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Abstract: The present work is dedicated to turbulence synthesis tailored to lateral periodic boundary
conditions for direct noise computations through compressible large eddy simulations. Synthetic
turbulence can be essential for aeroacoustic applications when computing airfoil turbulent inflow
noise or for accurately capturing the behavior of boundary layers. This behavior determines both
trailing edge noise and complex flow structures such as laminar separation bubbles. For airfoil
simulation purposes, spanwise periodic boundary conditions are usually considered. If synthetic
perturbations are injected without observing the periodicity rule, strong spurious pressure waves
are emitted and pollute the entire computational domain. In this work, the random Fourier modes
method for turbulence generation is adapted in order to respect the spanwise periodicity constraint
right at the computational domain inlet. This approach does not affect the turbulence properties
such as the spectral shape and the turbulent kinetic energy decay. Since the emphasis is put on the
generation and convection of the turbulence, only the turbulence convection region between the inlet
and the airfoil is considered in this paper, without the airfoil. Two geometrical configurations are
tested: the first one is a simple box with a constant mesh size, and the second one concentrates the
fine cells on the area in front of the airfoil. In the second configuration, the computational cost is
reduced by up to 25%, but more spurious noise is present because of interpolation areas between
different grids using the Chimera method. Finally, the results’ reproducibility is assessed using
different turbulence realizations.

Keywords: direct noise computation; synthetic turbulence; random Fourier modes; periodicity; large
eddy simulation

1. Introduction

Low-Reynolds number (i.e., Re ≤ 5× 105 [1]) aerodynamic applications such as small
wind turbines or drones appear to be more and more present for civil or military use. The
flow on blades can be subject to complex phenomena such as laminar boundary layer
separation, transition towards turbulence, boundary layer reattachment or even stall [1].
Boundary layer separation and reattachment form the well-known laminar separation
bubble (LSB) that can lead to wing stall when the LSB bursts at high angles of attack. In this
situation, the underlying mechanisms still need to be understood [2,3]. Furthermore, the
noise emitted by drones at low Reynolds numbers is a subject of growing interest [4,5]. It is
also the case for higher-Reynolds number applications such as full-scale wind turbines [6].

For both low- and high-Reynolds number applications, inflow turbulence is of signifi-
cant importance. In the case of a full-scale wind turbine, inflow turbulence is responsible
for broadband low-frequency noise [7,8]. For low-Reynolds number applications, inflow
turbulence not only affects emitted noise but also strongly impacts the aerodynamics.
Indeed, it is experimentally suggested that the transition towards turbulence of the LSB
on an airfoil, its length and its burst are highly affected by inflow perturbations [2,3]. The
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effect of inflow turbulence on the LSB separation, transition and reattachment points has
also been numerically studied using different turbulent intensities or integral length scales.
For example, Hosseinverdi et al. [9] generated an LSB on a flat plate and injected turbulence
built with Fourier modes, while Schmidt et al. [10] injected turbulence based on a modified
digital filter approach to disturb an LSB present on an SD7003 airfoil.

For acoustic predictions or LSB insights, numerical simulations such as large eddy
simulations (LES) are a good compromise between resolution and computational cost.
Previous studies showed the importance of generating realistic inflow turbulence in simula-
tions. There are still two major challenges concerning synthetic turbulence. The first one is
that most methods are unable to accurately reproduce experimental turbulence high-order
statistics at the computational domain inlet [11]. The second challenge concerns direct
noise computation (DNC) which requires that synthetic turbulence methods generate low
levels of spurious noise [12].

The different categories and methods of synthetic inflow turbulence were reviewed
in Dhamankar et al. [11]. While library-based turbulence methods are efficient in terms
of statistics’ reproducibility, they can only be used for specific applications and can be
very expensive. The recycling methods avoid a long turbulence adaptation distance but
present the drawback of generating spurious modes in the flow [11]. Furthermore, these
methods exploit turbulent boundary layer similarity laws for rescaling. The last category
of methods is based on synthetic turbulence generators and includes several approaches.
These approaches are still missing correct third-order turbulence statistics but have the
advantage of being directly embedded in solvers, without running any other simulation in
parallel. Kraichnan [13] first proposed a spectral approach with a Gaussian distribution for
the mode amplitudes. Smirnov et al. [14] and Batten et al. [15] extended this work by adding
anisotropy and inhomogeneity properties. Among others, Karweit et al. [16] or Bechara
et al. [17] generated isotropic turbulent fields with a deterministic energy distribution using a
theoretical spectrum. This method, called random Fourier modes (RFM), consists of building
turbulence with a realistic prescribed energy spectrum and has the advantage of naturally
producing an incompressible velocity field, in order to synthesize low-noise turbulence. Sescu
et al. [18] later showed that a synchronicity between the turbulence perturbations and the
mean flow is needed to avoid the generation of spurious vorticity waves. The RFM method
was used with two-dimensional structures to compute the leading edge noise of wavy airfoils
with the Euler equations in Clair et al. [19].

