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Abstract: Many complex turbulent flows in nature and engineering can be qualitatively regarded
as being constituted of multiple simpler unit flows. The objective of this work is to characterize the
coherent structures in such complex flows as a combination of constituent unitary flow structures for
the purpose of reduced-order representation. While turbulence is clearly a non-linear phenomenon,
we aim to establish the degree to which the optimally weighted superposition of unitary flow struc-
tures can represent the complex flow structures. The rationale for investigating such superposition
stems from the fact that the large-scale coherent structures are generated by underlying flow in-
stabilities that may be reasonably described using linear analysis. Clearly, the degree of validity
of superposition will depend on the flow under consideration. In this work, we take the first step
toward establishing a procedure for investigating superposition. Experimental data of single and
triple tandem jets in crossflow are used to demonstrate the procedure. A composite triple tandem jet
flow field is generated from optimal superposition of single jet data and compared against ‘true’ triple
jet data. Direct comparisons between the true and composite fields are made for spatial, temporal,
and kinetic energy content. The large-scale features (obtained from proper orthogonal decomposition
or POD) of true and composite tandem jet wakes exhibit nearly 70% agreement in terms of modal
eigenvector correlation. Corresponding eigenvalues reveal that the kinetic energy of the flow is also
emulated with only a slight overprediction. Temporal frequency features are also examined in an
effort to completely characterize POD modes. The proposed method serves as a foundation for more
rigorous and robust dimensional reduction in complex flows based on unit flow modes.

Keywords: complex flow; data driven; flow reconstruction; linear filters; proper orthogonal decom-
position (POD); superposition; unit flow

1. Introduction and Motivation

Fluid mechanics research has traditionally employed canonical flows as a means of
determining the dominant mechanisms of naturally occurring flow phenomena, relying
exclusively on scientific discovery from first principles. Regarding more complex flows
found in nature and engineering, high-fidelity parameterization of geometric, kinematic,
and dynamic quantities of interest have proven costly for iterative optimization, for both
experiments and simulations alike [1]. There exists then a significant area of possible con-
tributions for data-driven methods that seeks not to replace, but to compliment traditional
means of understanding, modeling, optimization, and control of complex fluid flows.

Decomposition methods such as proper orthogonal serve as the plausible candidate
in more robust reconstruction methods of complex flows from their unit bases. These
techniques are a fundamental cornerstone of data-driven engineering and no stranger
to fluid mechanics and turbulence research. Such methods seek to exploit the evolution
of coherent structures or patterns in large data sets, i.e., fluid flows, to construct low-
order models of the complex fluid motions. Decompositions represent the data as a
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linear combination of basis elements, called modes, that separate the spatial and temporal
structures via their shared energy contributions [2].

The current investigation seeks to examine a different avenue for rapid reconstruction
of complex flow fields and reduced (but still useful) level of fidelity. It is evident from visual
inspection that complex flows are composed of multiple distinct physical features and
phenomena. For example, any complex wake of a bluff body is comprised of von Kárman
shedding [3,4], Kelvin–Helmholtz instability [5], and vortex pairing/merging [6]. The
individual features and phenomena can be isolated and examined in canonical unit flows
with relative ease [7–9] both in laboratory experiments and numerical simulations. Signifi-
cant advances in high spatio-temporal resolution experimental imaging and high-fidelity
numerical simulations have generated a wealth of two- and three-dimensional velocity
field data on such flow phenomena for visualization and exploration. These velocity fields
represent the primary means of understanding the underlying vortex dynamics and tur-
bulent stresses of such flow topologies from both the human’s [7] and computer’s [10]
interpretation of the associated physics. It is reasonable then to postulate that the large-scale
turbulent structures of complex flows are similar to those in unit flows and differ only in
component magnitudes, shapes, and/or frequency. These notions prompt an overwhelm-
ing query for applied fluid mechanics: can complex fluid topologies be reconstructed from
suitably combining canonical unit flow features?

The current investigation provides a foundation for potential reconstruction methods
by first examining a linearly weighted superposition of the primitive variables, i.e., velocity
fields, directly. While the current motive is concerned with high spatio-temporal fidelity
data sets found in fluid experiments and simulations, apparent extensions for more general
scalar fields and imaging applications will be evident. By setting a non-biased global crite-
rion, features are extracted from the primitive data, without the need for a priori knowledge
or expertise. This is especially attractive for complex flows. Many of these flows may consist
of repetitive geometries containing several turbulence generating devices. By appointing a
unit cell basis, these devices are typically identified as simple canonical flow types, or unit
flows, such as homogenous grid turbulence, jets, wakes, and mixing layers which have
been studied extensively in classical turbulence theory [11–13]. Replication or reconstruc-
tion of complex flows from appropriate unit flows is challenging due to the non-linear
interactions, where kinematic and dynamic exchanges promote secondary features and
effects, not present in the underlying unit flow(s). On the other hand, the linear potential
flow theory has enjoyed qualified success in many aerodynamic and hydrodynamic flows
for computing basic forces and flow patterns. Superposition of potential theory solutions of
different unit flow fields to capture basic features of complex flows often serves as the first
step in many multi-fidelity CFD (computational fluid dynamics) approaches [14]. Indeed,
the so-called Panel Method is still used in the fields of aerodynamics and hydrodynamics
for yielding rapid-turnaround calculations for multi-disciplinary optimization.

The objective of the present work is to examine the use of spatial superposition of
linearly weighted unit flows as a means of reconstructing a complex flow by optimizing
certain objective functions. The methodology applies elements of image editing, linear
algebra, and optimization to an arbitrary high-fidelity physics-based data set. To re-iterate,
the method is generalizable and little a priori information or expertise about the physics,
i.e., mechanics, itself is needed. Experimental data of unit and complex flows are used
to verify the degree of validity and utility of the proposed superposition approach. The
investigation that follows provides sufficient evidence that the composite weighted unit
flows share sufficient spatial and temporal information with that of their corresponding
‘true’ measured complex data sets, linked via their eigenvalues as assessed via each data
set’s proper orthogonal decomposition (POD).

Section 2 provides a brief review of the POD matrix factorization used to generalize
the eigen decomposition of rectangular matrices found in high-fidelity experimental and
numerical fluid flow data. The review is provided in anticipation of evaluating the super-
position approach for such data sets, formally introduced in Section 3. The methodology
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provides a flexible framework to overlay/stitch and linearly weight sub-domains of the
unit flow(s), whose summation provides a composite imitation of the ‘true’ measured or
simulated complex flow. The composite and ‘true’ data sets can then be assessed effec-
tively via their corresponding POD constituents. There exist several possible extensions
for frequency-based or hybrid decompositions. However, no effort is provided here. In
Section 4, the methodology is applied to time-resolved particle image velocimetry (TR-
PIV) data of a single and three tandem round jets in a crossflow, where the latter exhibits
complicated secondary interactions as a result of shielding provided by each jet with
its neighbor(s) [15]. The cross-sectional plane measurements of the single and tandem
jet arrays share the same general physical features and phenomena and constitute the
unit and complex flows, respectively. It is found that low-order dimensional approxima-
tions of the complex fluid flow’s spatial, energetic, and temporal behaviors are possible
with the use of weighted sub-domains of the associated unit flow type. Current optimal
weightings are based on limited velocity field information, i.e., the aforementioned sub-
domains of the flows, from the optical measurement field of view and current limitations
are acknowledged.

