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Abstract: This paper reviews how dynamically adaptive wavelet methods can be designed to
simulate atmosphere and ocean dynamics in both flat and spherical geometries. We highlight the
special features that these models must have in order to be valid for climate modelling applications.
These include exact mass conservation and various mimetic properties that ensure the solutions
remain physically realistic, even in the under-resolved conditions typical of climate models. Particular
attention is paid to the implementation of complex topography in adaptive models. Using WAVETRISK

as an example, we explain in detail how to build a semi-realistic global atmosphere or ocean model
of interest to the geophysical community. We end with a discussion of the challenges that remain
to developing a realistic dynamically adaptive atmosphere or ocean climate models. These include
scale-aware subgrid scale parameterizations of physical processes, such as clouds. Although we
focus on adaptive wavelet methods, many of the topics we discuss are relevant for adaptive mesh
refinement (AMR).

Keywords: adaptive mesh refinement; adaptive numerical methods; atmosphere modelling; climate
modelling; Earth systems models; large-eddy simulation; ocean modelling; wavelets

1. Introduction

This Special Issue of Fluids highlights a range of applications of wavelet-based tech-
niques to problems in fluid dynamics, both for data analysis and for the numerical solution
of the Navier–Stokes or other fluid equations. In this paper, we review the basic issues and
challenges in applying adaptive wavelet methods to solve numerical models in geophysical
fluids dynamics. In particular, we focus on the atmosphere and ocean components of Earth
system models.

The matlab wavelet toolbox has helped make wavelets one of the most popular
techniques for analyzing almost any experimental or numerical data set. Interestingly,
the continuous wavelet transform actually has its origins in geophysical data analysis: it
was originally proposed as a tool to analyze one-dimensional oil well data [1,2]. Since then,
wavelet methods have been used to analyze seismic [3,4], ocean [5,6] and atmosphere [7,8]
data. They are also a standard tool for image compression [9], denoising [10], and a key
ingredient in compressive sampling [11–13]. In general, the continuous wavelet transform
is most useful for signal analysis, while the discrete (orthogonal or biorthogonal) transform
is used for data compression, denoising and compressive sampling.

In comparison with data analysis applications, wavelet techniques are still much less
widely used for the numerical solution of partial differential equations (PDEs). This is true
even though the success of wavelets in compressing and analyzing complex multiscale
data suggests wavelets are a natural basis for efficiently computing such data! Why
should we simulate turbulence using a spectral method, and then post-process it using
wavelets? Nevertheless, it has only been in the last 20 years that wavelet methods have
been developed and used for the numerical approximation of the underlying dynamical
equations. The goal is to use the fact that many natural signals compress well in a wavelet
basis to build a dynamically adaptive numerical scheme.
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After some initial attempts to develop wavelet Galerkin approaches (to take advantage
of both grid compression and operator compression), most wavelet-based methods for
PDEs now use the collocation method. In this approach, wavelets are used to provide an
adaptive multiscale grid structure (equipped with appropriate prolongation and restriction
operators), but discrete differential operators are approximated in physical space using
standard finite difference or finite volume methods. Because they are constructed in
physical space, wavelet collocation methods use biorthogonal rather than orthogonal
wavelets [14].

Adaptive wavelet collocation methods provide a genuinely multiscale alternative to
adaptive mesh refinement (AMR) [15–17]. AMR has been used extensively in astrophysical
fluid dynamics [18], and to a lesser extent in regional ocean modelling [19–22]. There have
also been some initial attempts to apply AMR to global atmosphere models [23].

Adaptive wavelet methods for geophysical flows have been limited primarily to
the two-dimensional shallow water equations on the plane [24–26], and small-scale two-
dimensional test cases of small scale atmospheric convection [27] and atmospheric bound-
ary layer flow [28]. In addition, a wavelet method has been proposed for three-dimensional
atmospheric chemical transport in flat topology [29]. To date, the only global adaptive
wavelet models of atmosphere and ocean flow are our WAVETRISK family of models that
will be reviewed in Section 4 [30–33]. We will use WAVETRISK development as an example
of how adaptive wavelet methods (and AMR) can be applied to Earth systems modelling.

Wavelet methods can be more complex to implement than standard AMR tech-
niques, but they also have advantages. Compared to AMR, wavelet methods do not
suffer from wave reflection at refinement boundaries and “hanging nodes” are not an
issue. The wavelet approach also directly controls the discretization error and number
of refinement levels, using a single non-dimensional tolerance parameter. Mimetic prop-
erties (such as mass conservation) can be built into the wavelet transforms. In addition,
appropriately designed wavelet methods can provide an adaptive overlay on an existing
flux-based method [30,33]. Perhaps the most useful feature of adaptive wavelet methods is
that they avoid the need for the ad hoc grid refinement criteria that are inherent to AMR
methods [23,33].

AMR and wavelets are both examples of h-refinement: the local grid resolution is
modified dynamically, based on certain error indicators. Other techniques to provide
dynamically adaptive grid resolution in geophysical simulations include r-refinement
(where the number of cells remains constant over time, but the grid is stretched locally to
increase resolution) and p-refinement (where the local approximation order is varied).

In addition, nested grids are commonly used in atmosphere models to provide static
higher resolution in areas of interest (e.g., higher resolution over land masses [34]). In
this method, a local fine resolution grid is embedded in a global coarse grid. Boundary
conditions for the fine grid are obtained from the coarse resolution grid, and the fine
grid data is restricted periodically to coarse grid simulation. Like AMR, this method can
produce reflections at the boundaries of the nested grid, and the procedure for generating
the boundary conditions is not well understood.

Variable resolution unstructured triangular meshes, or finite elements, are used ex-
tensively in ocean modelling to provide higher resolution near coastlines. Local static
refinement has also been proposed to improve representation of orography (e.g., the Andes
mountain range [35]). However, this approach can produce instabilities and does not al-
ways improve accuracy. A multiscale structure of regular grids may have better numerical
properties than a single scale unstructured mesh where the geometrical properties are not
easy to control (e.g., triangles can have extremely acute angles). Unstructured mesh genera-
tion is an open area of research, especially in aeronautics. On the other hand, the multiscale
scale structure of the wavelet method adds significant additional computational overhead
(about a factor of two for each active grid point). This means that a grid compression factor
of more than two is necessary for the adaptive wavelet method to be more efficient.
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However, adaptive multiscale wavelet collocation methods are mostly limited to engi-
neering applications, especially high Reynolds number incompressible and compressible
flows. This is surprising since perhaps the most challenging and important applications of
computational fluid dynamics are the Earth systems models of the ocean and atmosphere.
Adaptivity has the potential to dramatically improve the accuracy and computational
efficiency of these geophysical models.