The synthetic eddy method (SEM) [20] is another technique to produce turbulence
and was initially used for channel flow incompressible simulations. This method has been
modified to introduce realistic scale inhomogeneities in a flat-plate turbulent boundary
layer in the wall-normal direction [21], and to reduce spurious noise emission [18] by
making the resulting fluctuating velocity field incompressible. Later, Kim and Haeri [22]
extended this work to retrieve a von Kármán spectrum by optimizing the method with
constraint parameters. They applied it to turbulence interaction noise on a wavy airfoil
with the Euler equations.

Another group of methods for the generation of inflow perturbations was introduced
by Klein et al. [23]. With an incompressible solver, the authors used white noise digital
filtering to create turbulent fields. In [23], these perturbations were employed to study
the influence of the integral length scale, the mean flow velocity profile and the turbulent
intensity on plane jets and on the interface of a water film ejected into air. Later, Ewert [24]
introduced the random particle mesh method (RPM) to obtain a solenoidal velocity field
using digital filtering on a fluctuating vector stream function. He successfully applied this
method to compute slat noise. At the same time, Xie et al. [25] improved the computational
efficiency of the digital filtering method. They applied it to a plane channel flow and to an
urban-type configuration, using an incompressible solver. Kim et al. [26] then modified
this last method by adding a mass flux correction at the inlet and by making the velocity
field solenoidal through the Pressure-Implicit with Splitting of Operators (PISO) algorithm
corrector steps. This allowed them to delete the spurious pressure waves by making
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the turbulence generation method consistent with the incompressible solver even if the
adaptation distance increased. Kim and Xie [27] used this turbulence generation method
to study the effect of freestream turbulence on a NACA0012 airfoil dynamic stall. They
worked in the context of a small or medium-size wind turbine by choosing a chord-based
Reynolds number equal to 1.35× 105. Recently, Gea-Aguilera et al. [28] extended the RPM
method by replacing the white noise field by a scalar randomly taking the value ±1 for
each synthetic eddy, which resulted in a computational cost improvement. This method is
called advanced digital filtering and was used to compute airfoil leading edge noise by
solving the linearized Euler equations.

For DNC, silent synthetic turbulence is sought but is still difficult to obtain. Indeed, in
compressible codes, the velocity is often prescribed at the inlet without the thermodynamic
variables, that leads the code to adapt the flow field and to generate undesired pressure
fluctuations, as explained in Gloerfelt and Robinet [12]. Another source of spurious noise is
found in airfoil aeroacoustic simulations. Indeed, spanwise periodic boundary conditions
are commonly used to limit the computational cost, but the inflow turbulence does not
necessarily respect this condition, that leads the solver to generate undesired pressure
waves. Kim and Haeri [22] solved this problem for their modified SEM by duplicating
the generated turbulence virtual boxes on each side of the span limits. Clair et al. [19]
used in their Euler-based solver a two-dimensional RFM method built with a wavenumber
component in the periodic direction equal to zero. Indeed, at a low Mach number, the
wavenumbers with a non-zero component in the spanwise direction have a negligible
impact on the far-field noise radiated in the mid-span plane, if the airfoil span is at least
three times greater than its chord [19,29]. However, when the Mach number increases,
the modes whose wavenumber component in the spanwise direction is non-zero become
important for the far-field noise calculation.