The article concludes with a discussion surrounding perhaps the most important
consequence of this work. The proposed weighted superposition method and the well-
known POD are both inherently linear representations of the primitive unit flow data. This
implies that the POD eigenvectors themselves may be used, in place of the velocity data,
in a similar linearly weighted superposition procedure over large ranges of Reynolds or
Mach numbers, where the coherent structures are known to differ only in their size, shape,
and frequency of observation. The authors envision a more robust reconstruction strategy
employing these cataloged mode shapes, with more refined weightings provided by
advanced machine learning (ML) algorithms, to greatly reduce the number of experiments
or simulations needed to effectively reproduce complex fluid flows of interest.

2. Dimensionality Reduction via POD

Originating from the Karhunen–Loève theorem [16], POD is used in several fields of
science and may also be referred to as principal component analysis, Hotelling analysis,
empirical component analysis, quasi-harmonic modes, empirical eigenfunction decom-
position, etc. [9]. POD was originally introduced to the fluid mechanics community by
Lumley [17], who sought to relate the spatial structures of the modes with the correspond-
ing coherent structures in turbulent flows. One of the most attractive features of the POD
is that its modes provide an optimal (in a least squares sense) orthogonal basis of the
stochastic process. The POD’s emphasis on spatial formations and energy optimality
makes it fundamentally valuable to the current effort: it provides a coordinate transform
and reduction to simplify the dynamics and low-order flow physics [18,19]. The technique
has become a staple of a wider class of dimensionality reduction techniques, whose major
objective is to extract key features and dominant patterns that yield reduced coordinates
thereby adequately describing the input data more compactly and efficiently [9].

It is important to distinguish the objectives of the POD for data-driven applications
from that of reduced-order modeling (ROM). Extensive efforts in model reduction have
employed Galerkin projection of the Navier–Stokes equations onto an orthogonal basis
of POD modes [20]. Unsteady behaviors in the flow field may yield certain low-energy
states that exhibit large influence on the dynamics, but do not significantly contribute to
the low-order POD modes. While the modes may be optimal for the input data set, they
are frequently not optimal for the Galerkin projection [21]. Such methods are closely tied
to the governing equations, constrained by first principles of empirical understanding. In
general, ROM methods are considered intrusive and require human expertise for model
development. The quintessential difference for data-driven methodologies, in the context
of fluid physics, is the incorporation of ML algorithms for identification and modeling,
which rely only on partial a priori knowledge of the governing equations, constraints, and
symmetries [22]. This does not imply that decomposition methods, or the larger array of
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potential ML algorithms available, may be applied naively. Such methods are blind to the
basic physics and its inherent constraints and dynamics [10]. It is well known that the POD
performs well for statistically stationary periodic flow types, but may perform poorly for
non-normal systems experiencing significant transients or unsteady behaviors [23]. The
current work discusses application of the POD in terms of high-fidelity experimental or
numerical fluid flow data, though the technique and methodology that follows is consis-
tent with the broader range of imaging and pattern recognition with excellent references
provided by [24,25].

The current investigation utilizes the singular value decomposition (SVD) method,
briefly reviewed here using the convention provided by references [9,26]. The SVD is
a general decomposition technique for rectangular matrices [27,28], and the POD is a
decomposition formalism. The SVD represents only one possible method to solve the POD
and is accompanied by the classical method [29] and the method of snapshots [30–32],
where the latter can be found throughout the fluid mechanics and turbulence literature.
The SVD is ideal for the proposed work in that it is generalizable, easily implemented,
and computationally inexpensive. The data set, X ∈ Rn×m, here pertaining to velocity
components Ui(xi, t), is first organized into columns according to Equation (1).

X =

 |
x1
|

|
x2
|

. . .
|

xm
|

 (1)

The reshaped data set consists of column vectors of the fluid velocity, where n is the
number of discrete vector points in a given frame, and m is the number of snapshots, in
the data set. It is beneficial to compute the row-wise mean according to:

xj =
1
n ∑n

i=1 Xij (2)

with corresponding mean matrix

X =

 1
...
1

xj. (3)

and subtract this column vector from the data matrix X . The non-mean-subtracted and
mean-subtracted data sets are understood as the instantaneous and fluctuating field data,
respectively. It is common knowledge in the fluid mechanics community that either ren-
dition produces the same hierarchical modes, with the exception of the instantaneous
field’s first mode representing the time-averaged field and its second mode being nearly
identical to that of the fluctuating field’s first mode. The time-averaged modal represen-
tation is valuable for the current objective and as such, the instantaneous quantities are
preferred here.

The SVD of data matrix X ∈ Rn×m is formulated according to Equation (4).

X = ΦΣΨT (4)

where Φ ∈ Rn×n, Ψ ∈ Rm×m and Σ ∈ Rn×m, and where m < n for TR-PIV measurements
and T is the transpose. Matrix Σ consists of real, non-negative entries along its diagonal and
zeros everywhere else. Given that n > m, matrix Σ has a maximum of m non-zero elements
along its diagonal. It is useful then to employ the economy SVD to exactly represent X
according to Equation (5).

X = ΦΣΨT =
[

Φ̂ Φ̂⊥
][ Σ̂

0

]
ΨT = Φ̂Σ̂ΨT (5)
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where Φ̂ implies the economy-sized decomposition of the matrix (zeros removed), ⊥ is
the orthogonal compliment, and hence, the columns of Φ̂⊥ and Φ̂ span vector spaces that
are complimentary and orthogonal. Matrices Φ̂ and Ψ are unitary matrices consisting of
orthonormal columns referred to as the left singular vectors and right singular vectors
of X , respectively. It should be noted that in the instance where X contains n < m, the
economy SVD will instead contain a maximum of n non-zero elements along its diagonal.
The columns of Φ̂ are more formally known as the eigenvectors. The diagonal elements of
Σ̂ ∈ Rm×m are the singular values, denoted by σ1, σ2, . . . σm and are ordered from largest
to smallest. For completeness, it should be stated that the singular values held in Φ and Ψ
are identical to the eigenvectors of XX T and X TX , respectively. Thus, the singular values
are directly related to the eigenvalues, λj, via the relation σ2

j = λj [9]. The data matrix X , i.e.,
a velocity component field Ui(xi, t), is effectively decomposed into three parts by the POD,
separating the physical characteristics into spatially orthogonal modes and corresponding
temporal contributions, via their hierarchically ranked eigenvalues.