Nevertheless, there are in fact significant obstacles to the use of adaptive wavelet
methods, or indeed an AMR approach, in ocean and atmosphere models. These complex
models impose specific constraints on numerical methods, and there is therefore a need to
implement approximations that have been fully validated by the geophysical modelling
community. The goal of this paper is to highlight the properties an adaptive model must
possess to be practically useful for atmosphere and ocean modelling, especially as part
of a climate model. We illustrate the development of such models in detail using the the
WAVETRISK [33] dynamically adaptive wavelet model as an example. WAVETRISK is the
first dynamically adaptive global three-dimensional atmospheric model. WAVETRISK repre-
sents a first step towards a true dynamically adaptive climate model, incorporating both
atmosphere and ocean components.

This paper focuses on the high level problem of how to successfully develop realistic
adaptive wavelet methods for atmosphere and ocean models. We will assume a basic
understanding of the wavelet multiresolution analysis, and how an dynamically adaptive
wavelet method for a PDE is structured. The interested reader could consult [36,37], or other
papers in this Special Issue, for an overview of the mathematics and numerical analysis
underlying these methods.

In Section 2, we summarize the properties that a dynamically adaptive method must
have in order to be usefully applied to atmosphere and ocean climate models. Although we
focus on climate models, and especially global models on the sphere, many of these features
also apply to regional models on shorter time scales (e.g., numerical weather prediction or
coastal flows), as well as to AMR implementations.

Section 3 highlights the specific challenges related to representing the complex topogra-
phy associated with orography (e.g., mountains), coastlines and bathymetry in geophysical
models. Many of these challenges also apply to non-adaptive models, where accurate
representation of topography remains a challenge.

Section 4 illustrates how the concepts outlined above have been implemented in actual
semi-realistic global atmosphere and ocean models: WAVETRISK and WAVETRISK-OCEAN.
The WAVETRISK models provide a practical and successful example of how the challenges
described can be met in practice. They also demonstrate that adaptive wavelet collocation
models can achieve good parallel performance on standard geophysical test cases.

In addition to these fundamental issues related to numerical modelling of geophysical
flows, in Section 5 we briefly summarize two complementary wavelet-based techniques that
can be used to improve the performance of adaptive multiscale wavelet-based methods:
local time stepping and adaptive multigrid solvers for elliptic equations. Local time
stepping adapts the time step to the (local) grid scale. Adaptive multigrid solvers use the
adaptive multiscale grid structure produced by the wavelet method as the basis for an
elliptic multigrid solver.

Finally, in Section 6 we describe the challenges that remain in developing operational
adaptive climate models, focusing on subgrid scale (SGS) modelling and the parameteriza-
tion of physical processes such as clouds and convection.

2. Necessary Properties of Atmosphere and Ocean Models

Adaptive wavelet methods for PDEs have been successfully developed and validated
for a wide range of engineering flows [37]. Some examples include incompressible turbu-
lence [38], magneto-hydrodynamics [39], fluid–structure interaction [40–43] and supersonic
flows [44]. In most cases the discretization locates all variables at the same grid points,
discretization errors are controlled to a finite tolerance and the total simulation times are
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relatively short. In addition, the numerical discretizations used do not necessarily have
to conform to evolving “state of the art” approximations, since it is relatively clear which
discretizations are valid approximations for the particular applications.

The situation is very different for global atmosphere and ocean models. It is vital
to understand the particular demands of these Earth systems applications in order to
design an adaptive code that will be useful to the geophysical fluid dynamics community.
In particular, since the development of numerical approximations is still an active area of
research, adaptive wavelet methods should be general enough to be implemented as an
adaptive overlay on any flux-based method.

The most basic constraint of geophysical simulations is that they are necessarily ex-
tremely under-resolved. Unlike engineering flows, it is not possible, even in simple cases,
to resolve all energetically active scales of motion for all physical processes. In the atmo-
sphere and oceans these scales range over at least nine orders of magnitude, from O(106) m
to O(10−3) m. Direct numerical simulations are therefore impossible, and even large eddy
simulation (LES) is a challenge. Because geophysical simulations are extremely under-
resolved, geophysical fluid dynamics discretizations ensure that certain properties of the
continuous PDEs also hold at the discrete level. This is called mimetic approximation.
For example, mass must be conserved to machine precision by the discretization. In addi-
tion to mass conservation, current models satisfy additional mimetic properties. These may
include discrete conservation of energy or enstrophy, conservation of circulation, or exact
maintenance of geostrophic balance.

The need for mimetic discretizations has pushed the community to use a variational
approach to derive discretizations from the discrete Euler–Lagrange equations, rather
than from the dynamical equations themselves [45]. In Section 4, we show how mimetic
properties can be conserved in an adaptive wavelet method by appropriate design of the
flux restriction and prolongation operators.

Most discretizations for ocean and atmosphere flows are flux-based, and therefore
use staggered grids to conserve fluxes. The use of staggered grids complicates the wavelet
transform since different variables are located at different grid points or cell edges. Figure 1
shows an example of the so-called C-grid discretization for the shallow water equations.
Note that the primal and dual grids have different geometries (triangles and hexagons,
respectively), and that each variable is located at a different point. The use of hexagons
and triangles is suitable for an icosahedral discretization of the sphere. A wavelet method
therefore needs separate scalar valued transforms (on the hexagons) and vector-valued
transforms (on the triangles).

i
x

ex
xv

Figure 1. The regular hexagonal C-grid. Circulation is located on the primal grid of triangles at
points xv. Mass and other scalars such as temperature are located on the dual grid of hexagons at
nodes xi. The velocities and fluxes are located on edges xe.

