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Abstract: We consider two loosely coupled schemes for the solution of the fluid–structure interaction
problem in the presence of large added mass effect. In particular, we introduce the Robin–Robin
and Robin–Neumann explicit schemes where suitable interface conditions of Robin type are used.
For the estimate of interface Robin parameters which guarantee stability of the numerical solution,
we propose a new strategy based on the optimization of the reduction factor of the corresponding
strongly coupled (implicit) scheme, by means of the optimized Schwarz method. To check the
suitability of our proposals, we show numerical results both in an ideal cylindrical domain and in
a real human carotid. Our results showed the effectiveness of our proposal for the calibration of
interface parameters, which leads to stable results and shows how the explicit solution tends to the
implicit one for decreasing values of the time discretization parameter.

Keywords: fluid–structure interaction; loosely coupled scheme; Robin interface condition; optimized
Schwarz method

1. Introduction

The numerical solution of fluid–structure interaction (FSI) problems is very challeng-
ing and many different strategies have been considered so far. Among them, we mention
monolithic strategies where the whole space and time discretized problem (e.g., due to Fi-
nite Elements) is solved by means of efficient linear solvers and ad-hoc preconditioners that
should accelerate convergence which in general is quite problematic due to the elevated
condition number of the FSI problem, see e.g., [1–6]. Another family of strategies relies
on partitioned or segregated schemes which introduce the separate solution of the fluid
and structure (and possibly fluid geometry) subproblems. Among them, strongly coupled
or implicit strategies solve such problems until convergence of the interface conditions at
each time step, see, e.g., [7–16].

Within partitioned schemes, loosely coupled or explicit schemes for the numerical
solution of the FSI problem are based on an overall explicit time discretization which leads
to the solution of just one fluid and one structure problem per time step. This makes this
family of methods very attractive from the computational and implementation point of
view and for these reasons they have been widely used in many engineering applications
such as aeroelasticity [17–19]. However, loosely coupled schemes suffer from a lack of
stability when the added mass effect is relevant (i.e., when the densities of fluid and
structure are comparable). This happens, for example, in hemodynamics [20]. In this
respect, it is known that the explicit Dirichlet–Neumann (DN) scheme is unconditionally
unstable in the hemodynamic regime, see [7,11,21].

Recently, some studies introduced loosely coupled schemes for the FSI problem based
on Robin interface conditions, obtained by considering linear combinations of the no-slip
condition and action–reaction principle by means of suitable parameters [13,15,22–28].
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In such works different proposals for the interface parameters were addressed with the
aim of improving the stability properties when the added mass effect is relevant with
respect to the explicit DN scheme. In our recent study [29], we have provided for a model
problem a stability analysis of the explicit Robin–Neumann (RN) scheme. In particular,
we have found sufficient conditions for the interface Robin parameter, guaranteeing both
unconditional instability and conditional stability.

In this paper, we address the issue of selecting suitable and easily computable interface
parameters both for the explicit RN and the explicit Robin–Robin (RR) schemes, able to
guarantee the stability of such loosely coupled schemes. In particular, we discuss the case
of cylindrical-like geometries as happens, for example, in vascular hemodynamics and we
propose a new and effective way to select such parameters. We start from the analysis based
on the optimized Schwarz method [30] provided for the implicit (i.e., strongly coupled)
RR scheme in the FSI context in [31]. This allowed us to determine effective values for the
Robin interface parameters which guarantee excellent converge property even in presence
of large added mass effect (for strongly coupled scheme, a large added mass effect yields a
very slow convergence [7]). Here we provide also a new way to easily estimate an effective
Robin interface parameter for the RN strongly coupled scheme. The idea of the present
work is to use such estimates in the corresponding loosely coupled RN and RR schemes.
In particular, we verify the stability of the corresponding numerical solution in 3D FSI
numerical experiments.