Mode truncation is the primary concern in reconstructing a low-order approximation
of the original data matrix X . Major factors include the desired rank of the system, noise
magnitude, and the distribution of singular values, or inherently, the eigenvalues of the
system [26]. Many authors opt for a heuristic approach to determine the rank r that
provides a pre-allocated amount of variance (energy) of the original data, typically 80%,
90% or 99%. The current work favors the optimal hard thresholding criteria of Gavish
and Donoho [33]. The authors view truncation as a hard threshold of the singular values,
where values larger than τ are kept, and the remaining values are removed. This method
assumes that the input data matrix consists of low rank structure contaminated Gaussian
white noise according to Equation (6).

X = Xtrue + γXnoise (6)

where the magnitude of the noise is denoted by γ and the entries of Xnoise are assumed
independent and identically distributed Gaussian random variables with zero mean and
unit variance. In the case of turbulent flow data, the noise magnitude is generally unknown,
in which case the optimal hard threshold estimates the noise magnitude and scales the
distribution of singular values according to the median singular value, σmed. This implies
that there is no closed form solution and τ is approximated numerically according to
Equation (7).

τ = ω(β)σmed (7)

where β = m/n, the parameterω(β) = λ(β)/µβ, and µβ is the solution to Equation (8).

∫ µβ

(1−β)2

[((
1 +
√
β
)2 − t

)(
t−
(
1−
√
β
)2
)]1/2

2πt
dt =

1
2

(8)

3. Linearly Weighted Superposition for Complex Flow Reconstruction

The linearly weighted superposition is first presented in the example using the cross-
sectional wake formations of the single and tandem jets in a crossflow. The section con-
cludes with a formal summary and generalized strategy for reconstruction of complex data
sets form their unit basis/bases.

As alluded to at the end of Section 2, there is a general pattern or similarity shared
by each jets’ penetration, wake formation, and periodic flapping that has the potential to
be modeled using only data available from the single jet in crossflow, the unit flow in this
instance. The methodology is visualized in Figure 1 which for the current investigation
applies to the streamwise and spanwise velocity components, U(x, z, t)) and W(x, z, t),
respectively. As seen in Figure 1a, the single jet measurement data (black) is duplicated
and cropped into three sub-domains (blue, green, and red). From Figure 1b, each sub-
domain’s cropped indices are carefully chosen to directly overlay with the Cartesian
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coordinate positions of the first (blue), second (green), and third (red), based on the
available measurement field of view, with supplemental zeros (gray) imposed on non-
existent upstream conditions as seen in Figure 1b. The sizing of each null matrix ensures
that each of the sub-domains consists of an identical number of rows and columns, or i
and j, respectively. In reference to Figure 1c, there exists an independent constant scalar
weighting for each of the three velocity field sub-domains, that when overlaid and summed
together, i.e., a weighted average (overlaid blue, green, and red), can provided a reasonable
approximation of the complex fluid flow data (black), to be further assessed by low-order
dimensional reduction.

Fluids 2021, 6, x FOR PEER REVIEW 6 of 22 
 

cropped indices are carefully chosen to directly overlay with the Cartesian coordinate po-
sitions of the first (blue), second (green), and third (red), based on the available measure-
ment field of view, with supplemental zeros (gray) imposed on non-existent upstream 
conditions as seen in Figure 1b. The sizing of each null matrix ensures that each of the sub-
domains consists of an identical number of rows and columns, or i and j, respectively. In 
reference to Figure 1c, there exists an independent constant scalar weighting for each of 
the three velocity field sub-domains, that when overlaid and summed together, i.e., a 
weighted average (overlaid blue, green, and red), can provided a reasonable approxima-
tion of the complex fluid flow data (black), to be further assessed by low-order dimen-
sional reduction. 

 
Figure 1. (a) Composite sub-domains extracted from the single jet velocity field data, (b) clear de-
piction of each sub-domain and appended null matrices, and (c) representation of the overlaid 
sub-domains to approximate the tandem jet array’s experimentally measured flow physics. Color 
legend: black— ‘true’ measurement data, blue—sub-domain of jet 1, green—sub-domain of jet 2, 
and red—sub-domain of jet 3 based on current available field of view. 

The current weighting procedure employs a simple quadratic programming scheme. 
The objective function to be solved is displayed in Equation (9). ฯ෍ w୧𝓍୧ − 𝓍୲୒୧ୀଵ ฯଶ + ‖w‖ଶ (9)

Here, each column of 𝓍 is a sub-domain matrix stored as a column vector, and since 
there are three sub-domains (N = 3), 𝓍 is an ij ×3 matrix and 𝓍୲ is the ‘true’ measured 
or numerical data set, i.e., an ij ×1 array. The term w is also an ij ×1 array and corre-
sponds to each sub-domain’s ‘weight’ to be determined. Recognizing that ‖x‖ଶ = 𝓍′ ∙ 𝓍 
and argmin{𝓍} = argmin{𝓍ଶ}, Equation (9) readily simplifies to: = wᇱ(𝓍ᇱ𝓍 + I)w − 2wᇱ𝓍ᇱ𝓍୲ + 𝓍୲ᇱ𝓍୲ (10)

the third term of which is constant with respect to 𝑤 and is therefore discarded during 
minimization. From Equation (10), the quadratic objective term, H, and linear objective 
term, f, are appointed according to Equations (11) and (12), respectively. 

Figure 1. (a) Composite sub-domains extracted from the single jet velocity field data, (b) clear
depiction of each sub-domain and appended null matrices, and (c) representation of the overlaid
sub-domains to approximate the tandem jet array’s experimentally measured flow physics. Color
legend: black— ‘true’ measurement data, blue—sub-domain of jet 1, green—sub-domain of jet 2, and
red—sub-domain of jet 3 based on current available field of view.

The current weighting procedure employs a simple quadratic programming scheme.
The objective function to be solved is displayed in Equation (9).

‖∑N
i=1 wixi − xt‖2 + ‖w‖2 (9)

Here, each column of x is a sub-domain matrix stored as a column vector, and since
there are three sub-domains (N = 3), x is an ij× 3 matrix and xt is the ‘true’ measured or
numerical data set, i.e., an ij× 1 array. The term w is also an ij× 1 array and corresponds
to each sub-domain’s ‘weight’ to be determined. Recognizing that ‖x‖2 = x′·x and
argmin{x} = argmin

{
x2}, Equation (9) readily simplifies to:

= w′
(
x′x + I

)
w− 2 w′x′xt + x′txt (10)
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the third term of which is constant with respect to w and is therefore discarded during
minimization. From Equation (10), the quadratic objective term, H, and linear objective
term, f, are appointed according to Equations (11) and (12), respectively.