The aim of the present work is to eliminate the spurious noise triggered by the
spanwise non-periodicity of three-dimensional synthetic turbulence. In this paper, synthetic
turbulence is generated using the RFM method inside Code_Safari [30], an EDF R&D code.
It enables one to carry out relaxation filtering LES [31,32] using high-order finite-difference
schemes and selective filters. In the first step, the RFM method is used inside Code_Safari to
generate divergence-free turbulence at the inlet. This method was especially chosen because
of its straightforward capability to impose a desired turbulent spectrum, its simplicity of
implementation and its ability to synchronize the turbulent fluctuations with the mean
flow [18]. In the second step, an extension of the RFM method called RFM-P is proposed.
The RFM-P approach forces the random Fourier modes to respect the periodicity condition
in the lateral direction, meaning that less spurious noise is generated. In the context of
airfoil simulations, the lateral direction is chosen along the span.

This paper is organized as follows. First, the flow solver and the synthetic turbulence
methods are described in Section 2. Then, spatially decaying homogeneous isotropic
turbulence (HIT) simulations using both the RFM method and the RFM-P extension are
detailed in Section 3. Two geometrical configurations are proposed. The first one is used
for a reference calculation, and the second one is built for the purpose of computational
cost reduction. Since this study focuses on the turbulence generation and convection, the
airfoil is not included in the present computations. Only the region between the inlet and
a virtual airfoil is considered. The turbulence properties are analyzed to determine the
RFM-P performance compared to the RFM one.

2. Numerical Methods: Flow Solver and Inflow Synthetic Turbulence
2.1. Flow Solver

In this work, an EDF R&D finite-difference code, called Code_Safari [30], is used
to carry out DNC through LES. Considering a Newtonian fluid and a Cartesian mesh
x =(x,y,z) transformed into a curvilinear one ξ =(ξ,η,ζ), the compressible equations to be
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solved are

∂

∂t
Û +

∂

∂ξ
(Fξ − Fν

ξ) +
∂

∂η
(Fη − Fν

η) +
∂

∂ζ
(Fζ − Fν

ζ) = 0, (1)

where t is the time, Û = U/J with U = (ρ, ρu, ρe)T the conservative variables vector and J
is the curvilinear transformation matrix Jacobian. The density is ρ, u = (u, v, w)T denotes
the velocity vector in the Cartesian coordinates, and e is the total specific energy. Here,
the equation of state is assumed to be the ideal gas law. Non-viscous fluxes are Fξ , Fη , Fζ ,
while the viscous ones are Fν

ξ , Fν
η , Fν

ζ . Their expressions can be found in Daude et al. [30].
To avoid the dissipation and dispersion of acoustic waves, the spatial discretization is
carried out by an optimized 4th-order 11-point scheme [33], and the time advancement
is realized by an optimized 2nd-order 6-step Runge–Kutta scheme [33]. From the first
to the third points in the orthogonal direction with respect to the boundaries, the Tam
and Webb dispersion-relation-preserving (DRP) [34] backward scheme is used for the
spatial discretization. For the fourth and the fifth points, the DRP centered scheme is
chosen. The dissipation of the non-resolved scales and of the grid-to-grid oscillations is
ensured by a 6th-order explicit selective filter optimized on 11 points instead of subgrid
models [35]. In the orthogonal direction with respect to the boundaries, filters based on
centered decreasing-order schemes are used for numerical robustness from the first to
the fifth points. The DRP centered scheme is applied for the fourth and fifth points, and
standard schemes are chosen from the first to the third points. In this paper, outflow
boundary conditions designate the Bogey and Bailly boundary conditions [36].

The Tam and Dong inflow boundary conditions [37] are implemented on 5 points in
order to minimize the spurious noise when an inlet disturbance is introduced [12]. These
conditions are given by

(
1

Vg

∂

∂t
+

∂

∂r
+

1
r

) ρ′

u′

p′

 =

(
1

Vg

∂

∂t
+

∂

∂r
+

1
r

) ρ′i
u′i
p′i

, (2)

where p′ is the fluctuating pressure assumed equal to the acoustic pressure, ρ′ and u′ are
the fluctuations of density and velocity, r is the radius in the spherical coordinates, Vg
is the phase velocity and (ρ′i, u′i, p′i) are the desired fluctuating quantities at the inlet. In
Equation (2), ρ′i and p′i are set to zero since their expressions are unknown, although this is
a source of spurious noise, as noticed by Gloerfelt and Robinet [12]. As it will be seen in
Section 2.2.1, u′i is analytically known so that the right-hand side term of Equation (2) can
be semi-analytically computed before being introduced in the equation, the Jacobian matrix
between the Cartesian and the curvilinear grid being numerically computed. Finally,
Equation (2) is computed at each substep of the Runge–Kutta algorithm to reduce the
emitted spurious noise [12,37].