2. Mathematical and Numerical Setting
2.1. The Continuous Problem

We consider the coupling between the Navier–Stokes equations for an incompressible
fluid solved in the Arbitrary Lagrangian-Eulerian (ALE) formulation [32] and the linear
infinitesimal elasticity [33]. Let Ω f and Ωs be the fluid and structure domains, Σ the fluid–
structure interface, Σout the external structure surface, n = n f the unit normal outgoing
the fluid domain, and ns the unit normal outgoing the structure domain. We have for each
t [33]:

ρ f ∂A
t u + ρ f ((u−ω) · ∇)u−∇ · T f (u, p) = 0 in Ω f , (1a)

∇ · u = 0 in Ω f , (1b)

u = ∂tη on Σ, (1c)

T f n = Tsn on Σ, (1d)

ρs∂ttη̂−∇ · T̂s(η̂) = 0 in Ω̂s, (1e)

γST η̂+ T̂s(η̂)ns = 0 on Σ̂out, (1f)

where T f (u, p) = −pI + µ(∇u + (∇u)T) is the Cauchy stress tensor for the fluid and with
µ the dynamic viscosity. ∂A

t represents the ALE time derivative, i.e., with respect to the
ALE framework, and ω is the velocity of the fluid domain obtained by solving an harmonic
extension of the interface velocity with homogeneous Dirichlet or Neumann boundary
conditions on ∂Ω f \ Σ. Notice that, accordingly, Ω f changes in time. Instead, the structure
problem (1e) is solved in a Lagrangian framework and for this reason we have indicated
with ̂ the corresponding quantities. For the sake of notation, in what follows ̂ will be
understood. Moreover, Ts is the structure Cauchy stress tensor given by

Ts(η) = λ1(∇η+ (∇η)T) + λ2(∇ · η)I,

where λ1 and λ2 are the Lamé constants that can be defined in terms of the Young modulus
E and the Poisson ratio ν as follows

λ1 =
E

2(1 + ν)
, λ2 =

νE
(1 + ν)(1− 2ν)

.
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Finally, we observe that condition (1f) represents a Robin condition at the external
surface to account for the effect of an elastic surrounding tissue with elasticity modulus
γST [34]. The previous problem needs to be completed with other boundary conditions and
initial conditions for both fluid and structure. Examples of applications where the FSI prob-
lem (1) has been considered are hemodynamics, where blood interacts with the vascular
wall [33], the respiratory system [35], and aeroelasticity for the study of airfoils [17].

2.2. Robin Robin Loosely Coupled Scheme

In order to write a suitable algorithm for the numerical solution of the FSI problem (1),
we consider the following linear combinations of the interface conditions (1c)–(1d), for
given scalars α f 6= αs:

α f u + T f n = α f ∂tη+ Tsn, (2a)

αs∂tη+ Tsn = αsu + T f n. (2b)

The coupled FSI problem (1) where (1c)–(1d) are substituted by (2a)–(2b) is still equiv-
elent to (1), thus we can introduce suitable numerical strategies based on the exchange of
conditions (2a)–(2b). To this aim, we first need to detail the time discretizaton and how we
manage the geometric coupling, i.e., the fact that the fluid domain movement depends on
the structure displacement. Regarding the time discretization, we used a first order implicit
method for both fluid and structure, with a semi-implicit treatment of the fluid convective
term, relying on a CFL-like bound for the time discretization ∆t. We also consider an
explicit treatment of the no-slip condition, allowing in fact to split the two subproblems.
Regarding the geometric coupling, it has been shown that in the hemodynamic regime an
explicit treatment is enough to provide stable and accurate results [12,14,22,36,37]. This
means that the harmonic extension problem for the fluid domain displacement and velocity
is solved with structure data that comes from previous time steps. This in fact decouples
the geometric and FSI problems, thus at each time step the time discretization of problem
(1b)–(1c) is in fact solved in a known domain Ω f .

Let tn = n∆t, n = 0, . . . , the discrete time instants and vn ' v(tn) the approximation
at time tn of a function of time v(t). Thus, for the numerical solution of problem (1b),
(1c), (2a), (2b), (1e), and (1f), we introduce in Algorithm 1 the Explicit Robin–Robin loosely
coupled scheme, obtained after time discretization and by prescribing condition (2a) as
boundary condition for the fluid problem, with structure quantities taken from the previous
time step, and condition (2b) to the structure problem.

Remark 1. As observed, at the continuous level conditions (2a) and (2b) are perfectly equivalent
to (1c) and (1d). After the numerical discretization and the selection of an explicit treatment, we
obtain conditions (3c) and (4b) which satisfy the original interface conditions up to an error of the
order of ∆t.