H = 2·
(
x′·x + I

)
(11)

f = −2·xt·x (12)

We then define linearity equality constraints Aeq =
[

1 1 1
]

and beq = 1 and
a lower bound of zero to ensure non-negative weightings. Finally, the problem is fully
specified according to Equation (13).

min
1
2

xTHx + fTx such that
{

Aeq·x = beq
lb ≤ x ≤ ub

(13)

which is solved using >>w=quadprog(H,f,[],[],Aeq,beq,lb) in MATLAB to provide the
optimized weights for each sub-domain [34]. As alluded to prior, the weighted averaged
comprises the composite data set,

xc = ∑N
i=1 wixi (14)

which is compared to the ‘true’ data set, xt, via their corresponding PODs.
In review, the methodology is formally proposed according to Algorithm 1 provided below.

Algorithm 1. Given a two-dimensional, high spatio-temporal complex flow topology Ui(xi, t)
produced by experiment or numerical simulation and here prescribed as the ‘true’ data set xt,
proceed as follows.

1. From the complex flow, determine the underlying unit flow(s), i.e., multiple tandem jets and
a single jet in crossflow, comprising the complex flow topology and unit flow, respectively.

2. Produce a corresponding unit flow data set with sufficient spatial overlap and identical
sampling/temporal discretization to the complex one, e.g., via additional experiment or
numerical simulation.

3. Determine suitable quantity, N, of sub− domains, xi, of the unit flow(s), their
placement(s) *, and if necessary, appropriate matrix transformations **, that adhere to the
Cartesian coordinates of turbulence generating devices comprising the complex topology,
e.g., as depicted in Figure 1.

4. Cast the sub-domains as an objective function, calculate the quadratic objective term, H, and
the linear objective term, f, according to Equations (11) and (12), respectively.

5. Define the linearity constraints: Aeq is a 1 × N matrix of ones and beq = 1. Appoint a lower
bound: lb is a 1 × N matrix of ones. Note that the objective function is normalized and that
the upper bound is inherently defined.

6. Calculate the optimal weights, wi, for each sub-domain according to Equation (13). In
practice, this is easily accomplished with the use of MATLAB according to the command,
>>w=quadprog(H,f,[],[],Aeq,beq,lb).

7. Calculate the weighted average, here referred to as the composite data set, xc, according
to Equation (14).

8. Organize data sets xt and xc as column vectors according to Equation (1) to yield Xt and Xc,
respectively.

9. Apply the POD to both Xt and Xc according to Equations (4) and (5) with truncation
provided by Equations (7) and (8).

* “Placement” may refer to stitching sub-domains side by side if spaced sufficiently far apart or
overlapping if secondary mixing interactions are plausible. ** Typical matrix transformations:
stretching, rotation, reflection as discussed in any reputable linear algebra textbook.

The principal goal of this work is to establish the extent of validity of linear superposi-
tion and quantify the effects of non-linearity. The superposition methodology proposed
here is applicable any complex flow field data that consists of repetitive canonical flow(s)
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as its basis(es), e.g., jets, bluff bodies. The input data set is inherently a function of spatial
and temporal coordinates, with sufficient resolution of each (i.e., a global representation),
and does not rely on underlying knowledge of the governing equations. The weighting
functions of superposition are expected to be flow dependent. Guidelines for determining
the weighting functions for unseen flows will be developed in future works.

Th extension of the unit flow superposition methodology for flows with multi-scale
coherent structures (e.g., wall-bounded turbulence) requires further development. These
flows consist of several dominant eddies, spaced sufficiently far apart such that they act in-
dependently of one another [35]. Global representations are not effective in such instances,
since the associated coherent structures are essentially unrelated. Such flows are better
suited for a hierarchical approach using the minimum flow concept [36]. Reconstruction
of these flows entails superposition of multiple modes of different frequencies and hor-
izontal spatial wavenumbers [37]. Such multiscale reconstruction will be attempted in
future works.

In summary, Algorithm 1, Steps 1–2 describe the general unit basis of a larger series of
patterned features. Step 3 employs intuitive image alterations and matrix transformations to
effectively replicate the pattern from its fundamental repeating feature(s). Steps 4–7 provide
the basis for weighted averages of each sub-domain via a generalized optimization strategy
employing quadratic programming. The composite and “true” data sets are then compared
via an appropriate decomposition as described in Steps 8–9. This methodology provides
the fundamental framework for complex flow reconstruction via a linearly weighted
superposition of the unit flow basis(es). The approach is now assessed for the unit and
complex fluid problem at hand (Figure 1) and followed by a discussion of possible future
avenues of enhancement.

4. Results: TR-PIV Data of Tandem Jets in a Crossflow
4.1. Description of Data Sets

The experimental data sets were collected using TR-PIV on a tandem array of three
jets in a crossflow. A series of single jet experiments are provided at identical testing
conditions to the tandem jets, serving as the unit flow basis as discussed previously in
Section 3. Several authors have investigated the single jet in crossflow using POD and
have identified several important coherent structures that occur as a result of unsteady
boundary layer interactions, pressure gradients, turbulence, and vortex formations, and
how these features develop as the jet momentum overcomes that of the crossflow [38–42].
Universal scaling laws have proven to be challenging and the addition of more than one
jet only seeks to further complicate this objective, particularly in the range of low jet to
crossflow velocity ratios (Vj/U∞ <2). These flows are characterized by several important
vortical formations including hairpin, horseshoe, shear layer, and wake vortices, as well as
counter rotating vortex pairs [43] that each affect the statistically dominant flow features at
different velocity ratios.

Full details regarding the experimental arrangement have been outlined
previously [15,44] with pertinent details reviewed here. The experiment consists of a
low speed wind tunnel test section with three round jets in a tandem formation issuing
vertically downward from the ceiling of the test section as outlined in Figure 2. The tunnel
inlet consists of a top-hat, low turbulence inlet profile and each of the three jets exhibit
nearly identical flow rates and turbulent Reynolds numbers at their exits into the test
section. The same conditions are confirmed for the single jet formation, utilizing only the
middle jet with the upstream and downstream jets sealed flush. The single jet results form
the unit flow basis for the more complex tandem jet array at identical testing conditions,
which include three distinct jet to crossflow velocity ratios, Vj/U∞ = 0.9, 1.25, and 1.7. The
inner diameter of each jet is D = 22.225 mm with a center-to-center spacing of 2D. The
test section dimensions consist of 27.43D, 9.8D, and 20.57D in the x, y, and z directions,
respectively. The crossflow velocity and Reynolds number are 9.52 m/s and 1.82 × 105,
respectively, which is held constant for all velocity ratios considered.
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is provided by a Photonics DM30-527-DH laser (Photonics Industries, Ronkonkoma, NY, 
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outfitted with a LaVision Scheimpflug Mount, Nikon AF NIKKOR 50 mm f/1.8D lens, and 
LaVision Inc. 527 nm bandpass filter (LaVision Inc., Ypsilanti, MI, USA). A high-quality 
silvered mirror is rigidly mounted at a 45° angle underneath the test section to provide 
optical access to the test section in the xz plane (Figure 2b). 