Code_Safari is parallelized using the OpenMPI Message Passing Interface (MPI) li-
brary. Periodic boundary conditions are treated as simple MPI communications using ghost
points. Overset meshes with 8th-order interpolation are built with Overture [38], developed
in the Lawrence Livermore National Laboratory. Details about the computational platform
and libraries are given in Section 3.1.4.

2.2. Inflow Synthetic Turbulence

This section describes the synthetic turbulence algorithms implemented in Code_Safari.
Firstly, the classical random Fourier modes (RFM) method is described in Section 2.2.1.
Secondly, the RFM-P extension is described in Section 2.2.2; it takes into account the lateral
periodic boundary conditions when computing the turbulence wavenumbers.
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2.2.1. Classical Random Fourier Modes Method

The RFM method, based on [39], builds an incompressible turbulent velocity field by
adding up N Fourier modes. Figure 1 schematically shows one mode and gives notations
for the local spherical base (ern ,eθn ,eφn ).

Figure 1. Notations for the nth mode generated by the RFM method in the wavenumber domain.
Figure inspired by [17].

The turbulent velocity field u′ can be written as

u′(x, t) = 2
N

∑
n=1

ũn cos
(
kn • x + ψn − knxUxt

)
σn, (3)

where • denotes the scalar product, Ux is the mean flow field, ũn is the nth mode amplitude,
ψn is the nth mode random phase, σn is the nth mode direction and kn =

(
knx, kny, knz

)
is the nth mode wavenumber. To limit spurious noise, the incompressibility condition
∇ • u′ = 0 is used, that leads to

kn • σn = 0. (4)

Thus, the vector σn must be in the (eθn ,eφn ) plane. Furthermore, Kim and Haeri [22]
and Sescu and Hixon [18] showed that the mean flow and the disturbances must be syn-
chronized to generate minimum spurious noise. This condition means that the angular
frequency of the disturbance must be written as kn • U, as it is written in Equation (3). Other
details about the RFM method can be found in Appendix A. The RFM method generates a
frozen divergence-free isotropic homogeneous turbulence with imposed turbulent kinetic
energy kt and a longitudinal integral length scale Λ f . The chosen spectrum is the modified
von Kármán one [17], given by Equation (A6). The wavenumber amplitudes are logarith-
mically distributed, and the wavenumber components are randomly computed using the
spherical coordinate system angles, as seen in Appendix A.

2.2.2. Random Fourier Modes Method Tailored to Periodic Boundary Conditions

In this section, the RFM method is adapted to take into account spanwise periodicity
boundary conditions for airfoil simulations. This extension will be called RFM-P in the
following, for making a distinction from the RFM method. As the wavenumber com-
ponents are randomly chosen to respect isotropy in the classical RFM method, spurious
noise can be generated when using periodic boundary conditions, as it will be seen in
Section 3.2.1. Indeed, a discontinuity of the turbulent velocity is present between the two
opposite periodic boundaries. To enforce periodicity, the inflow turbulence is modified
by the solver, leading to significant spurious pressure, vorticity and entropy fluctuations.
To correct this issue, the spanwise component of the wavenumbers is first chosen in the



Fluids 2021, 6, 193 6 of 23

RFM-P extension as a multiple of the smallest positive wavenumber component respecting
the periodicity. Thus, no modification of the inflow turbulence is needed, meaning that the
spurious fluctuations disappear. If z denotes the periodic direction, then the only possible
values for the z-component of the wavenumbers are

knz = ±
2πn
Lz

, n = 1, 2, .., Nz, (5)

where Lz is the computation domain length in the z direction and Nz is the number of
admissible positive wavenumber components along z. It is defined as

