS is the deformation tensor, and wG = ∂dG

∂t

∣∣∣
X

is the fluid mesh velocity. See, e.g., [53] for further details.
Both fluid and solid equations are complemented by appropriate initial and boundary

conditions. In particular, the lateral boundaries are assigned zero normal velocity and zero
tangential stress. Zero-traction boundary condition is applied at the outflow. The flow is
driven by a uniform inflow velocity of 51.3 cm/s. Zero-initial conditions are assigned both
for the fluid and the solid equations. The fluid density and viscosity are 1.18× 10−3 g/cm3

and 1.82× 10−4 g/(cm·s) respectively, resulting in a Reynolds number of 100 based on the
edge length of the block. The beam is modeled as a solid made of the St. Venant–Kirchhoff
material and the density of the beam is 0.1 g/cm3.

The field equations are discretized in space and time using:

• matching spatial discretizations between fluid and structure at the interface;
• for the fluid subproblem, SUPG stabilized linear finite elements ((P1 − P1) and a BDF

of order 2 in time;
• for the structural subproblem, the same finite element space as for the fluid velocity

and the Newmark scheme in time;
• for the fluid displacement, the same finite element space as for the fluid velocity.

The resulting nonlinear problem is solved through a monolithic geometry-convective
explicit (GCE) scheme, obtained by linearizing the fluid convective term (with a BDF
extrapolation) and treating the geometry problem explicitly [68,69]. Here, nµ = 2 pa-
rameters are considered, the Young modulus µ1 and the Poisson ratio µ2, varying in the
parameter space P = 106 · [2.3, 2.7] g/(cm·s2)× [0.3, 0.4]. We build a FOM considering
Nh = [16, 452, 8226, 1974] DOFs for the velocity, pressure, and displacement fields, respec-
tively, and a time step ∆t = 1.65× 10−3 over (0, T) with T = 3 s.

Regarding the construction of the proposed POD-DL-ROM, for the training of the
neural networks, we uniformly sample Nt = 606 time instances and Ntrain = 5× 3 = 15
training-parameter instances, uniformly distributed in each parametric direction. At testing
phase, Ntest = 4× 2 = 8 testing-parameter instances, different from the training ones, have
been considered. The maximum number of epochs is set equal to Nepochs = 20,000, the
batch size is Nb = 40 and, regarding the early-stopping criterion, we stop the training if
the loss function does not decrease within 500 epochs.

We are interested in reconstructing the velocity and the displacement fields, so we
set the number of channels to k = 2 and we recall the ability of the POD-DL-ROM neural
network to handle different FOM dimensions, Nh,i, for i = 1, . . . , p; that is, only the POD
dimension must be equal among the different fields considered. Moreover, we set N = 256
as the dimension of the POD basis, and n = 5 as the dimension of the reduced nonlinear
trial manifold.

The training and testing phases of the POD-DL-ROM neural network have been
performed on a Tesla V100 32 GB GPU. The total number of parameters of the POD-DL-
ROM neural network is equal to 294,185.

In Figure 8, we report the FOM and the POD-DL-ROM velocity magnitudes, the
latter with N = 256 and n = 5, for two testing-parameter instances—µtest = [2.3 ×
106 g/(cm·s2), 0.325] and µtest = [2.7× 106 g/(cm·s2), 0.375]—at t = 2.3084 s and t = 2.64 s.
In particular, we can observe that vortices, which are being shed from the square block, are
impinging on the bar, eventually forcing it to have an oscillating motion, during which it
undergoes large deformations. We point out that the dependence of the displacement field
on the parameters reflects on the velocity field by producing a strong variability over the
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parameter space, which is accurately captured by the POD-DL-ROM solutions. Indeed, at
the same time instants, depending on the value of the parameters µ, the solution exhibits
remarkably different patterns. The FOM and POD-DL-ROM displacement magnitudes
for the testing-parameter instances µtest = [2.3× 106 g/(cm·s2), 0.325] and µtest = [2.7×
106 g/(cm·s2), 0.375] at t = 2.3084 s and t = 2.64 s over the domain, are shown in Figure 9.