The field of view is 207.2 mm ×  175.9 mm in the x and z directions, respectively, 
and is located at y/D = 1. The laser and cameras are synchronized to provide 2600 image 
pairs at 1 kHz. The separation time is set to 116, 75, and 38 μs for V୨/Uஶ = 0.9, 1.25, and 
1.7, respectively, providing particle displacements of approximately 4–6 pixels in each im-
age pair. Vector field generation is accomplished with LaVision DaVis 8.4.0 software. Pre-
processing employs a Butterworth high pass filter with local 7 frame length to limit back-
ground noise. Vector processing utilizes the stereo cross-correlation algorithm with initial 
two passes using a 64 × 64 pixel window with 1:1 square weighting and 75% overlap and 
four final passes using a 32 × 32 pixel window with an adaptive PIV grid with 75% overlap. 
Vector generation produces 120 × 102 spatial grid points from the measurement field of 
view, constituting each instantaneous velocity field. Post-processing incorporates a 
‘strongly remove and iteratively replace’ median filter, which removes vectors if the dif-
ference to the average is greater than 2 × root mean square (RMS) of its neighbors and re-
inserts the vector if the difference to the average is less than 3 × RMS of its neighbors. As 
a final step, vector interpolation fills any holes in the instantaneous velocity field pro-
duced by the initial post-processing filter. This interpolation computes the average of all 
neighboring vectors surrounding the missing point, with a minimum of two neighbors 
for computation. 

Instantaneous and time-averaged velocity magnitude profiles of the xz plane at y/D 
= 1 have been observed previously in [15,44] and are reproduced here in Figures 3 and 4. 
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permission from Kristo and Kimber, Time-resolved particle image velocimetry measurements of a tandem jet array in a
crossflow at low velocity ratios [15]; published by Springer Nature, 2021.

Both the crossflow and jets are seeded sequentially using a TSI Six Jet Atomizer (TSI
Incorporated, Shoreview, MN, USA) with Dioctyl Sebacate tracer particles. Illumination is
provided by a Photonics DM30-527-DH laser (Photonics Industries, Ronkonkoma, NY, USA)
with a thickness of ~1 mm. Two Phantom Miro M120 CMOS cameras (Vision Research Inc.,
Wayne, NJ, USA) are mounted in a stereoscopic configuration and each is outfitted with a
LaVision Scheimpflug Mount, Nikon AF NIKKOR 50 mm f/1.8D lens, and LaVision Inc.
527 nm bandpass filter (LaVision Inc., Ypsilanti, MI, USA). A high-quality silvered mirror is
rigidly mounted at a 45◦ angle underneath the test section to provide optical access to the
test section in the xz plane (Figure 2b).

The field of view is 207.2 mm × 175.9 mm in the x and z directions, respectively, and
is located at y/D = 1. The laser and cameras are synchronized to provide 2600 image
pairs at 1 kHz. The separation time is set to 116, 75, and 38 µs for Vj/U∞ = 0.9, 1.25, and
1.7, respectively, providing particle displacements of approximately 4–6 pixels in each
image pair. Vector field generation is accomplished with LaVision DaVis 8.4.0 software.
Pre-processing employs a Butterworth high pass filter with local 7 frame length to limit
background noise. Vector processing utilizes the stereo cross-correlation algorithm with
initial two passes using a 64× 64 pixel window with 1:1 square weighting and 75% overlap
and four final passes using a 32 × 32 pixel window with an adaptive PIV grid with 75%
overlap. Vector generation produces 120 × 102 spatial grid points from the measurement
field of view, constituting each instantaneous velocity field. Post-processing incorporates
a ‘strongly remove and iteratively replace’ median filter, which removes vectors if the
difference to the average is greater than 2× root mean square (RMS) of its neighbors and re-
inserts the vector if the difference to the average is less than 3 × RMS of its neighbors. As a
final step, vector interpolation fills any holes in the instantaneous velocity field produced by
the initial post-processing filter. This interpolation computes the average of all neighboring
vectors surrounding the missing point, with a minimum of two neighbors for computation.

Instantaneous and time-averaged velocity magnitude profiles of the xz plane at y/D = 1
have been observed previously in [15,44] and are reproduced here in Figures 3 and 4. The
single jet profiles in Figure 3a–c appear amorphous, as a result of the aggregation of several
mechanisms induced by the two perpendicular flow streams and boundary layer interactions
with the wall leading up to the jet. These effects include entrainment and mixing with the
freestream, unsteady velocity fluctuations from turbulence, and the rotation induced in the
flow as a result of these interactions. Several features drive the flow patterns found in this
plane including periodic flapping of each jet’s wake, the outer shear layer interface with the
uniform free stream, and recirculation zones as a result of the jet momentum, here into the
plane, which acts to stall the perpendicular crossflow. The tandem jet configuration further
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complicates these interactions as the flow driving mechanisms become less clear, exhibiting
more localized features as a result of the spatial proximity of each jet.
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These features allow additional leverage in augmenting the data matrix X for each
velocity component investigated. As suggested by [45] in their flow past a cylinder example,
each data matrix is augmented with a secondary set of m snapshots, identical to the
measurement data in X , but flipped across the symmetric axis and corresponding sign
change, according to Equation (15).

Xaug =

 X −

 0
0
1

0

. . .

0

1
0
0

X
 (15)

The method is mathematically sound and still entirely a function of the observed
physics; used as a means of enforcing symmetry in the data set and strengthening signal
correlation as a result of doubling the number of snapshots, m. This augmentation is applied
to both Xt and Xc, after Equation (3) and before Equation (4). While having clear benefit
for the current data set, this and similar augmentations require a basic understanding of
the flow phenomenon and physical features before use and should thus be applied at the
user’s discretion.