Remark 2. The implicit (strongly coupled) Robin–Robin scheme is obtained from Algorithm 1 by

replacing the right hand side of (3c) with α f
ηn+1−ηn

∆t + Ts(ηn+1) and then subiterating with the
structure problem (4).
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Algorithm 1 Explicit Robin–Robin scheme

Given two scalars α f 6= αs and quantities at previous time steps, at time step tn+1 solve in
sequence:

1: A fluid problem with a Robin condition at the fluid–structure interface:

ρ f
un+1 − un

∆t
+ ρ f ((u

n −ωn) · ∇)un+1 −∇ · T f (u
n+1, pn+1) = 0 in Ωn

f , (3a)

∇ · un+1 = 0 in Ωn
f , (3b)

α f un+1 + T f (u
n+1, pn+1)n = α f

ηn − ηn−1

∆t
+ Ts(η

n) on Σn; (3c)

2: A structure problem with a Robin condition at the fluid–structure interface:

ρs
ηn+1 − 2ηn + ηn−1

∆t2 −∇ · Ts(η
n+1) = 0 in Ω0

s , (4a)

αsηn+1 + ∆tTs(η
n+1) = αs∆tun+1 + ∆tT f (u

n+1, pn+1)n + αsηn on Σ0, (4b)

γSTηn+1 + Ts(η
n+1)ns = 0 on Σout. (4c)

In what follows we discuss the choice of the interface parameters α f and αs in the case
of cylindrical-like geometries and interface, a situation which occurs in many applications
with large added mass effect, e.g., in hemodynamics.

3. On the Choice of the Interface Parameters
3.1. Convergence Analysis of the Implicit Robin–Robin Scheme

Our starting point is the optimization procedure to properly select the interface pa-
rameters in the implicit Robin–Robin scheme for a simplified FSI problem in the case of
cylindrical geometries in [31], whose main results are here reviewed for the sake of com-
pleteness.

We consider the problem arising from the interaction between an incompressible,
inviscid, and linear fluid occupying the fixed domain Ω f = {(x1, x2, y) ∈ R3 : x2

1 + x2
2 <

R2}, and a linear elastic structure modeled with the wave equation occupying the domain
Ωs = {(x1, x2, y) ∈ R3 : R2 < x2

1 + x2
2 < (R + H)2}, where Σout = {(x1, x2, y) ∈ R3 :

x2
1 + x2

2 = (R + H)2} is the external surface. The two subproblems interact at the interface
Σ = {(x1, x2, y) ∈ R3 : x2

1 + x2
2 = R2}. In Algorithm 2 we report the implicit Robin–Robin

scheme at time tn+1 for the solution of this simplified FSI problem. Actual temporal index
n + 1 is understood. Notice that the coupling occurs only in the radial direction r since the
fluid is inviscid. We have indicated with ur and ηr the radial fluid velocity and structure
displacement, respectively, and with F1 and F2 terms coming from the previous time step.

Notice that in [31] we considered general operators S f and Ss to build the interface
linear combinations. Here for the sake of exposition, we limit ourselves to the scalar
constant case since the forthcoming optimization is performed over the subset of the scalars.
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Algorithm 2 Implicit Robin–Robin scheme for the simplified FSI problem
Given two scalars α f 6= αs and quantities at previous time steps, solve for k ≥ 1 until
convergence:

1: A fluid problem with a Robin condition at the fluid–structure interface:

ρ f
u(k) − un

∆t
+∇p(k) = 0 in Ω f ,

∇ · u(k) = 0 in Ω f ,

α f u(k)
r − p(k) = α f

η
(k−1)
r
∆t

+ λ
∂η

(k−1)
r
∂n

+ F1(un
r , ηn

r ) on Σ;

2: A structure (wave) problem with a Robin condition at the fluid–structure interface:

ρs
η(k) − 2ηn + ηn−1

∆t2 − λ4η(k) = 0 in Ωs,

αsη
(k)
r + ∆tλ

∂η
(k)
r

∂n
= αs∆tu(k)

r − ∆tp(k) + F2(un
r , ηn

r ) on Σ,

η(k) × n = 0 on Σ,

η(k) × n = 0 on Σ,

γSTη(k) + λ
∂η(k)

∂n
= 0 on Σout.