The primal grid is refined by repeated edge bisection of the icosahedron, producing a
nested hierarchy of triangular grids. However, on the sphere the dual grids (defined by the
edge bisectors of the primal grids) are not nested, and dealing with the overlapping dual
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grids is necessary to build the wavelet transform method. An example of how to construct
an adaptive wavelet method on a hexagonal C-grid is given in Section 4.

An adaptive wavelet method also needs to ensure that the thresholding of scalar
and vector wavelets controls the approximation error of the tendencies. This requires
appropriate asymptotic estimates of the PDEs themselves, since the tendencies for each
prognostic variable depends on the others through the PDE.

Global models are defined on the sphere. Since the spherical topology cannot be tiled
uniformly, the resulting grid is irregular (the geometry of each cell is unique) and there
are singular points with different valences. If the coarsest primal grid is the icosahedron,
there are twelve pentagonal dual cells in addition to the usual hexagonal cells. Different
discretizations of the sphere are possible (latitude–longitude, cubed sphere, ying-yang, . . . ),
but every discretization has singular points and irregular geometry. This means that the
wavelet transform must take into account local geometrical information and the special
singular point structure.

Finally, three-dimensional models are layered, and use either Eulerian or Lagrangian
vertical coordinates. Although in principle it would be possible to implement full three-
dimensional adaptivity, it is more consistent with the physics and much easier in practice
to adapt only in the horizontal direction. This results in a grid which is a set of vertical
columns of various sizes. This approach is well-suited to the parameterizations used
in geophysical models, which expect to work on columns. One of the most important
examples is the vertical diffusion model, which uses an eddy-viscosity type turbulent
kinetic (TKE) energy closure. The solar radiation and surfacing forcing models also work
on individual columns. Although sacrificing vertical adaptivity limits grid compression,
most geophysical flows have strong horizontal gradients.

3. Representing Topography in Adaptive Multiscale Geophysical Models

An essential component of atmosphere and ocean models is accurate representation
of topography. This is primarily mountains (orography) for atmosphere models and coast-
lines/bathymetry for ocean models. Topography is naturally multiscale: refining a grid
over topography reveals new details at every scale. This multiscale structure is a challenge
for conventional models, but is an excellent application for adaptive methods. Adaptive
methods make it straightforward to statically refine over mountain ranges or complex
bathymetry, so that the associated fluid dynamics is well represented. The challenge is to
provide a relatively simple way of refining and coarsening the topography consistent with
the adaptive representation of the fluid dynamics. Mathematically, this corresponds to de-
veloping a simple multiscale representation of the boundary conditions of the PDE, which
may be no-slip (Dirichlet), free-slip (Neumann), or some combination of the two (Robin).

One option would be to fix the resolution of the topography at a particular scale,
and simply interpolate or coarsen this base representation as the computational grid adapts
to follow the dynamics. While this approach is simple, it loses the multiscale information
about the topography that the adaptive approach is able to provide. In addition, choosing
a fixed resolution of a coastline, for example, wastes computational resources by over-
resolving regions where the flow is smooth.

Consider the example of tsunami propagation. A tsunami is generated seismically in a
small region, but then rapidly propagates over very large distances, eventually interacting
with coastlines. Wave amplitudes in mid-ocean are very small, but nonlinear steepening
and interaction with the details of the coast and shallow bathymetry produces extremely
high and damaging waves. The goal of tsunami modelling is to predict the interaction of the
tsunami with the coast, and this requires extremely accurate small scale representation of
the coastline geometry and bathymetry. So, ideally, one would prefer to have an extremely
coarse representation of the coastlines except in those locations where the tsunami has
actually reached the coast.

A consistent multiscale representation of the boundary conditions is difficult to achieve
explicitly, since the fluid domain actually grows and decreases as the grid resolution
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changes. Explicit representation of the boundary conditions also requires a multiscale
representation of the one-dimensional geometry of the coastline.

An alternative approach is to enforce boundary conditions implicitly, using a penal-
ization technique. Volume penalization is particularly attractive since the land masses are
defined using a (smoothed) mask function: zero in the fluid regions and one in the solid
regions. There are no requirements on the smoothness of the actual fluid–solid boundary,
and appropriate masks can be generated easily from available databases (e.g., ETOPO [46]).

Volume penalization methods for the Navier–Stokes equations were introduced
by [47,48]. This Brinkman penalization is based on the equations for flow through a porous
medium. No-slip boundary conditions are approximated by taking the limit of vanishingly
small porosity and permeability in the solid regions. Free-slip boundary conditions are
approximated by neglecting the permeability (friction) terms [49]. Brinkman penalization
enforces the boundary conditions only to first-order accuracy, although this is usually suffi-
cient, especially since h-refinement can be used to reduce the error. A family of higher-order
Brinkman penalization methods has been proposed by [50].

Since its introduction, Brinkman penalization has been applied to a wide range of
fluid flow problems and numerical schemes, including spectral methods [51], moving
boundaries [52,53], the wave Equation [54], the compressible Euler equations [49,55] and
the shallow water equations [26,56].

We now review the volume penalization technique proposed in [32] for the shallow
water equations. The penalized two-dimensional shallow water equations are

∂t h̃ + div h̃u = 0,

∂tu +
curl u

h̃
× h̃u + grad

(
gη̃

φ(x)
+

1
2
|u|2

)
= −σ(x)u,

(1)

where η̃ = φ(x)η (η is the perturbation of the free surface) and total depth h(x, t) =
H + η(x, t). The porosity φ(x) and permeability σ(x) are (approximately) discontinuous,

(φ(x), σ(x)) =
{

(α, 1/ε) in the penalized region,
(1, 0) in the fluid,

(2)

with ε� α� 1, where α and ε are, respectively, the porosity and permeability parameters
of the solid (porous) regions. The solid regions are defined by the mask 1(x),

1(x) =
{

1 in the solid,
0 in the fluid.

(3)

For numerical stability the mask 1(x) is smoothed over a few grid points. The porosity
φ(x) and permeability σ(x) are defined based on 1(x) and the control parameters α� 1
and ε� 1 as

φ(x) = 1 + 1(x)(α− 1), (4)

σ(x) =
1
ε
1(x). (5)

This penalization conserves mass and is stable (total energy is decreasing) and has the
same wave speed in fluid and solid regions. The error of the penalization is O(αε1/2). Note
that only ε constrains the stability of an explicit numerical method, ∆t ≤ ε, so the overall
accuracy of the penalization can be controlled easily by adjusting the porosity parameter α.
The constant wave speed and the addition of the porosity parameter α give this method
some practical advantages over that proposed by [26].