Nz = E
(

kMax
z

2π/Lz

)
, (6)

where E(•) is the integer part and kMax
z is the maximum wavenumber that the mesh can ac-

cept, based on the smallest mesh size and on the numerical scheme employed. For example,
when using the optimized finite-difference 11-point scheme of Bogey and Bailly [33], this
wavenumber must be set to kMax

z = 2π
4.6∆z

to accurately resolve every injected wave, where
∆z is the mesh size in the z-direction. The same notation is adopted for the maximum
wavenumbers kMax

x and kMax
y along x and y. Then, the RFM-P algorithm computes a set

of N targeted wavenumber amplitudes kSearch
n with a logarithmic distribution following

Equation (A3). In the second step, randomly chosen wavenumber components knx and
kny are combined with the admissible values of knz given by Equation (5) to retrieve the
targeted modes. The flow chart for the RFM-P approach is described in Figure 2. Note that
the index p is used in this figure, such that the search base corresponding to the wanted
wavenumber is written as kSearch

p . The pseudo-random wavenumbers are generated
using the intrinsic function RANDOM_NUMBER of Fortran Intel compilers. The seed is
initialized using the system clock.

The first step of the algorithm consists in generating a maximum number of modes
with a non-zero z-component Nkz 6=0, using the values computed by Equation (5). Most of
the time, it is impossible to obtain Nkz 6=0 = N. Thus, in the second step, a certain number
of modes Nkz=0 with knz equal to zero are generated to reach N modes. Eventually, there
will be Nkz 6=0 three-dimensional modes and Nkz=0 two-dimensional modes. Furthermore,
to ensure a maximum of three-dimensional modes, at least one mode must be found for
each possible non-zero z-component from Equation (5) or the algorithm will stop. Several
iterations (Iteration in Figure 2) can be needed, but only one is usually sufficient so that
NiterMax in Figure 2 can be set to ten. Note also that it is not possible to impose a strict
number of modes using the RFM-P extension. Indeed, it becomes difficult to obtain the
low-wavenumber amplitudes when the z-component is enforced because it means that
the two other wavenumber components must be very small. Thus, an effective number
of modes NEff exists. To be sure that NEff is close enough to N, several iterations (denoted
2DIterationMax in Figure 2) are needed when adding two-dimensional modes. This number
of iterations depends on N and on the mesh size. Typically, for the present simulations and
N = 200 modes, 2DIterationMax = 500 is sufficient to obtain | NEff−N

N | ≤ 1 %.
While the RFM method uses random θn and φn values for computing the wavenum-

ber components, RFM-P starts from the components to compute the angles in a second
step using

θn = arccos
(

knz

kn

)
and, (7)

φn =


arccos

(
knx√

k2
nx+k2

ny

)
, if kny ≥ 0

2π − arccos

(
knx√

k2
nx+k2

ny

)
, otherwise.

(8)
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FOR each

starting from the highest absolute value

LOOP : WHILE

Generate random values of 

and

Build

Find the modes for which 

IF

True

False
Keep the modes

Delete these modes

from the search base

IF STOP : No combination found

for

True

False

Set 

GO TO LOOP with instead of

CombinationFound = FALSE

(CombinationFound = FALSE)

CombinationFound = TRUE

)

CombinationFound = FALSE,

Set , ,

WHILE

,

IF ( STOP : Not enough modes are found

True

False

)

End

from Equation (5)

Iteration = 0

Iteration = Iteration + 1

(Iteration >

2DModeIteration = 0

2DModeIteration = 2DModeIteration + 1

2DModeIteration > 2DModeIterationMax

Figure 2. Flow chart for the RFM-P approach.
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The other quantities such as αn, σn, ψn and ũn are computed the same way as in the
RFM method described in Appendix A, and the final turbulent fluctuations are calculated
using Equation (3). Contrary to the RFM method that is built to respect isotropy, it is
clear that the RFM-P approach breaks this isotropy condition by selecting a discrete set
of wavenumber values in the periodic direction. This lack of isotropy is illustrated in
Figure 3 where the wavenumber distribution is represented for both RFM and RFM-P
approaches using a domain length in the periodic direction Lz = 0.25 m, a search base of
N = 200 modes distributed between 25 and 500 m−1 and kMax

x = kMax
y = kMax

z = 466 m−1.
The number of modes NEff = 198 is obtained, with Nkz=0 = 114 and Nkz 6=0 = 86. While
the RFM method distributes the modes randomly, the RFM-P extension concentrates the
modes along the axis kx = ky = 0. It can also be noticed that many two-dimensional
structures (kz = 0) are obtained. This constraint is, however, thought to be a good approx-
imation when taking a small slice of an airfoil, since most of the structures along z will
be aerodynamically seen as two-dimensional structures. One can notice that even with
the RFM method, the largest structures will be two-dimensional due to the small span
length (2Λ f ), meaning that the isotropy is also broken. When computing leading edge
noise in the acoustic far-field, Clair et al. [19] and Atassi [29] explained that only the modes
following the relation knz ≤ knx M√