Figure 8. Test case 2: FOM (left) and POD-DL-ROM (right) fluid velocity magnitudes for the
testing-parameter instances µtest = [2.3 × 106 g/(cm·s2), 0.325] (rows 1–2) and µtest = [2.7 ×
106 g/(cm·s2), 0.375] (rows 3–4), at t = 2.3084 s (top) and t = 2.64 s (bottom).
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Figure 9. Test case 2: FOM (left) and POD-DL-ROM (right) structure displacement magnitudes for the testing-parameter
instances µtest = [2.3× 106 g/(cm·s2), 0.325] at t = 2.3084 s and t = 2.64 s (rows 1–2) and µtest = [2.7× 106 g/(cm·s2), 0.375]
at t = 2.3084 s and t = 2.64 s (rows 3–4).

We point out that the disagreement between the FOM and POD-DL-ROM displacement
magnitudes is larger for the testing-parameter instance µtest = [2.3× 106 g/(cm·s2), 0.325]
at t = 2.64 s with respect to the other cases reported in Figure 9. This is related to the fact
that the POD-DL-ROM neural network is biased towards larger values of displacement over
the parameter space and generates higher errors when the bar displacement is very small.
The comparison between the FOM and POD-DL-ROM displacement magnitudes, for the
testing-parameter instance µtest = [2.7× 106 g/(cm·s2), 0.375] at x∗ = (5.50, 6.07) cm over
time, is reported in Figure 10, from which it is clearly visible that the POD-DL-ROM is also
able to capture the main features of the oscillating elastic beam dynamics.

Figure 10. Test case 2: FOM and POD-DL-ROM displacement at x∗ = (5.50, 6.07) cm for the testing-
parameter instance µtest = [2.7× 106 g/(cm·s2), 0.375].
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The full accordance between the (first) components of the intrinsic coordinates vector
VT

Nuh(t; µtest) and their POD-DL-ROM approximation ũN(tk; µtest, θDF, θD), both for the
velocity and the displacement fields, for the testing parameter instance µtest = [2.7 ×
106 g/(cm·s2), 0.375], is shown is Figure 11. We remark that, as expected, the first compo-
nents are the ones retaining most of the energy of the system, thus being the ones showing
higher magnitude.

Figure 11. Test case 2: Comparison between the intrinsic coordinates VT
Nuh components and the POD-DL-ROM ap-

proximation ũN for the velocity (left) and the displacement (right) fields for the testing-parameter instance µtest =

[2.7× 106 g/(cm·s2), 0.375].

Finally, in Table 3, we report the POD-DL-ROM GPU total (training and validation)
time, the testing time, i.e., the time needed to compute Nt time instances for a testing-
parameter instance, and the time required to compute one time instance at testing time.
Indeed, we recall that the DL-ROM solution can be queried at a given time without
requiring any solution of a dynamical system to recover the former time instances. We
also show the speed-up gained by POD-DL-ROM with respect to the computational time
needed to solve the FOM. For test case 2, the FOM simulations have been carried out on a
MacBook Pro Intel Core i7 6-core with 16 GB RAM CPU.

Table 3. Test case 2: POD-DL-ROM GPU computational times.

Total Time [h] Testing Time [s] 1-Sample Testing Time [s] Speed-Up

7 4× 10−2 5× 10−3 1.77× 105 (1.41× 106)

3.3. Test Case 3: Blood Flow in a Cerebral Aneurysm

In this last test case, we consider the fast simulation of blood flows in a cerebral
(or intracranial) aneurysm; that is, a localized dilation or ballooning of a blood vessel
in the brain, often occurring in the circle of Willis, the vessel network at the base of the
brain. Blood velocity and pressure, wall shear stress (WSS), blood flow impingement, and
particle residence time all play a key role in the growth and rupture of cerebral aneurysms—
see e.g., [70–72]—which might ultimately yield potentially severe brain damage. For
these reasons, computational hemodynamics inside aneurysm models can provide output
quantities of interest useful for planning their surgical treatment.