4.2. Optimal Weightings Based on Discrete Parameterization

As initially illustrated in Figure 1, the single jet wake is extracted, copied, and overlaid
to imitate each of the three tandem jets (jets 1, 2, and 3). It should be noted that the field
of view limits the available overlap for each segment to the range −2.54 ≤ x/D ≤ 2.48
and −2.04 ≤ z/D ≤ 2.04. From the initial investigation [15], the majority of this region
encompasses the interaction between the first leading jet and the encapsulated middle jet.
The optimal weightings for each segment’s corresponding velocity components and velocity
ratios tested are provided in Table 1. As discussed in [15], the leading jet in the tandem
array exhibits similar behaviors to that of the single jet and exhibits a shielding effect on its
downstream neighboring jets. This notion is reflected here with the optimal weightings
for jet 1 being substantially higher than jets 2 or 3. Given the limited experimental field
of view, the weightings for jet 3 are minimal. It is believed that a substantially larger field
of view would provide additional non-zero weightings for jet 3, as its influence becomes
more apparent further downstream. With increasing velocity ratios and corresponding
shielding, the downstream tandem jets penetrate further into the crossflow. This produces
an interesting tradeoff, as the jet 1 U and W weightings appear inversely and directly
proportional to Vj/U∞, respectively. The opposite functional dependencies are found for
the jet 2 weightings. The optimal weightings are now assessed via their composite data sets’
energy content (eigenvalues), spatial modes (eigenvectors), and temporal distributions.

Table 1. Optimal velocity component weightings for each composite jet at each jet to crossflow
velocity ratio.

Jet 1 Jet 2 Jet 3

Vj/U∞ U(x,z,t) W(x,z,t) U(x,z,t) W(x,z,t) U(x,z,t) W(x,z,t)

0.9 0.9589 0.8089 0.0000 0.1911 0.0411 0.0000
1.25 0.9474 0.9094 0.0526 0.0906 0.0000 0.0000
1.7 0.9382 0.9689 0.0618 0.03111 0.0000 0.0000

4.3. Energy Spectra and Cumulative Energy Distributions

The energy spectra and cumulative energy for the composite and ‘true’ data sets are
presented in Figure 5 for the dominant low-order modes, here representing approximately
80% of the kinetic energy of their corresponding velocity components. The composites
promote eigenvalues that are remarkably similar to the true measured tandem jet data,
across all three velocity ratios and both components of velocity. This is reaffirmed by the
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cumulative energy for each velocity ratio as a function of the increasing number of modes.
Physically, this implies that the kinetic energy content of the tandem jet array is captured
by the composite unit flows in both the streamwise and spanwise velocity formation of the
jet wakes with a slight overprediction on behalf of the composites. In general, these trends
follow nearly identical curves, implying that with possible further refinement of the data
sets and/or weightings, a higher precision optimal composite may indeed overlap with
the ‘true’ kinetic energy distribution. The current motive is merely to assess this procedure,
via the constituents of the POD, to determine whether more robust numerical schemes are
a likely avenue of success in determining improved optimal weightings via unit flows of
more repetitive flow geometries.
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(d–f) W at each velocity ratio ((a,d), (b,e), and (c,f) correspond to Vj/U∞ = 0.9, 1.25, 1.7, respectively). Describes the kinetic
energy content of each POD mode for comparison between composite and experimentally measured tandem jets.

Results of the optimal hard truncation for each data set are presented in Table 2. In
general, the number of truncated modes, r, for the measured and composite data sets
provide similar quantities, with the composite truncations requiring slightly less modes for
each velocity ratio. The maximum difference in r between the composite and measured
truncations is 1.2% for the Vj/U∞ = 0.9 velocity components. This difference is found to
be a function of increasing velocity ratio, with a maximum difference of 15.7% found for
the Vj/U∞ = 1.7. The singular value thresholds, τ, for the composite streamwise velocity
component yield fairly similar trends, namely a low percent difference at the lowest
velocity ratio (8.0%) which increases significantly at the highest velocity ratio (22.5%).
The spanwise component’s cutoffs are more severely affected by the weighting procedure
and differ from their measured comparisons. As discussed in Section 2, the optimal
cutoff values are inherently based on the noise magnitude found in their corresponding
data sets. The composites, however, must also consider the effect of segmenting and
weighting the data. The authors have previously applied POD to the original single jet in
crossflow data sets [15,44] and found the corresponding τ values to be nearly identical to
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that of the tandem jet, thereby confirming that the major culprit here is the segmentation
and/or weighting. These cutoff values, however, do not take away from the success of the
composite in replicating the eigenvalue magnitudes, cumulative energy distributions, and
potential compression of the measured data set as displayed previously in Figure 5 and
here in Table 2.

Table 2. Optimal hard truncation values for each velocity component, U and W, corresponding to
each Vj/U∞ case. Measured and composite data for the tandem jets are listed with and without
parenthesis, respectively.

Vj/U∞
U(x,z,t) W(x,z,t)

r τ r τ

0.9 1088 (1095) 0.81 (0.88) 1052 (1065) 0.59 (0.91)
1.25 1073 (1227)) 1.06 (1.12) 1053 (1172) 0.88 (1.16)
1.7 1070 (1269) 1.17 (1.51) 1030 (1207) 1.14 (1.58)

4.4. Eigenvectors

Low-order POD modes for the composite and measured data sets are provided in
Figure 6, using the Vj/U∞ = 1.25 case as an example. It should be noted that the first mode
and all modes greater than one are constrained by respective uniform color scalings for
direct comparison. Given the preconditioning of the velocity fields (non-mean subtracted,
i.e., instantaneous quantities) the first modes are statistically similar to the time-averaged
velocity fields as seen in Figure 6a,c for the U and W components, respectively. The
composite segments are slightly visible for the U component’s Φ1, but do not extend
visibly past the first mode. In general, clear similarities and discrepancies can be observed
between the composite and measured modes. The U(x, z, t) comparison in Figure 6a,b
shows that the coherent structures present in Φ1 and Φ2 are similar in both shape and
magnitude. Perhaps more interesting is that the composite Φ3 and Φ4 agree quite well
with the measured Φ4 and Φ3, respectively. This implies that the same general coherent
structures exist in the composite and measured data sets, with slightly different hierarchical
rankings. The W(x, z, t) comparison in Figure 6c,d shows several relatively large and
smaller-scale shapes. The composite data sets tend to capture the large-scale features and
proximities, as expected. Regarding the smaller-scale structures, the composites exhibit
weaker correlation strength, visibly understood as the faint, secondary shapes in Figure 6c
compared to those present in Figure 6d. For a given test case and each velocity component,
the first mode of the composite and measured data sets contain the majority of the kinetic
energy, as expected, and offer nearly identical percentages of relative energy. For each
mode thereafter, the relative kinetic energies for the composite and measured data sets
are also in excellent agreement, with the U component values performing slightly better
than the W component. These comparisons reflect the ability of the composite data and
corresponding decompositions to accurately depict flow structures promoted by shear and
localized eddies in the wake of the tandem jets as evident by the measured tandem jet data.
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The eigenvector correlation, RΦ, is determined according to the dot product of the
eigenvectors from the composite and measured data sets as seen in Equation (16).