1−M2 will be cut on for an observer in the mid-span plane
if the span is at least three times greater than the chord. The mean flow Mach number
is denoted M = Ux/c, where c is the speed of sound and Ux is the mean flow velocity
along x. At a low Mach number, this means that only the modes with a low-wavenumber
component in the periodic direction will play a role in the leading edge noise. Thus, taking
only two-dimensional structures as Clair et al. [19] did could be a good approximation.
However, when M increases, more and more modes will be cut on, meaning that it can
be necessary to inject three-dimensional structures to correctly compute the leading edge
noise in the mid-span plane, as conducted in the RFM-P approach.

-500 -250 0 250 500

k
y
(m

-1
)

-500

-250

0

250

500

k
z
(m

-1
)

-500 -250 0 250 500

k
y

(m
-1

)

-500

-250

0

250

500

k
z

(m
-1

)

(a) (b)

Figure 3. Wavenumber distribution for (a) RFM method and (b) RFM-P extension, both for 200 modes and for Lz = 0.25 m
with kMax

x = kMax
y = kMax

z = 466 m−1 (mesh size chosen as 2.93 × 10−3 m). For the RFM-P approach, NEff = 198 modes,
with Nkz=0 = 114 and Nkz 6=0 = 86.

3. Simulations of Spatially Decaying Homogeneous Isotropic Turbulence

In this section, the RFM-P extension is compared to the RFM method, using a case of
spatially decaying homogeneous isotropic turbulence (HIT). First, the numerical config-
urations and the different simulations are described, along with the processing methods.
In the second step, the results of both approaches are compared. The aim is to study
the turbulence properties between the inlet plane and the close proximity of the airfoil
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leading edge. Therefore, only the domain between the inlet and the airfoil leading edge is
considered in the following. Two meshing configurations are studied. The first one, called
Single Grid, serves as a reference since it is a simple box with a constant mesh size. The
second configuration, called Multi Grids, is a modified version of Single Grid in order to
reduce the computational cost. Details are given in Section 3.1.1. A comparison of the
turbulence properties between both configurations and both synthetic turbulence genera-
tion approaches will be performed. Since the turbulence is stochastic, the present results
may depend on the particular turbulence realization. Thus, the results of two different
realizations are presented for the Single Grid configuration only. Some data and results of
this section are available in the supplementary materials at the end of the conclusion.

3.1. Studied Configurations and Numerical Setups
3.1.1. Configurations

The inflow turbulence is based on Comte-Bellot and Corrsin’s [40] results taken at
their first measurement plane. They give the longitudinal integral length scale Λ f and
the turbulent kinetic energy kt, whose values will be given in Section 3.1.2. These two
quantities drive the configuration numerical setups. The Single Grid configuration is shown
in Figure 4 and is first composed of a main grid, called the convection grid, with a uniform
mesh size ∆. Then, at the end of the domain, a sponge zone is added to damp turbulent
structures before they reach the exit boundary. The boundary conditions, described in
Section 2.1, are also presented in this figure: IBC stands for inflow boundary condition,
OBC for outflow boundary condition and PERBC for periodic boundary condition. The
dimensions of the computational domain are based on similar configurations found in
the literature. The domain length along x is set to Lx = 9.5c, where c is the virtual airfoil
chord. Indeed, Eljack [41] or Thomareis and Papadakis [42] showed by some convergence
tests on a NACA0012 that this distance, between the inlet and the airfoil leading edge, is
sufficient to have convergence on the pressure and friction coefficients, even when an LSB
is present. The sponge zone length along x is equal to 1.5c, beginning at 9.5c. Similarly,
the Ly computational domain length, in the chord-normal direction, is set to 20c. Finally,
the airfoil span is set to Lz = 0.2c to limit the computational cost. The chord is set to
c = 10Λ f , as it can been found in the experiments of Wang et al. [3] or Moreau et al. [43].
The data transfer between the convection grid and the sponge zone is ensured by an
8th-order interpolation [30]. The mesh size ∆ for turbulence convection up to the airfoil is
set to ∆ = λg/1.1 to have enough resolved structures, where λg is the transverse Taylor
micro-scale of the injected turbulence.