We consider the artery aneurysm shown in Figure 12 (left), whose geometry has been
supplied by the Aneurisk project [73–75]. We consider blood as a Newtonian fluid, with
constant viscosity, and a rigid arterial wall, so that blood flow dynamics can be described
by the following Navier–Stokes equations:
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

ρ
∂v
∂t

+ ρv · ∇v−∇ · σ(v, p) = 0 (x, t) ∈ ΩF × (0, T),

∇ · v = 0 (x, t) ∈ ΩF × (0, T),

v = 0 (x, t) ∈ Γw × (0, T),

v = kvinQ(t) (x, t) ∈ ΓD × (0, T),

σ(v, p)n = 0 (x, t) ∈ ΓN × (0, T),

v(0) = 0 x ∈ Ω, t = 0,

(19)

where the stress tensor is defined as in (12). On the arterial wall Γw, a no-slip condition
on the fluid velocity is imposed, flow resistance at the outlet boundaries ΓN is neglected,
while a parabolic profile vin is specified at the lumen inlet, where the parameterization
of the inlet flow rate profile Q(t; µ) has been obtained by interpolating with radial basis
functions a base profile Q(t) taken from [76], and then treating some of the interpolated
values as parameters (see Figure 12, right), see [77] for further details.

Figure 12. Test case 3. Aneurysm geometry (left) and inlet flow rate Q(t; µ) during the heart cycle for
different parameter values (right); the black dashed curve corresponds to the base profile Q(t).

In particular, we consider nµ = 2 parameters µ ∈ P ⊂ R2 such that the flow rate at
t = 0.16 s and t = 0.38 s admits variations up to 15% of the reference value. A comparison
between some flow rate profiles corresponding to different parameter values is shown in
Figure 12, right. The scaling factor k in (19) is such that∫

ΓD

kvin · ndσ = 1.

Blood dynamic viscosity ν = 0.035 P and density ρ = 1 g/cm3 are set.
Concerning the FOM discretization, we employ a SUPG-BDF semi-implicit time

scheme of order 2 with linear finite elements for both velocity and pressure variables.
We employ a time step ∆t = 10−3 over the interval (0, T) with T = 0.85 s. We simulate
the blood flow starting from an initial condition obtained by solving the steady Stokes
problem. We are interested in reconstructing the blood velocity field, so we set the FOM
dimensions to Nh = [41,985, 41,985, 41,985], and k = 3. The POD dimension is equal to
N = 64 for each component of the solution, and the dimension of the reduced nonlinear
trial manifold is chosen to be equal to n = 5, very close to the intrinsic dimension of the
problem nµ + 1 = 3. We consider Nt = 850 time instances, Ntrain = 6, and Ntest = 3
training- and testing-parameter instances, sampled over P by means of the latin hypercube
sampling strategy. The total number of parameters (i.e., weights and biases) of the neural
network is equal to 269,417.
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In Figure 13, we compare the FOM and POD-DL-ROM velocity field magnitudes,
the latter obtained with N = 64 and n = 5 for the testing-parameter instance µtest =
(5.9102, 3.1179) at the systolic peak t = 0.18 s, along with the relative error εk reported
in Figure 14. By looking at the pattern and the magnitude of the vector velocity field in
Figure 13, it is evident that the abnormal bulge and the inlet are the portions of the domain
where the blood flow velocity is smaller, and we remark the ability of the POD-DL-ROM
technique in capturing such dynamics in an extremely detailed manner.

Figure 13. Test case 3: FOM (top) and POD-DL-ROM (bottom) velocity fields for the testing-parameter
instance µtest = (5.9102, 3.1179) at the systolic peak t = 0.18 s.
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Figure 14. Test case 3: Relative error in the velocity magnitude for the testing-parameter instance
µtest = (5.9102, 3.1179) at the systolic peak t = 0.18 s.

In Figure 15, we report the streamlines of the blood velocity field, obtained with the
FOM and the POD-DL-ROM,for the testing-parameter instance µtest = (5.9102, 3.1179) at
t = 0.5 s. In Figure 16, we report instead a detailed view of the pattern of the fluid velocity
field obtained for the testing-parameter instance µtest = (5.9102, 3.1179) at t = 0.18 s,
highlighting the recirculation of the flow in the bulge and the blood stasis in this region.

Figure 15. Test case 3: FOM (left) and POD-DL-ROM (right) velocity magnitude streamlines for the
testing-parameter instance µtest = (5.9102, 3.1179) at the systolic peak t = 0.5 s.
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Figure 16. Test case 3: FOM (left) and POD-DL-ROM (right) velocity field magnitude for the testing-
parameter instance µtest = (5.9102, 3.1179) at t = 0.18 s.