RΦ =
|Φc·Φt|
‖Φc·Φt‖

(16)

where Φc and Φt represent the eigenvectors of the composite and ‘true’ (here, measured)
data, respectively, | | is the absolute value, and ‖ ‖ indicates the L2 norm. The absolute
value operator is imposed on the numerator to ensure no negative correlations are calcu-
lated, given that positive and negative signs on the spatial modes are accounted for by
their matrix decomposition counterparts and have no physical meaning here. Assessment
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of the eigenvectors continues in Figure 7, which compares the spatial correlation provided
in Equation (16) between the low-order modes of the composite and measured data for
each velocity ratio tested.

The following observations are consistent and key trends across all available cases:
within the first few modes, the correlation strength ‘switches’ between distinctly high
values (RΦ ≥ 0.7) to distinctly lower values (around RΦ < 0.45). Higher correlation values
indicate that the complex flow field modes are well captured by superposition, while the
lower values are likely a result of discrepancies in the hierarchical ranking of the unit
and complex eigenvectors as observed earlier in Figure 6. After approximately the first
10 to 20 modes, the correlation values are defined within the range of approximately
0.45 ≤ RΦ ≤ 0.7, implying that the weighted superposition is strongly related to the low-
order POD modes and their inherent dynamics. It is critical to note that this is consistent
for both in-plane components of velocity, U(x, z, t) and W(x, z, t). For the sake of brevity,
the current investigation focuses on the in-plane velocity components only. However, it is
not unreasonable to believe that these observations extend to other field variables that are
functions of the current vector fields, e.g., pressure, vorticity.
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4.5. Temporal Loadings

The final component of the decomposition, Ψ, quantifies the importance of each mode
to an arbitrary instantaneous velocity field. More directly, each column of the matrix Ψ
can be interpreted as the temporal loading of each mode onto the arbitrary instantaneous
velocity field. Understanding the importance of each mode, and its relative loading, are
critical to the prediction of large and small-scale spatial features [9,26]. It is useful to view
histograms of these loadings to visualize similarities and differences in data sets, in this
case by comparing the composite and measured data at a given velocity ratio as seen
in Figure 8. For the sake of brevity, loadings for the U(x, z, t) fields are discussed, and
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those of W(x, z, t). are excluded, though it is confirmed that similar observations apply to
both components.
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For the current application, the ideal outcome would seek to have the proposed
weighting procedure replicate the physical behavior and kinetic energy of the system, in
which the loading distributions would perfectly overlap. From Figure 8, the first modes,
indicative of the average fields, yield distinct peaks with excellent overlap as expected. A
far more critical evaluation is provided by the magnitudes and distributions of the temporal
modes greater than Ψ1. While general overlap is confirmed, two key differences can be
found: first, separability, particularly in Ψ2 for the Vj/U∞ = 0.9 and 1.25 cases and second,
differences in magnitude, which are most evident in Ψ4 of Vj/U∞ = 1.7. While physical
interpretation is limited, it is well known that the POD allocates all temporal content of
the input data into Ψ, and that the low-order reconstruction is heavily dependent on these
temporal loadings. Future reconstruction schemes will likely seek to employ more robust
computational methods to optimize transformation inputs and/or more readily account
for the dominant frequencies of the system. While the POD’s optimality guarantees the
identification of the most energetic modes, it does not distinguish between their frequencies,
which may differ substantially in certain situations [2]. Higher-order improvements will
thus benefit from also accounting for overlap in the temporal loadings, thereby fully
constraining the POD parameters, towards optimal reconstruction schemes for repetitive
flow geometries. There are several possible extensions in frequency-based decompositions
as well, though this discussion is deferred to Section 5.

4.6. Projections

As a final assessment of the linearly weighted superposition, the composite data set is
projected onto the measured one according to Equation (17).

X̃c =
~
Φ

~
Φ

T
Xt (17)

where X̃c is the projected approximation of the measured (‘true’) data, Xt, as before. This
example incorporates the time-averaged velocity field 〈U〉 from the Vj/U∞ = 1.25 case,
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though this method could be applied to any instantaneous frame as well. The projection
assesses the composite data set’s ability to replicate the true time-averaged behavior. This is
accomplished only if the subspace of the composite data set includes a sufficient amount of
similar or shared features as that of the time-averaged measurement data. The projection is
presented in Figure 9 which displays the TR-PIV result for reference, and discrete truncation
intervals of approximately 2.5, 5, 10, 20, 40, 80, and 100% of the total truncation (r) of the
composite data set.
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ment data for Vj/U∞ = 1.25 as a function of increasing modal contributions. The (a) TR-PIV time average of the complex
flow is included for comparison against the fully truncated composite projection of the unit flow with approximately
(b) 2.5%, (c) 5%, (d) 10%, (e) 20%, (f) 40%, (g) 80%, and (h) 100% of the truncated modes.

The projections reveal that there is indeed a sufficient overlap of features, physically
understood as the effects of shear and rotation, between the composite and measured
tandem jet flows to replicate the time-averaged field. By defining a relative error between
the original TR-PIV data and the truncated data sets, according to Equation (18), this is
further confirmed in Figure 10.

ε =

∣∣∣Xe − X̃c

∣∣∣
|Xe|

(18)

It is evident then, that across the fully truncated projection, the composite data set
successfully projects the average flow field within 10% relative error, with the exception
of the leading and middle jet penetration, seen as two roughly circular regions. It is
reasonable to believe that the secondary effects of shielding, exhibited by an upstream
jet on its downstream tandem neighbor, may be poorly captured in these regions by the
unit flow and current weightings. Localized weightings may accommodate these effects,
providing yet another avenue for development.
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Figure 10. Relative error, ε, contours of projected composite data decomposition onto the measurement data time-averaged
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The procedure is briefly repeated here for the spanwise component, 〈W〉, and dis-
played in Figure 11.
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Figure 11. Vj/U∞ = 1.25 case time-averaged spanwise velocity, 〈W〉/U∞, contours of (a) measurement data and (b) projected
composite data, as well as relative error, ε, contours normalized by (c) measured 〈W〉, and (d) measured 〈U〉.