Figure 4. Schematic of the Single Grid configuration. IBC stands for inflow boundary condition, OBC
for outflow boundary condition and PERBC for periodic boundary condition. (Color online)
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Then, to decrease the computational cost, the Multi Grids configuration is proposed.
The motivation behind this configuration is to reduce the size of the convection grid along
the y axis, as shown in Figure 5a where an airfoil is drawn only for clarity purposes. The
remaining computational domain is composed of a generation grid at the inlet with a mesh
size equal to ∆ and of two acoustic grids with a mesh size equal to 2∆, since no turbulence
is needed in these areas. The acoustic grids begin at 10Λ f downstream of the inlet plane
to avoid an interaction with the generation grid. The turbulence is convected from the
inlet plane towards the airfoil through the convection grid, while the smallest scales are
dissipated when passing through the acoustic grids. As no airfoil is needed in the present
study, Figure 5b displays the geometry considered in the present work. The configuration
is basically the same but a sponge zone is added at the computational domain exit as
in the Single Grid configuration. Boundary conditions and dimensions for acoustic and
convection grids are given in the figure. The convection grid has a height of 40Λ f . Global
dimensions are the same as those for the Single Grid configuration. In the acoustic grids,
the small structures whose wavelengths respect λ < 4.6∆ are numerically damped by the
filter during their convection by the mean flow. The advantage of this second configuration
is that it halves the number of calculation points. Details such as the total number of points
for both configurations are given in Table 1.

Table 1. Geometrical and mesh data for both Single Grid and Multi Grids configurations. Λ f stands for the longitudinal
integral length scale and λg for the transverse Taylor micro-scale of the turbulence.

Configuration Lx
Λf

, Ly
Λf

, Lz
Λf

Mesh Size
in

Convection Grid

Mesh Size
in

Acoustic Grids

Number of
Mesh Points

Number of
Interpolation

Points

Single Grid 95, 200, 2 λg/1.1 / 6.79 × 106 1.07 × 105

Multi Grids 95, 200, 2 λg/1.1 2λg/1.1 3.34 × 106 2.08 × 105

(a) (b)

Figure 5. Schematics of the Multi Grids configuration (a) for future airfoil computations and (b) for the present HIT
computations. (Color online).

3.1.2. Simulation Parameters

For each configuration, three simulations are carried out. The first simulation is
conducted with the RFM method described in Section 2.2.1, the second simulation with the
RFM-P extension described in Section 2.2.2 and the third one with the RFM-P approach,
but only with two-dimensional structures, meaning that kz = 0 for every mode. The
simulations are respectively named RFM, RFM-P3D and RFM-P2D. The physical turbulence
parameters are those measured by Comte-Bellot and Corrsin [40] in their wind tunnel first
plane, that are kt = 0.0739 m2.s−2, Λ f = 0.024 m and λg = 0.0048 m. This gives a Reynolds
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number of Reλg =
λg
√

2/3kt
ν = 72, where ν is the kinematic viscosity. This low Reynolds

number could be problematic for subgrid models, particularly for the classical models
which assume a large separation between small and large turbulent scales. The numerical
filtering used in the present work has the advantage of overcoming this limitation, meaning
that the mesh size only determines the spectral range that is resolved [32].

The modified von Kármán spectrum is discretized with N = 200 modes between 20
and 500 m−1 since the energy is concentrated in this wavenumber range. In addition, for
the RFM-P extension, the maximum wavenumber in each direction is chosen according to
the accurate limit of resolution of the 4th-order 11-point scheme such that kMax

x = kMax
y =

kMax
z = 335 m−1 ' 2π

4.6∆ = 313 m−1. The accurate limit is a little bit exceeded so that more
modes can be introduced, but it is important to note that all the modes are still resolved by
the scheme and the mesh.