Figures 2 shows the adapted grid and surface wave height from a penalized shallow
water WAVETRISK-OCEAN simulation of the 2004 Indonesian tsunami. Note that the in-
creased resolution is only used where required by the tsunami dynamics (i.e., not at all
locations along the coastlines) [32]. The finest resolution is 500 m (j = 14 bisections of the
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icosahedron) and the coarsest resolution is 16 km (Jmin = 9). Figure 3 illustrates the high
sensitivity of the adaptivity to the wavefront dynamics.

Figure 2. Tsunami after 70 min. The grid compression ratio is 930 and the finest resolution of
500 m is required only where the tsunami is interacting with the coastline, and locally in parts of the
propagating wavefront. The black boxes indicate the zoomed regions shown in Figure 3. (Reproduced
from [32].)

100 km

Figure 3. Tsunami simulation using volume penalization. approximately 650 km × 550 km zoom of
grid (left) and height (right) for results shown in Figure 2. The black hexagons have size approxi-
mately 0.5 km. (Reproduced from [32].)

In recent work [57], we have extended this volume penalization approach from coast-
lines to bathymetry in three-dimensional ocean models. Volume penalization of small scale
bathymetry details provides benefits even in non-adaptive models by avoiding the large
pressure gradient errors normally associated with strong bathymetry gradients. We plan to
integrate this bathymetry penalization in WAVETRISK-OCEAN.

Although we have focused here on penalization for coastlines and bathymetry in
ocean models, an approach similar to that in [57] could be used for orography in atmo-
sphere models.

4. The WAVETRISK Global Atmosphere and Ocean Models
4.1. Background and Goals

The WAVETRISK project grew out of an initial attempt to develop an adaptive wavelet
collocation solver on the sphere [58]. This project used the biorthogonal second generation
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wavelet transform on the sphere proposed in [59]. Our intention was to use this two-
dimensional code as the basis for a global atmosphere or ocean dynamical core. However,
it rapidly became obvious that our engineering approach was not suitable for geophysical
flows, because it was not compatible with staggered grids and did not discretely con-
serve mass. Therefore we started over, incorporating the essential features of a practical
geophysical code as described in Section 2.

The basic features of WAVETRISK were introduced in [30] for the shallow water equa-
tions on the β plane. We used the TRISK discretization scheme [60] on the hexagonal–
triangular C-grid shown in Figure 1 because of its excellent mimetic properties and its
operational use in the model for prediction across scales (MPAS) code [61]. This scheme
is second order in space on the plane. The TRISK scheme conserves either kinetic energy
or potential enstrophy. In addition, potential vorticity is conserved, and the Lagrangian
behaviour of potential vorticity is consistent with that of the continuous equations (i.e., the
material derivative is the same).

The wavelet adaptivity is designed as an overlay on any flux-based discretization.
Mimetic properties (e.g., mass conservation) are preserved by the adaptivity, and the
discretizations of differential operators are unchanged. The foundations of the method
are one-scale operators (in this case, the TRISK discretizations) and two-scale prolonga-
tion/restriction operators between a fine scale j + 1 and a coarse scale j.

In the following section we review the key aspects of the adaptive wavelet method for
the shallow water system, focusing on the ingredients needed for a practical atmosphere or
ocean model. Full details of the three-dimensional atmospheric model are given in [33]
and cited references.

4.2. Conservative Adaptive Wavelet Algorithm for the Shallow Water Equations

The two-dimensional shallow water equations for flat bathymetry are

∂th + div F = 0, (6)

∂tu + F⊥q + grad B = 0, (7)

where h = H + η is the total depth (η is the free surface perturbation), F = hu is the depth
flux, F⊥ is depth flux perpendicular to F, q = (curl u + f )/h is the potential vorticity (with
f the Coriolis parameter), and B = gη +K is the Bernoulli function (with g the gravitational
acceleration and K = |u|2/2 the kinetic energy). (Note that we set density ρ0 = 1 kg/m3 to
simplify the equations.) These equations are discretized on the C-grid (see Figure 1) as

∂thi + [div Fe]i = 0, (8)

∂tue + F⊥e q̂e + [grad Bi]e = 0, (9)

where hi is the height at hexagonal node i, ue is the velocity at edge e, Fe is the thickness flux
normal to a hexagon edge, and F⊥e is the thickness flux in the direction normal to a triangle
edge. The operators div, grad, curl, and F⊥e qe are discretized using the TRISK scheme [60].

The mass-conserving adaptive wavelet algorithm for the TRISK Equations (8) and (9)
is described in Algorithms 1 and 2. Note that we assume the reader is familiar with the
basic structure of a second-generation (biorthogonal) adaptive wavelet transform.

The scales are constructed by dyadic refinement from the coarsest resolution Jmin, so
that the primal grid edges satisfy ∆xj = 2∆xj+1. Recall that the scaling functions (e.g., hj

i ,

no tilde) are the approximations at level j, while the corresponding wavelets (e.g., h̃j
i) give

the differences between the scaling functions approximations at levels j + 1 and j (i.e., the
interpolation error).

An adaptive grid is generated by neglecting those wavelet coefficients (and associated
grid points) with magnitude ≤ ε̃. Because TRISK uses a staggered grid, with height and
velocity at different points, these algorithms must include additional grid points (i.e.,
an enlarged index set) to ensure that all values necessary for the computation of the
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TRISK operators, as well as the height and velocity wavelet transforms, are present. This
represents a significant increased complication compared with a purely collocated method
where all variables are located on a single grid!

The key to preserving the mimetic properties of TRISK (and conserving mass) in the
adaptive algorithm is to restrict the fluxes, rather than the prognostic variables themselves.
Equations (10)–(12) give the constraints these restriction operators must satisfy to preserve
the mimetic properties of TRISK.

Algorithm 1: Conservative adaptive wavelet computation of tendencies.