Finally, the testing computational time, i.e., the time needed to compute Nt time
instances for an unseen testing-parameter instance, of the POD-DL-ROM on a Tesla V100
32 GB GPU is given by 0.28 s, thus implying a speed-up equal to 3.98× 105 with respect to
the time needed for the solution of the FOM, and the possibility to obtain a fully detailed
simulation of a complex blood flow in real-time. For test case 3, the FOM simulations have
been carried out on 20 cores of 1.7 TB node (192 Intel® Xeon Platinum® 8160 2.1 GHz cores)
of the HPC cluster available at MOX, Politecnico di Milano.

We point out that a similar test case is analyzed in [77], dealing with blood flows
through a cerebral aneurysm, however employing a classical POD-Galerkin ROM. In that
specific case, even by looking for a lower accuracy compared to our results and relying on
a similar amount of snapshots data, the speed-up introduced is only about 102, due to the
relatively large dimension of the ROM caused by the linear superimposition of (global)
basis functions.

4. Discussion

In this work, we have taken advantage of a recently proposed technique [42] to
build nonintrusive low-dimensional ROMs by exploiting DL algorithms to handle fluid
dynamics problems. This strategy allows us to overcome some drawbacks of classical
projection-based ROM techniques arising when they are applied to incompressible flow
simulations.

In particular, POD-DL-ROMs overcome the need of:

• treating efficiently nonlinearities and (nonaffine) parameter dependencies, thus avoid-
ing expensive and intrusive hyper-reduction techniques;

• approximating both velocity and pressure fields, in those cases where one might be
interested only in the visualization of a single field;

• imposing physical constraints that couple different submodels, as in the case of fluid–
structure interaction (the different field variables are indeed treated as independent
by the neural network);

• ensuring the ROM stability by enriching the reduced basis spaces;
• solving a dynamical system at the reduced level to model the fluid dynamics, though

keeping the error propagation in time under control.
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We assessed the performance of the POD DL-ROM technique on three test cases,
dealing with the flow around a cylinder benchmark, the fluid–structure interaction between
an elastic beam attached to a fixed, rigid block and a laminar incompressible flow, and
the blood flow in a cerebral aneurysm, by showing its ability in providing accurate and
efficient (even on moderately large-scale problems) ROMs, which multi-query and real-
time applications may ultimately rely on. In particular, the prior dimensionality reduction
performed through POD on the snapshot matrices also enhances the overall efficiency of
the technique during the offline training stage.

Despite that their construction is mainly data-driven, being informed by the physics
only through the snapshots, the POD-DL-ROMs provide results that are consistent with the
underlying physical model. Indeed, the residual of the POD-Galerkin ROM evaluated on
the POD-DL-ROM solution, computed during the training phase, decreases over the epochs
even if this term is not included in the loss function. A possible pitfall of the methodology
is represented by the amount/quality of training data: if too few (or low-quality) snapshots
are considered, further operations such as (i) increasing the number of parameters of the
network, or (ii) training the network for a larger number of epochs, or (iii) generating more
data by means of data augmentation techniques can be required. Finally, a relevant issue is
related to the generalization properties of the network outside the parameter range and/or
the time interval where snapshots have been sampled. At the moment, ensuring good
approximation properties when handling long-time scenarios, even in presence of almost
periodic regimes, without more specific network architectures, is an open issue in which
our efforts are focused—however, this represents a general aspect related with several
machine/deep learning algorithms.

Therefore, we can conclude that POD-DL-ROMs provide a nonintrusive and general-
purpose tool enabling us to perform real-time numerical simulations of fluid flows. Since
they return a (FOM-like detailed) computation of the field variables, rather than approx-
imating selected output quantities of interest as in the case of traditional emulators or
surrogate models, POD-DL-ROMs are a viable tool for detailed flow analysis, without any
requirement in terms of computational resources during the online testing stage. Last, but
not least, we highlight that, in contrast to FOM simulations, both the training and testing
phases of the POD-DL-ROM neural networks can be carried out on a fairly inexpensive
GPU—such as those ones that nowadays can be found in a mid-tier personal computer,
bolstering the case that this approach could ultimately be exploited without the need of
high-performance computing resources.
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