In contrast to the streamwise component, the relative error for the 〈W〉 component
exhibits peak concentrations along x/D ≈ 1.5 and is more sporadic than that found in
Figure 10. This is a result of the smaller velocity values found in the non-dominant
flow direction and relative error criteria in Equation (18), whose relative differences are
exacerbated by smaller values in the denominator, |Xt|. For reference, the spanwise
relative error is non-dimensionalized by the time-averaged streamwise component, 〈U〉, in
Figure 11d. Similar to the conclusions drawn from the streamwise component in Figure 10,
the projection and corresponding relative error in Figure 11d confirms that the features
are well represented, with the exception of the periphery of the leading and middle jet
penetrations, here out of plane in the y+ direction. The procedure relies heavily on the
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spatial and temporal resolution of the input data. This is customary for decomposition
methods in general but is also crucial here for image editing and matrix transformations in
order to successfully replicate the complex data. In addition to the linear weightings, the
authors also considered stretching/compressing of the sub-domains to better replicate the
wake motions of each jet in the complex flow. Again, the spatial grid resolution inhibited
high modal correlation and adequate reconstruction of the measured complex flow field.
The current TR-PIV benchmark data set consists of 2600 snapshots, sampled at 1 kHz,
with 120 × 102 spatial grid points available. High-fidelity numerical simulation data,
e.g., Large-Eddy Simulation, can provide much finer spatial detail, which may provide a
fruitful next step in determining the grid sensitivity and relative error incurred by different
unit placement configurations, i.e., stitched side by side, or as in the current benchmark,
overlapping. Nonetheless, the proposed method is a testament to ‘error vs. effort’: the
ability of the composite data set to capture the spatial, energetic, and temporal scales of
the ‘true’ data set with minimal a priori expertise, user and computational expense, and
low memory storage has several important consequences on the future understanding and
analysis of fluid mechanics.

While several possible avenues exist for more efficient and robust reconstructions,
the authors provide only a brief overview here for potential improvements surrounding
the choice of input data, weighting strategy, and decomposition technique. As alluded to
in 1.0 Introduction and motivation, an important observation of the proposed weighted
superposition and the well-established POD are that both techniques are linear represen-
tations of the primitive data, i.e., the velocity fields. The success of the current weighted
superposition, as applied directly to these velocity fields, suggests that with improved
data resolution and larger fields of view, the POD unit flow eigenvectors may be used
directly, in place of the unit flow primitive data, to reconstruct complex flow fields. These
unit eigenvectors would then be subject to similar image editing, matrix transformations,
and optimized weightings according to the ‘true’ complex mode shapes. The implication
here is that these generalized mode shapes could be scaled to a variety of geometries, flow
types, and non-dimensional parameters in their respective class of flows, via a ‘library’ of
weightings. This proposed method holds significant potential for reduced computational
expense and scaling of complicated industrial flow features. As discussed for the current
benchmark, experiments are typically limited by their field of view and testing ranges. As
such, these efforts may benefit more directly from high-fidelity numerical simulations.

5. Discussion

A linearly weighted superposition method has been introduced that seeks to replicate
key aspects of the spatio-temporal behavior of complex fluid flow data from its constituent
unit flow feature(s). The qualified success of linear potential flow theory and linear de-
composition methods such as proper orthogonal decomposition (POD) provide motivation
and guidance for the present approach. In order to achieve the stated objective, the unit
feature(s) are processed through a combination of empirical image editing, conventional
matrix transformations, and optimized weightings to produce an artificial composite rep-
resentation of a ‘true’ experimentally measured or numerically simulated complex data
field. Weightings are optimized using the ‘true’ data set and are then multiplied to each
of the prescribed sub-domains, the sum of which yields the composite flow field. POD is
applied to the composite data set and the ‘true’ data set, thereby separating their spatial
and temporal content via their corresponding eigenvalues for comparison and evaluation
of the proposed method. The methodology is formulated and examined using previously
vetted experimental data [15].

The benchmark data set consists of time-resolved particle image velocimetry (TR-PIV)
cross-sectional measurements of a single and triple tandem jet array, constituting the unit
and complex flows, respectively. The single jet in crossflow is known to exhibit markedly
different boundary layer interactions, pressure gradients, turbulence, and vortex forma-
tions as a function of velocity or momentum ratio. Universal scaling laws have proven
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elusive, and the introduction of additional jets only complicates their interactions further,
making these data sets an excellent candidate for the proposed method. Copies of the single
jet velocity profile are cropped into three separate positions based on the axial centerline
of each tandem jet, multiplied by their respective optimal weightings, and then summed
to form the composite representation of the ‘true’ measured tandem jet profiles. An opti-
mal weighting combination is determined for both in-plane velocity components at three
distinct jet to crossflow velocity ratios in the range of 0.9 to 1.7. Composite eigenvalues
and cumulative energy distributions have faithfully reproduced those of the measured
tandem jet data, with only slight overprediction. Based on an optimal hard threshold, the
composite profiles also require less modes than the measurement data, implying that the
method may have a significant contribution in compressing complex data sets. Low-order
eigenvectors suggest good (~0.7 or higher) correlation and capture the large-scale flow
features produced by shear and rotation within the flow, with weaker representation of
the smaller-scale eddies. Similarities and differences in the temporal loadings are also
assessed for completeness and as another possible avenue for improved reconstruction
of complex flows from their unit basis/bases. The assessment concludes with the projec-
tion of composite data sets onto their corresponding measured time-averaged velocity
profiles. The truncated modes capture all major features of the bulk flow within 10%
relative error with the exception of small regions found along the periphery of the jet
cores’ penetration through the plane. From this benchmark investigation, it is evident that
the proposed methodology’s composite flow representations accurately reconstruct the
large-scale features of their analogous complex flow fields.

The critical tasks described here are concerned with feature extraction, shape optimiza-
tion, and dimensionality reduction, all of which are addressed within the larger framework
of machine learning (ML). It is clear that future improvements to complex flow reconstruc-
tion should seek more advanced ML algorithms for these tasks. The current weightings
employ quadratic programming to solve the objective function, providing uniform scalar
weightings between the composite and ‘true’ data sets, here, the velocity fields. Although
empirical, these weightings served the current motive of viable reconstruction of complex
flows. Supervised learning methods will likely best serve the optimal localized weightings,
with neural networks being an attractive candidate [46–49]. Regarding dimensionality
reduction techniques, the POD is an energy-based decomposition, and as alluded to in
Section 4.5, several frequency-based, or emerging hybrid decompositions, are plausible
with attractive candidates including the dynamic modal decomposition (DMD) [45,50,51]
and multi-scale proper orthogonal decomposition (mPOD) [2], respectively. A critical factor
towards the maturity of such candidates is establishing the degree of resolution needed to
accurately compute the associated coherent structures [52]. More refined decompositions
will no doubt provide additional means of identifying and replicating the spatial and
temporal content of a given complex data set. It is evident then, that a truly robust complex
flow field reconstruction strategy will require significant data-driven efforts within the
fluid mechanics and ML communities, providing several exciting avenues for improved
understanding, modeling, optimization, and control of complex fluid flows, and the wider
class of dynamical systems.
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