1. Perform an inverse wavelet transform to compute scaling coefficients hj
i and uj

e from

the wavelet coefficients h̃j
i , ũj

e and coarsest levels scaling coefficients hJmin
i , uJmin

e .
The data flow is from the coarsest level Jmin to the finest level at which non-zero
wavelet coefficients exist (determined by the tolerance ε̃).

2. Compute mass flux Fj
e , Bernoulli function Bj

i and potential vorticity flux F⊥e q̂j
e in a

loop starting at the finest level:

(a) Where possible, compute Bj
e, Fj

e by restriction from j + 1.

(b) Where restriction is not possible, at level j compute Fj
e and Bj

e using the TRISK

operators at level j applied to hj
i and uj

e.

(c) Where possible, computeFj⊥
e q̂j

e by restriction from j + 1.

(d) Where restriction is not possible, compute Fj⊥
e from Fj

e and q̂j
e using the

TRISK operators at level j.

3. At each level j separately, apply TRISK operators to Bj
e, Fj

e and Fj⊥
e q̂j

e to compute the

scaling function tendencies ∂th
j
i , ∂tu

j
e, and then obtain wavelet tendencies ∂t h̃

j
i , ∂tũ

j
e

using the wavelet transform between levels j + 1 and j.

Algorithm 2: Determining the index sets required for the adaptive wavelet compu-
tation of tendencies. This expands the active grid (i.e., produces a larger index set)
compared with simply thresholding wavelet coefficients

1. Given the set active wavelet coefficients (magnitude ≥ ε̃), determine separately at

each level j the indices required to compute wavelet tendencies ∂t h̃
j
i , ∂tũ

j
e from

scaling function tendencies ∂th
j
i , ∂tu

j
e.

2. Determine which scaling functions Fj
e and Bj

i need to be computed, in a loop starting
from finest level:

(a) Check which Fj⊥
e q̂j

e can be obtained by velocity restriction from scale j + 1.
Where this is not possible, determine which scaling function indices needed
to compute the relevant TRISK operators.

(b) Check which Fj
e and Bj

i can be obtained by restriction from level j + 1. Where
this is not possible, determine which scaling function indices needed to
compute the relevant TRISK operators.

3. Given the set of indices needed to compute the TRISK operators, find the minimal set
of indices i and e needed to compute the inverse wavelet transforms.
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To preserve the mimetic properties of the TRISK scheme the restriction operators from
scale j + 1 to scale j are designed so that they satisfy the commutation properties

Rj
h ◦ divj+1 = divj ◦ Rj

F conserves mass, (10)

curlj ◦ Rj
u = Rj

ζ ◦ curlj+1 conserves circulation, (11)

gradj ◦ Rj
B = Rj

u ◦ gradj+1 no spurious vorticity, (12)

where div, grad, curl are the corresponding TRISK operators, Rh is the height restriction, RF
is the flux restriction, Ru is the velocity restriction, Rζ is the circulation (vorticity) restriction,
and RB is the Bernoulli function restriction. The third commutation relation ensures that
a flow with uniform potential vorticity remains uniform under advection by an arbitrary
velocity field (i.e., vorticity is advected like a tracer). Conserving these mimetic properties
is especially important for multi-year simulations, where small unphysical effects can
accumulate over time.

In addition to the above mimetic properties, TRISK also conserves either kinetic energy
or potential enstrophy. When run non-adaptively, WAVETRISK also conserves kinetic energy.
However, grid adaptation necessarily involves some dissipation of energy when grid points
are removed. Most energy is recovered during interpolation onto the new adaptive grid,
but a small amount is lost. Ref. [30] show that grid adaptation is equivalent to Laplacian
diffusion with viscosity proportional to ε̃. In practice, most climate models include a small
amount of diffusion, using a Laplacian or bi-Laplacian operator, to damp grid scale noise
and as a crude model of the effect of unresolved scales.

4.3. Adaptivity

As outlined in the previous section, the adaptive grid is generated by first thresholding
the wavelet coefficients h̃j

i and ũj
e and then enlarging the required index set by including

those points required to compute the TRISK operators and wavelet transforms (i.e., all
restriction and prolongation operators). As in other adaptive wavelet methods, the index
set is further enlarged by adding nearest neighbours in both position and scale. The nearest
neighbours in position are sufficient for a CFL number of one, while the nearest neighbours
in scale are sufficient for a PDE with at most quadratic nonlinearities.

Recall that for a single variable u(x), applying a threshold ε̃ to its wavelet coefficients
ũj

i controls the wavelet reconstruction error, as well as the number of active grid points N
(and hence the degree of grid compression),

‖u(x)− u≥(x)‖∞ = O(ε̃), (13)

N = O(ε̃−1/2N), (14)

‖u(x)− u≥(x)||∞ = O(N−2N), (15)

where N is the order of the interpolation (prolongation) operator used in the wavelet
transform (N = 2 for WAVETRISK).

The fact that on the C-grid we have two different wavelet transforms, scalar-valued
for h and vector-valued for u, on different grids, means that the thresholding operation
and subsequent error control is more subtle. We need to define separate thresholds for
the wavelet coefficients h̃j

i and ũj
e that ensure that the errors of the tendencies ∂thi and

∂tue are controlled to the same relative tolerance (note that the tendencies for height and
velocity depend on both prognostic variables). We have explored three solutions to this
thresholding problem on staggered grids.

In the first case we considered directly thresholding the tendency wavelets. However,
this also requires an appropriate thresholding scheme for the wavelet of the variables
themselves, and does not give appreciably better results than thresholding just the vari-
able wavelets.
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In the second case, for the shallow water equations, we performed an asymptotic
analysis on the linearized PDEs to estimate consistent thresholds on the height and velocity
wavelets [30]. We derived thresholds in two different regimes: the inertia–gravity wave
regime (i.e., fast dynamics, like a tsunami wave) and the quasi-geostrophic regime (i.e.,
slow dynamics, like two-dimensional turbulence). For the inertia–gravity wave regime we
found that to control the tendencies to a relative tolerance of ε̃ we must apply the following
thresholds to height and velocity,

ε̃h ∼
cU
g

ε̃3/2, ε̃u ∼ Uε̃3/2, (16)

where c =
√

gH is the wave speed and U is a characteristic velocity scale (recall that for
simplicity we set the constant density ρ0 = 1 kg/m3, so it does not appear explicitly).
A similar analysis for the quasi-geostrophic regime gives the thresholds

ε̃h ∼
f ULRo

g
ε̃3/2, ε̃u ∼ URoε̃3/2, (17)

where Ro = U/( f L)� 1 is the Rossby number.
Finally, in [33], we showed that a simple thresholding scheme, like

ε̃h ∼ ‖h‖∞ ε̃, ε̃u ∼ ‖u‖∞ ε̃, (18)

is sufficient to control the tendency errors for linear constant coefficient PDEs. The norms
may be estimated a priori, or computed dynamically during the simulations. This approach
is generally applicable to adaptive wavelet methods on staggered grids.