3.2. Selection of Effective Interface Parameter Values for the Explicit Robin–Robin Scheme

Following [31], set

A(m, k) = −λ∆tβ(K′m(β R)− χ I′m(β R))
Km(β R)− χ Im(β R)

, (5a)

B(m, k) = −
ρ f Im(kR)

∆t k I′m(kR)
, (5b)

β(k) =
√

k2 +
ρs

λ∆t2 , (5c)

χ(m, k) =
γSTKm(β(R + H)) + λβK′m(β(R + H))

γST Im(β(R + H)) + λβI′m(β(R + H))
, (5d)

B := max
(m,k)∈K

B(m, k), A := min
(m,k)∈K

A(m, k), (5e)

M =
1
2
(

A + B
)
, (5f)

D(m, k) =
1
2
(A(m, k)− B(m, k)), M(m, k) =

1
2
(A(m, k) + B(m, k)), (5g)

Q(m, k) =

∣∣M(m, k)−M
∣∣

D(m, k)
, Q = sup

(m,k)∈K
Q(m, k), N =

inf(m,k)∈K D(m, k)
sup(m,k)∈K D(m, k)

, (5h)

ρ0 = max


(

1−
√

N
1 +
√

N

)2

;

1−
√

1−Q2

Q

2, (5i)

where k ≥ 0 and m = 0, 1, 2, . . . are the frequencies related to the axial and circumferential
coordinates, respectively, and which belong to the set K, Im and Km are the modified Bessel
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functions [38]. Then, in [31] it has been proven, through the optimized Schwarz method,
that the reduction factor related to Algorithm 2 is given by

ρ(m, k) =

∣∣∣∣∣α f − A(m, k)
αs − A(m, k)

· αs − B(m, k)
α f − B(m, k)

∣∣∣∣∣. (6)

In particular, it has been proposed to look for parameter values along the straight line
α f = p and αs = −p + 2M for varying p ∈ R. With this specific choice, the reduction factor
(6) becomes

ρ(m, k) =
∣∣∣∣ p− A(m, k)
2M− p− A(m, k)

2M− p− B(m, k)
p− B(m, k)

∣∣∣∣, (7)

and it has been proved that it satisfies

ρ(m, k) ≤ ρ0

for any (m, k) ∈ K if and only if p ∈ [p−, p+] with

p− = M

+ sup(m,k)∈K

{
1+ρ0
1−ρ0

D(m, k)−
√(

M−M(m, k)
)2

+ 4ρ0

(1−ρ0)
2 (D(m, k))2

}
,

p+ = M

+ inf(m,k)∈K

{
1+ρ0
1−ρ0

D(m, k) +
√(

M−M(m, k)
)2

+ 4ρ0

(1−ρ0)
2 (D(m, k))2

}
.

(8)

The previous result provided an easy way to compute a range of values of p (and thus
of α f and αs) which guarantees convergence for any frequencies (m, k) ∈ K. Moreover,
this range contains the optimal value p∗ of p which minimizes the reduction factor for the
choice α f = p and αs = −p + 2M, which could be easily found manually. The efficiency
of such procedure has been shown in [31] both in ideal and in realistic carotid geometries
in the context of hemodynamics. An extension to the case of spherical geometries and
interfaces has been provided in [39].

The idea proposed in this paper is to use the range p ∈ [p−, p+] given by (8) to
properly select the interface parameters in the explicit Robin–Robin Algorithm 1, still with
the specific choice α f = p and αs = −p + 2M. In particular, we propose here to use the
optimal value p∗ also for the explicit RR scheme. Indeed, we expect that the interface Robin
parameters that guarantee a fast convergence in the implicit case should guarantee stability
and accuracy for the explicit case. Although there is not yet a proof of this, we provide here
an experimental analysis to support our choices, see Section 4.

3.3. An Alternative Way to Select the Interface Parameter in the Explicit Robin–Neumann Scheme

We consider now the implicit Robin–Neumann scheme, i.e., Algorithm 2 with αs = 0.
We propose here a new way to efficiently select the parameter α f for this algorithm.
In particular, we still look for α f = p with p a scalar independent of the frequencies.

We have the following result.

Theorem 1. Suppose to have for a given iterative algorithm a reduction factor of the form

ρ(k) =
∣∣∣∣ p− A(k)

p− B(k)
· B(k)

A(k)

∣∣∣∣, (9)
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for suitable scalar functions A(k) and B(k) defined on K, where k is a general scalar or vector
variable, and with A(k)B(k) 6= 0 for all k ∈ K. Then, by setting

a =
1
A

, b =
1
B

,

a = max
k∈K

a(k), a = min
k∈K

a(k),

b = max
k∈K

b(k), b = min
k∈K

b(k),

if b < a, we have

ρ(k) ≤ θ =
a− a

a + a− 2b
< 1, (10)

for any k ∈ K provided that

1
p
∈
[

maxk∈K(a(k) + θb(k))
1 + θ

,
mink∈K(a(k)− θb(k))

1− θ
.
]

. (11)

Proof. Notice that for any θ ∈ [0, 1) we have

maxk∈K(a(k) + θb(k))
1 + θ

≤ a + θb
1 + θ

and
a− θb
1− θ

≤ mink∈K(a(k)− θb(k))
1− θ

.

By imposing
a + θb
1 + θ

=
a− θb
1− θ

,

i.e., for

θ =
a− a

a + a− 2b
∈ [0, 1),

we can write
maxk∈K(a(k) + θb(k))

1 + θ
≤ mink∈K(a(k)− θb(k))

1− θ
. (12)

Now, setting

q =
1
p

,

we can write the reduction factor (9) as follows

ρ(k) =

∣∣∣∣∣∣
1
q −

1
a(k)

1
q −

1
b(k)

·
1

b(k)
1

a(k)

∣∣∣∣∣∣ =
∣∣∣∣ a(k)− q
b(k)− q

∣∣∣∣.
One only has to observe now that inequality (10), that is

−θ ≤ a(k)− q
b(k)− q

≤ θ

is equivalent to
a(k) + θb(k)

1 + θ
≤ q ≤ a(k)− θb(k)

1− θ
,

which makes sense for any k ∈ K owing to (12). Thus the thesis follows.

We can now apply the above result to our case, i.e., the implicit Robin–Neumann
scheme (Algorithm 2 with αs = 0), interpreting k in Theorem 1 as the couple of frequencies
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(m, k) and by taking A and B as in (5a)–(5d). Indeed, from (6), by setting α f = p and αs = 0,
we obtain

ρ(m, k) =
∣∣∣∣ p− A(m, k)
−A(m, k)

· −B(m, k)
p− B(m, k)

∣∣∣∣ = ∣∣∣∣ p− A(m, k)
p− B(m, k)

· B(m, k)
A(m, k)

∣∣∣∣.
We now only need to prove that, as requested by Theorem 1, b < a. To this aim, we

prove the following result.

Lemma 1. For all integers m ≥ 0 and for all k ≥ 0, one has

a(m, k) =
1

A(m, k)
=

Km(βR)− χIm(βR)
λ∆tβ(−K′m(βR) + χI′m(βR))

> 0

and

b(m, k) =
1

B(m, k)
= −∆tkI′m(|k|R)

ρ f Im(kR)
≤ 0,

with β and χ given by (5c) and(5d). When k = 0, the expression for b(m, k) has to be intended as
k→ 0, that is

b(m, 0) = −∆tm
ρ f R

.

Proof. The estimate for b(m, k) is trivial, since both Im and I′m are positive functions.
Concerning a(m, k), for notational convenience, set x = βR, h = βH, and c = λβ/γST .

The numerator of a(m, k) is positive if and only if

Km(x)
Im(x)

> χ =
Km(x + h) + cK′m(x + h)
Im(x + h) + cI′m(x + h)

.

Since Km/Im is decreasing on (0,+∞), it suffices to show that for all x > 0,

Km(x)
Im(x)

>
Km(x) + cK′m(x)
Im(x) + cI′m(x)

,

and this follows immediately since K′m(x) < 0 and I′m(x) > 0. Similarly, the denominator
of a(m, k) is positive if and only if

−K′m(x)
I′m(x)

> −χ =
−Km(x + h)− cK′m(x + h)

Im(x + h) + cI′m(x + h)
.