One of the strengths of the adaptive wavelet method is that the criteria for adapting
(or coarsening) the grid are quantitative and well-defined (13). These criteria also explicitly
control the reconstruction error of each variable, and implicitly the tendency error. This
contrasts with AMR, where the grid refinement criteria are more qualitative and less
systematic. AMR grid refinement depends on a more or less ad hoc criterion based on
only a subset of the variables (often only the vorticity or velocity gradient). It is therefore
not always clear that the AMR approach properly controls the approximation error for
all variables, and control of the tendency error is not guaranteed. For example, Ref. [23]
experimented with various AMR refinement criteria, and concluded that for a simple
shallow water simulation on the sphere

All three test cases demonstrated that a variety of AMR criteria and thresholds
lead to improvements in the results, though to maximize that improvement,
the refinement criteria needed careful tailoring.

while they conjecture that for more complex PDEs

. . . more advanced criteria than just a simple relative-vorticity threshold need to
be investigated. They could be based, for example, on combinations of physics-
based properties (like rainfall), thresholds of vorticity, or gradients. Future work
will explore such refinement criteria in the 3D nonhydrostatic version of the
Chombo-AMR model . . .

An objective grid refinement criterion makes adaptive wavelet techniques a good
choice for more complicated multi-physics models.

4.4. Extension to Global Models on the Sphere

On the sphere the primal (triangle) grid shown in Figure 1 is generated first, by re-
peated bisection starting from the icosahedron. Then the dual (hexagon grid) is generated
from the primal grid using the perpendicular edge bisectors of each triangle edge as the
hexagon edges. A coarsest level is chosen (typically Jmin = 5 or Jmin = 6 bisections of the
icosahedron). This coarsest level is then optimized to improve its regularity and numerical
properties [62]. A multiscale hierarchy of grids is then constructed by simple edge bisection
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of the primal grid, starting with the coarsest (optimized) grid. Although the quality of the
grid declines with the number of bisections, we have found good results with five or more
refinements (see Figure 2).

On the plane, both the hexagons and triangles are nested and regular. In contrast,
on the sphere the hexagons are not nested, and the primal and dual grids are not regular.
Because the hexagons are not nested, the overlapping regions between fine and coarse
hexagons must be carefully accounted for when computing flux restrictions (recall that
fluxes are defined across hexagon edges). Grid irregularity means that geometric informa-
tion must be stored for each (active) cell, and that the 12 pentagonal cells must be treated
specially. An example sequence of nested primal grids on the sphere is shown in Figure 4.
The resulting wavelet transform is based on the spherical biorthogonal wavelet transform
introduced in [59]. Note that all TRISK computations use spherical geometry (e.g., spherical
cap areas).

Figure 4. Wavelet transform on a non-adaptive primal grid with three scales. (Reproduced from [33]).

4.5. Extension to Three Dimensions

Three-dimensional atmosphere and ocean models are constructed from two-dimen-
sional layers (typically 20 to 80 layers). The adapted three-dimensional grid is computed by
applying the algorithm described in Section 4.3 to each vertical layer separately, and then
taking the union of adapted grids over all layers. This produces a data structure of columns
of variable horizontal size, where the width of each column is set by the strictest criterion
over all layers.

Implementing only horizontal adaptivity greatly simplifies the code, as well as being
consistent with the primarily two-dimensional dynamics of ocean and atmosphere flow.
A data structure of columns is also ideally suited to existing parameterization schemes (e.g.,
for vertical diffusion or solar flux), which expect to work on columns. The disadvantage is
that two-dimensional adaptivity is not optimal for tilted structures, or intrinsically three-
dimensional phenomena like convection (although our current hydrostatic and Boussinesq
model does not support convection, except through parameterization).

Working with columns is also advantageous for parallel load balancing, since the
columns can be easily distributed amongst the available cores. Adding more vertical levels
therefore improves efficiency since it adds work to each core.

We use a Lagrangian vertical coordinate in both the atmosphere and ocean models.
This has the advantage that we do not need to compute vertical fluxes (and vertical velocity
is not a prognostic variable). However, in order to avoid layer collapse we need to remap
the vertical grid periodically, using a conservative remapping scheme (e.g., a piecewise
parabolic method [63]).
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In principle, remapping could be used to provide a kind of r-refinement by optimizing
the location of the vertical layers to minimize errors at each remapping (e.g., isopycnal
layers in an ocean model). It could even be possible to take advantage of so-called dormant
layers to provide vertical adaptivity equivalent to h-refinement. The idea is to locally
deactivate or reactivate some vertical layers based on an error criterion. (Note that the
vertical adaptivity would not necessarily be wavelet-based.)

Figure 5 illustrates the performance of the three-dimensional WAVETRISK atmosphere
model with results from the Held & Suarez three-dimensional general circulation test
case [64]. This test case uses simplified “physics” (i.e., radiation and friction/drag models)
that produce realistic general circulation over relatively short time scales of O(100) days.

Figure 12. Typical results for the low resolution (top) and high resolution (bottom) Held and Suarez general circulation test case at 250 hPa.

The grid is adapted on the solution with relative error tolerance " = 0.04 in the low resolution case and " = 0.02 in the high resolution case.

The grid compression ratio is 2.0 for the low resolution case and 7.5 for the high resolution case.
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Figure 14. Time–zonal statistics for the high resolution Held and Suarez (1994) test case with scales J = 6,7,8 (maximum resolution 1/4�).

The grid is adapted on the solution error with tolerance " = 0.02. Statistics are averaged over 200 days after day 700 by interpolating saved

data to the finest grid.

coordinate and use penalization for bathymetry and coastlines. This work builds on the shallow water ocean model we presented

in Kevlahan et al. (2015).