Since
−K′m(x)

I′m(x)
=

Km−1(x) + Km+1(x)
Im−1(x) + Im+1(x)

is decreasing in (0,+∞), it suffices to show that for all x > 0,

−K′m(x)
I′m(x)

>
−Km(x)− cK′m(x)

Im(x) + cI′m(x)
,

and this follows immediately since Km(x) > 0 and Im(x) > 0.

Thus, all hypotheses of Theorem 1 are satisfied by our application. The idea we
propose in this paper is to use also for the explicit RN scheme (Algorithm 1 with αs = 0) an
optimized value p∗ found in the range of convergence of its implicit counterpart (11).
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4. Numerical Results
4.1. Generalities

In this section we report numerical results aiming at showing the effectiveness of our
proposal for the interface Robin parameters in the explicit RR and RN schemes. In particular,
we want to understand if the values of the parameters derived by the simplified FSI problem
(see Algorithm 2) work well for the complete three-dimensional FSI problem (1) solved by
means of Algorithm 1. The use of simplified FSI models to perform analyses whose results
are then used for more complex problems is a standard procedure due to the difficulty in
analyzing directly such problems. For example, simplified FSI problems have been used to
study the convergence of strongly coupled partitioned procedures, then successfully tested
over 3D general problems, in [7,9,16,29,40], and to derive the well-known result about the
instability of the explicit Dirichlet–Neumann scheme for large added-mass effect in [7,21].

All the simulations are run in the hemodynamic regime, characterized by a large added
mass effect and where the stability of loosely coupled methods is a challenging issue.

We consider problem (1) and for its time discretization we used the BDF schemes of
order 1 for both fluid and structure, with a semi-implicit treatment of the fluid convective
term. For the space discretization we used P1bubble− P1 Finite Elements for the fluid and
P1 Finite Elements for the structure. The fluid domain at each time step is obtained by
extrapolation of the previous time step (semi-implicit approach [12,14,37]). We also used
the following data: fluid density ρ f = 1 g/cm3, fluid viscosity µ = 0.035 g/(cm s), structure
density ρs = 1.1 g/cm3, Young modulus E = 3 × 106 dyne/cm2, Poisson ratio ν = 0.49.

Notice that to compute A(m, k) given by (5a) which is needed for the calibration of
the interface parameters, we need the value of λ in the wave equation representing the
structure problem in the simplified FSI problem. To do this, we assumed that the value of
λ could be approximated by Gλ1, with G = π2/12 the Timoshenko correction factor.

4.2. Test in the Cylinder—Test I

In the first numerical test (test I), the fluid domain is a cylinder with length L = 5 cm
and radius R = 0.5 cm, whereas the structure domain is the external cylindrical crown with
thickness Hs = 0.1 cm. The meshes are composed by 4680 tetrahedra and 1050 vertices for
the fluid and 1260 vertices for the structure.

At the inlet we prescribed a Neumann condition

T f (u
n+1, pn+1)n = −Pinn, (13)

with the following pressure function

Pin = P̂
(

1− cos
(

2πt
0.01

))
dyne/cm2, t ≤ T = 0.04 s,

with absorbing resistance conditions at the outlets [22,41].
If not otherwise specified, we used the following parameters (referred to as ”basic”):

P̂ = 500, ∆t = 0.0005 s, γST = 1.5× 106 dyne/cm3. All the numerical results have been
obtained with the parallel Finite Element library LIFEV [42].

We will refer to RR-explicit simulation when using α f and αs selected in the range (8)
described in Section 3.2, whereas to RN-explicit simulation when using α f in the range (11)
as in Section 3.3 and αs = 0. We reported also the numerical solution obtained by using an
implicit method, in particular the Robin–Neumann scheme, with an absolute tolerance of
10−7 on the convergence of the interface conditions.

In Table 1 we reported the values of the optimized Robin interface parameters a priori
estimated via an empirical procedure. In particular, we take K = [mmin, mmax]× [kmin, kmax]
with mmin = 0 and mmax = 10, kmin = π/L = 0.6 and kmax = π/h = 12.5 (remember
that m and k are the angular and longitudinal frequencies) and we empirically look for p
that minimizes max(m,k)∈K ρ(m, k) when either α f = p, αs = 2M− p and p varies in the
range (8) (RR-explicit), or α f = p, αs = 0 and p satisfies (11) (RN-Explicit). Notice from
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the analyses reported in Sections 3.2 and 3.3 that any change of ∆t and γST influences the
estimates of the interface parameters, whereas the choice of P̂ does not.

Table 1. Values of the Robin interface parameters used in the loosely coupled schemes ([g/(cm2 s)]).
Test I.

α f − RR-expl αs − RR-expl α f − RN-expl

Basic 1045 −169 1084
∆t = 10−3 1702 −115 1708

∆t = 2.5 · 10−4 866 −276 904
γST = 3 · 105 1526 −138 1590

In Figure 1 we report the time behavior of the mean pressure at the section located at
half of the pipe (z = 2.5 cm) for different values of ∆t. In Figure 2, instead we show the
same quantity in the case of an increased Reynolds number (P̂ = 5000) for two values of
the surrounding tissue parameter (γST = 3× 106 dyne/cm3 and γST = 3× 106 dyne/cm3)
and for a reduced values of the time step (∆t = 1.25× 10−4).

Figure 1. Mean pressure at section z = 2.5 cm for different values of ∆t. Top: ∆t = 0.001 s; Middle:
∆t = 0.0005 s; Bottom: ∆t = 0.00025 s. Test I.
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From these results, we observe that the RR-Explicit and RN-Explicit solutions are
in any case stable and feature a behavior which is reasonable if compared with the im-
plicit solution, also depicted in the figures. As expected, decreasing ∆t the two solutions
tend to coincide with the implicit one, see Figures 1 and 2, top and middle. In addition,
from Figure 2 we notice that the performances of the proposed explicit schemes seem to be
robust with respect to the Reynolds number and the value of the surrounding tissue. In
any case, the two explicit solutions seem to be very similar, thus the new strategy proposed
in Section 3.3 to build an explicit RN scheme could be an effective way to obtain a loosely
coupled scheme characterized by only one parameter.

Figure 2. Mean pressure at section z = 2.5 cm for P̂ = 5000: ∆t = 0.0005 s, γST = 1.5× 105 (t),
∆t = 0.000125 s, γST = 1.5× 105 (middle), and ∆t = 0.0005 s, γST = 3× 105 (bottom). Test I.

Remark 3. Sometimes in the literature it is asserted that for FSI problems, among the solutions
obtained with a strongly coupled (SC) scheme and with a loosely coupled (LC) scheme, the former is
the reference one and the latter should be close to it to be considered accurate. However, we believe
that a SC scheme features in general only better stability properties (being associated to an implicit
time discretization) than a LC one (which is associated to an explicit time discretization). For values
of ∆t which guarantee stability of LC schemes, the accuracy of SC and LC methods is the same if
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discretization methods of the same order have been used. For example, in our case both methods are
first order in time. The fact that the explicit solution seems to be more diffusive than the implicit one
for not enough small values of ∆t (see Figure 1, top and middle) could be ascribed to the fact the
our Robin based LC schemes could be seen as stabilized methods where α f and αs play the role of
stabilization parameters, whose influence on the solution increases with ∆t.

4.3. Test in a Human Aortic Abdominal Aneurysm—Test II

In the second test (test II), we consider a human aortic abdominal aneurysm (AAA)
reconstructed from CT images. At the inlet we prescribed the physiological Neumann
condition (13) with

Pin =

{
53, 320 sin(5πt)dyne/cm2 t ≤ 0.2 s,
0 dyne/cm2 0.2 s < t ≤ 0.8,

with absorbing resistance conditions at the outlets. For the structure we imposed the
Robin condition (1f) with γST = 3 × 106 dyne/cm3 at the external surface, and fixed
inlet and outlets. We set ∆t = 0.001 s. We considered the explicit RN and RR scheme
with parameters estimated as described in Sections 3.2 and 3.3, respectively, by using the
radius of the aneurysm (1.9 cm) as representative value for R. Moreover, we have used
H = 0.17 cm for the structure thickness. The fluid and structure meshes were formed by
153 k and 74 k tetraedra, respectively, leading to the following ranges for the frequencies:
k ∈ [0.3, 19.6] cm−1 and m ∈ [0, 38]. In particular, the optimized interface parameters found
by our analyses were α f = 2174 g/(cm2 s), αs = −85 g/(cm2 s) for the explicit RR scheme
and α f = 2229 g/(cm2 s) for the explicit RN scheme.