Code availability. WAVETRISK-1.0 is published under the Creative Commons 4.0 license at https://doi.org/10.5281/zenodo.3459710. The5

current latest version of the code is WAVETRISK-1.1, which includes some bug fixes and two incompressible cases.

Author contributions. Both NKRK and TD have contributed to the research and paper preparation.

Competing interests. The authors have no competing interests.

30

Figure 5. Results for the Held and Suarez general circulation test case at 250 hPa. The grid is adapted on the solution with
relative error tolerance ε̃ = 0.02. The top row shows the solution at the height 250 hPa, and the bottom rows show zonally
averaged vertical slices of important physical quantities. (Adapted from [33].)
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4.6. Parallelization

Adaptive methods are designed for large problems, and must therefore take advan-
tage of parallel computation. WAVETRISK is parallelized using mpi and uses load balancing
to redistribute the computational load over the cores as the adaptive grid changes [31].
The data structure is based on the 20 lozenges of the icosahedron, subdivided to the level
of the coarsest grid. These 20× 4Jmin lozenges are then distributed the the cores based
on their computational load. In order to improve efficiency, the finest data element is a
4× 4 or 8× 8 patch, which includes all grid points (active and inactive). (Patches with no
active grid points are, of course, deleted from the data structure.) This produces a so-called
hybrid data structure that can be optimized for computational performance by modifying
the the coarsest scale Jmin and the patch size.

Even though it has not been extensively optimized, WAVETRISK nevertheless shows
good strong parallel scaling, as illustrated in Figure 6. Full details of the hybrid data
structure and parallelization strategy is given in [31].
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Figure 4. Strong scaling of wavetrisk on the Compute Canada machine niagara for a simulation of the Held and Suarez (1994) general

circulation experiment for a perfectly balanced (non-adaptive) run at a resolution of J = 8 (1/4�) and for a strongly unbalanced (dynamically

adaptive) run at a maximum resolution of J = 9 (1/8�) resolution with trend based error tolerance " = 0.08. Left: speed-up compared with

perfect (linear) scaling. The non-adaptive case has perfect linear scaling for more than 8 cores while the adaptive case has power law scaling

of approximately 0.78. Right: absolute strong scaling performance in milliseconds (ms) (wall-clock time per time step multiplied by the

number of cores, i.e. cpu hours per time step, divided by the average number of active nodes over all vertical levels and all scales). N is

the average number of active nodes over all scales. Note that the absolute times shown in the right figure are slower than equivalent times

reported in Table 2 because we used a RK45ssp (with one additional trend evaluation) and code was compiled with gfortran rather than

ifort for the scaling runs.

Test case adaptivity cores �t cpu / day cpu /�t N ⇥ 104 compression total cost

Rossby wave tendency 160 170 s 203 s 0.40 s 4.85 4.43 0.0508 ms

Baroclinic instability variables 40 240 s 310 s 0.40 s 4.10 5.22 0.0152 ms

Baroclinic instability tendency 40 237 s 411 s 1.13 s 10.2 2.11 0.0173 ms

Held–Suarez (1�) variables 40 287 s 81 s 0.27 s 2.78 1.93 0.0216 ms

Held–Suarez (1/4�) variables 320 66.5 s 375 s 0.29 s 11.4 7.58 0.0456 ms

Table 2. Summary of actual computational performance for each of the test cases considered here. All runs were dones on the Compute

Canada machine niagara and the values shown are averages over the whole simulation. cpu is wall-clock time, N is the average number

of active nodes (over all vertical levels and all scales), total cost is wall-clock time per time step times cores (i.e. cpu hours per time step) per

active node per vertical level. (Note that total cost does not take into account the speed up due to parallelism or adaptivity: it measures cpu

hours per active node.) The Rossby wave run is more expensive because it uses a smaller patch size (4⇥ 4 rather than 8⇥ 8) in order to run

on 160 cores with Jmin = 5. Please see the discussion at the beginning of section 5.1 for an explanation of the trade-offs involved in patch

size versus number of domains.
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Figure 6. Strong scaling of wavetrisk for a simulation of the [64] general circulation experiment for a
perfectly balanced (non-adaptive) run at a resolution of Jmin = 8 (1/4◦) and for a strongly unbalanced
(dynamically adaptive) run at a maximum resolution of Jmax = 9 (1/8◦) resolution with trend based
error tolerance ε̃ = 0.08. Left: speed-up compared with perfect (linear) scaling. The non-adaptive
case has perfect linear scaling for more than 8 cores while the adaptive case has power law scaling
of approximately 0.78. Right: absolute strong scaling performance in milliseconds (ms) (wall-clock
time per time step multiplied by the number of cores, i.e., cpu hours per time step, divided by the
average number of active nodes over all vertical levels and all scales). N is the average number of
active nodes over all scales. (Reproduced from [33]).

5. Local Time Stepping and Multigrid Method for Elliptic Equations

The preceding section gave a detailed example of how an adaptive wavelet method
can be developed for semi-realistic atmosphere and ocean models. In this section we
describe two additional techniques that take advantage of the resulting adaptive multiscale
grid structure.

Currently WAVETRISK uses a single time step based on the finest grid scale on the
adaptive grid at any given time. If only a small proportion of the total number of cells
are at the finest grid scale this is clearly not an optimal approach. In this case it is much
more efficient to use a scale-dependent time scale. In local time stepping the time step is
proportional to the local grid scale, with larger scales advancing faster than smaller scales.

Local time stepping was pioneered for adaptive wavelet methods by [65]. They
followed earlier work on single stage local time stepping in AMR methods [15]. However,
the approach in [65] is limited to second-order in time (i.e., second-order Runge–Kutta).
More recently, Ref. [66] extended local time stepping to arbitrary order in time, taking
fourth order Runge–Kutta as an example.

Although local time stepping may provide large efficiency gains in some problems,
it adds significant computational overhead and complexity to the code. In addition,
because in two-dimensional grid refinement the number of cells increases like the square of
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the scale j, there is often a significant number of cells at the smallest scales, even for flows
that produce high grid compression ratios. With three-dimensional grid refinement the
number of cells increases like the cube of the scale j, so that it is even less likely that local
time stepping will produce significant efficiency gains. For example, Ref. [65] found that
local time stepping produced a speed up of only 15% when implemented in an adaptive
wavelet simulation of combustion.