In Figures 3–5 we report the pressure field, the fluid velocity magnitude, and the
vessel displacement magnitude at t = 0.05 s and t = 0.1 s (the latter being the systolic
peak) for the explicit RR and RN schemes, together with an implicit solution. From these
results we can observe stability of the proposed explicit schemes, reached for a value of ∆t
which is commonly used in hemodynamic applications to guarantee accuracy. Moreover,
we observe very similar results between the explicit and implicit solutions, much more
similar than those reported in Figure 1, upper, for the same value of ∆t. This is probably
due to the lower frequency of the physiological input signal used in test II with respect
to that used for test I. All these observations are very encouraging in view of using the
proposed loosely coupled schemes for real hemodynamic applications, a field where the
strong added mass effect made the use of loosely coupled schemes a very challenging issue.

4.4. Final Remarks

We have considered a loosely coupled (explicit) partitioned algorithm based on Robin
interface conditions for the numerical solution of FSI problem in the presence of large
added mass effect. In particular, we focused on the selection of the interface parameters
in the coupling conditions, which plays a crucial role in the stability of the method. The
novelty of the paper relies on the description of an effective way to select the parameters in
the interface conditions. This choice is crucial to improve stability of the proposed schemes,
which, in general, is very poor when added mass effect is large. All the reported results
(obtained in the hemodynamic regime when the added mass effect is very large) showed
the stability of the numerical solution obtained by using the interface parameters proposed
in this work.

The interest in using a partitioned scheme relies in its modularity, i.e., in the fact that
we can use pre-existing separate fluid and structure codes and no ad-hoc implementation
of a FSI solver is needed. Moreover, regarding the choice of an explicit/loosely coupled
method, this is very attractive since, if stable, it allows for the reduction of computational
costs with respect to implicit/fully coupled methods, if the need of using a smaller time
step is compensated by the reduction of number of the subproblems we have to solve for
each time step. In [29] we show for a test case that the CPU time of the explicit RN scheme
was reduced by about three times with respect to the implicit RN case.
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Figure 3. Pressure field for the AAA simulation. Top: t = 0.05 s; Bottom: t = 0.1 s. Test II.

Regarding the validation of our results, we observe that the results obtained by the li-
brary LifeV have been compared with analytical solutions and with clinical or experimental
data. For the fluid solution, CFD results in the context of hemodynamics were successfully
compared with experimental results in [43], with ECD measures in [44] and with PC-MRI
data in [45]. Regarding FSI studies, in [41] the authors validated the numerical solution of
implicit RR methods by comparing the results with an analytical solution.

Regarding test II in a human AAA, it provides the first results obtained with the
proposed loosely coupled schemes in a real geometry in the context of hemodynamics and
using data all in the hemodynamic regime. The results are stable and very similar to the
implicit ones and highlight the ability of the method of representing the wave propagation
and the deformation of the domains.
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Figure 4. Velocity magnitude for the AAA simulation. Top: t = 0.05 s; Bottom: t = 0.1 s. Test II.

FSI results could provide important clinical indications about the evolution of a dis-
ease or the improvement of a therapy. We mention, for example, studies that quantified the
stresses in carotid atherosclerotic plaques [46,47] or compared different surgical strategies
for coronary bypasses [48,49]. However, often the application of FSI methods in such
contexts has been limited due to the very high computational effort needed to numerically
solve such problem. Our test in human AAA gives an important preliminary answer
toward the use of explicit Robin–Robin and Robin–Neumann methods for clinical appli-
cations, with a dramatic savings in computational times with respect to strongly coupled
(implicit) schemes.
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Figure 5. Displacements magnitude for the AAA simulation. Top: t = 0.05 s; Bottom: t = 0.1 s.
Test II.
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