Geophysical codes often require elliptic solvers, for example to enforce the divergence-
free condition, or for implicit time stepping (an implicit free surface barotropic–baroclinic
mode splitting method is used in WAVETRISK-OCEAN). The multiscale grids generated
by the adaptive wavelet method provide the foundation for an adaptive multigrid solver,
at no additional cost.

The standard multigrid solver [67] accelerates the solution of elliptic equations by
decomposing a uniform Cartesian computational grid into a sequence of nested grids.
The finest grid is the original grid and the coarsest grid is typically 2× 2 (in two dimensions).
The highest frequency errors are damped on the finest grid using a few Jacobi or Gauss–
Seidel iterations. This approximate solution is then restricted to the next coarsest grid,
where the lower frequency errors are damped. This process of restriction and damping is
continued until the coarsest grid is reached. The elliptic problem is then solved to machine
precision on the coarsest grid (e.g., using bicgstab). The process is then reversed, using
appropriate prolongation operators, to produce a so-called V-cycle. Elliptic problems
typically converge in two or three V-cycles.

We proposed an adaptive wavelet collocation multigrid solver in flat topology in [68],
and later extended this approach to the sphere [69]. The wavelet elliptic solvers use exactly
the same V-cycle approach as in standard multigrid, but take advantage of the wavelet
prolongation and restriction operators on the adapted multiscale grid to further accelerate
the solution.

6. Future Directions and Open Challenges

The principal open challenge for realistic dynamically adaptive atmosphere and ocean
models is how to incorporate SGS parameterizations. This challenge applies equally to
wavelet and AMR approaches, and even to non-adaptive weather and climate models
when their resolution is increased. If the physical process is always fully parameterized
(e.g., cloud microphysics), then the problem can be solved by using a so-called scale aware
parameterization. In this case, the parameterization knows the local grid resolution and
adjusts the model appropriately. The more severe case is where the grid has been refined
so much that a physical process that had been entirely parameterized becomes (partially)
resolved. In this case the dynamical equations and SGS model must both be modified,
and the parameterization treats only part of the physics.

In fact, solutions to this problem have already been proposed for the relatively simple
case of LES models of turbulence. In this case, only part of the inertial range is resolved
and the rest must be modelled. The stochastic coherent adaptive large eddy simulation
(SCALES) [70] introduced an adaptive wavelet-based LES model, where the cut-off (filter)
scale is adjusted in time and space to resolve the same proportion of the TKE. SCALES
provides an example of how to develop SGS parameterizations for other physics. A similar
approach for LES of the atmospheric boundary layer was proposed in [28].

We are currently finalizing WAVETRISK-OCEAN, a three-dimensional incompressible
hydrostatic ocean model based on the Boussinesq approximation. Since the SGS param-
eterizations are much simpler in the ocean, WAVETRISK-OCEAN would be a good model
with which to explore scale aware parameterizations. For example, the vertical diffusion of
temperature and momentum is parameterized using a simple eddy viscosity type TKE clo-
sure. Since this parameterization is applied to vertical columns, it should be relatively easy
to design a scale-aware parameterization that includes the local horizontal scale. Similarly,
Ref. [71] proposed a scale-aware SGS model for horizontal quasi-geostrophic turbulence.
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Other approaches to this problem include heterogeneous multiscale modelling (HMM)
techniques [72]. In geophysical models HMM has been implemented for super-
parameterization of clouds [73], deep convection [74] and surface turbulent mixing [75] in
the ocean.

Another future area of research is dynamically adaptive techniques for data assimila-
tion. Data assimilation is essential for accurate weather forecasts [76]. One of its limitations
is that the computational grid is not optimized for assimilating the available data, which
is usually distributed very inhomogeneously in time and space. The idea would be to
dynamically adapt the computational grid to minimize data assimilation error, in addition
to accurately compute the dynamics.

7. Conclusions

This review has outlined the essential and desirable features a dynamically adaptive
wavelet method must have in order to be practically useful for ocean and atmosphere
modelling. Foremost among these are discrete conservation of mass and preservation of
various important mimetic properties. In addition, the adaptive wavelet method must be
compatible with a flux-based, staggered grid discretization. Ideally, it should also use data
structures that are typical of geophysical models (e.g., vertical columns, a layer structure).
Finally, a global model must use spherical topology, which imposes an irregular grid and
particular wavelet transform design.

These features add significantly to the complexity of the code compared to a typical
engineering-type adaptive code, but the increased development time leads to big gains
in efficiency and accuracy. We illustrated these issues by reviewing how our dynamically
adaptive wavelet code for three-dimensional atmosphere and ocean modelling, WAVETRISK,
was designed to meet these challenges. We hope that this example will inspire others to
build adaptive wavelet methods for geophysical flows.

Although we have focused primarily on wavelet-based methods, many of the con-
siderations we discuss here are also relevant for AMR. AMR techniques for ocean and
atmosphere modelling remain an active area of research, and there is not yet an operational
three-dimensional global AMR model of the ocean or atmosphere. Progress in adaptive
modelling will benefit both the AMR and wavelet communities.

Finally, we reviewed some of the outstanding challenges for adaptive geophysical
models. The biggest challenge is how to modify the SGS parameterizations of physical pro-
cesses so they are compatible with dynamically changing local grid resolution. Progress on
this problem will also benefit current operational non-adaptive weather and climate models,
which must be extensively re-tuned each time the grid resolution increases. Operational
models also make extensive use of nested grids (i.e., static refinement).

The potential of dynamically adaptive techniques to improve realistic geophysical
models remains largely unexplored. The only way to know how much they can contribute
is to try to actually build them, and then make them as realistic as we can!
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Abbreviations
The following abbreviations are used in this manuscript:

AMR Adaptive Mesh Resolution
HMM heterogeneous multiscale modelling
LES Large Eddy Simulation
MPAS Model for Prediction Across Scales
PDE Partial Differential Equation
SCALES Stochastic Coherent Adaptive Large Eddy Simulation
SGS subgrid scale
TKE Turbulent Kinetic Energy
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