The Mach number is set to M = Ux/c = 0.1, giving a turbulent intensity of
It =

√
2/3kt
Ux

= 0.65 %. The Mach number is greater than the one of Comte-Bellot and
Corrsin’s experiments because of the high computational cost and bad conditioning of
Code_Safari at low Mach numbers. The CFL number is equal to 0.95 to ensure stability and
to reduce diffusion or dispersion errors brought by the chosen schemes. Simulations are
carried out on 12t∗Lx

= Nite∆tUx
Lx

, where t∗Lx
is the normalized convection time based on Lx

and Ux, ∆t is the time step and Nite = 7.14× 104 is the number of computation iterations.
The numerical filtering strength is set to σν = 0.2, as in Bogey and Bailly [44]. As already
seen in Section 2.2.2, an effective number of modes NEff is obtained, whose values are given
in Table 2, as well as the number of three-dimensional structures N3D in the RFM-P3D
simulations. The effective number of modes is close to the target value, with a maximum
relative error of 2%.

Finally, the three simulations of the Single Grid configuration are conducted for
another turbulence realization to study the influence of different mode draws, the second
realization being independent from the first one. The corresponding simulation names end
with _Realization2 in Table 2.

Table 2. Desired mode number N, effective mode number NEff and three-dimensional structure
number N3D for the simulations.

Simulation N NEff N3D

RFM_Single_Grid 200 200 200
RFM-P3D_Single_Grid 200 198 68
RFM-P2D_Single_Grid 200 196 0

RFM_Multi_Grids 200 200 200
RFM-P3D_Multi_Grids 200 199 62
RFM-P2D_Multi_Grids 200 196 0

RFM_Single_Grid_Realization2 200 200 200
RFM-P3D_Single_Grid_Realization2 200 200 67
RFM-P2D_Single_Grid_Realization2 200 196 0

3.1.3. Probes and Processing Method

In this section, the sets of probes used to compute the resolved turbulent kinetic energy
and the one-dimensional spectra are described. These quantities are calculated using data
on the last 2t∗Lx

. The resolved turbulent kinetic energy kr
t along x is studied with a line

of probes placed at y = z = 0 and with a 3∆ space between two successive probes. The
longitudinal spectral power density Evv

(
ky
)

of the y-velocity v is computed on x = 0 and
x = 90Λ f . On each x position at z = 0, 106 probes are placed between y = −10Λ f and
y = 10Λ f with a ∆ space between each successive probe. The minimum and maximum y
positions are chosen so that enough probes can be placed without being in the interpolation
areas between convection and acoustic grids. The periodogram method is used to compute
the spectra using all 106 points on each x position. Thus, these spectra have a spectral
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resolution of 13 m−1 and a sampling wavenumber of 1400 m−1. They are computed at each
iteration of the last 2t∗Lx

and averaged on this time window.

3.1.4. Computation Platform and MPI Decomposition

Simulations are carried out on Occigen, a supercomputer belonging to the CINES (French
National Computing Center for Higher Education). Only Haswell ES-2690V3@2.6Ghz pro-
cessors are used with an Infiniband FDR 56 Gbit/s communication bus. The 2.0.1 OpenMPI
library for Intel compilers is employed. The distribution of cores in simulations is conducted
so that each core has roughly the same number of calculation points in each direction, both
in Single Grid and Multi Grids configurations, except in the z direction where there are
not enough calculation points to cut the domain into several processes. For this purpose,
the Single Grid simulations are run with 180 cores spread on 8 nodes of 24 cores, while the
Multi Grids simulations are carried out on 140 cores spread on 6 nodes of 24 cores. Thus, it
is important to notice that the number of cores and their distribution on the grids are not
the same between Single Grid and Multi Grids configurations for core layout optimization.
For each configuration, the number of points per core in the three directions is given in
Table 3. The numbers of interpolation points, due to the interface between acoustic and
convection grids and the sponge zone, are given in Table 1 for both Single Grid and Multi
Grids configurations. As the calculation point number decreases with the Multi Grids
configuration, the number of interpolation points increases, which must be taken into
account when estimating the computational cost.

Table 3. Number of points per core for each configuration in every direction (see Figures 4 and 5).

Single Grid Multi Grids

x y z x y z
Convection Grid 60 60 11 48 43 11

Sponge Zone 40 60 11 40 53 11
Acoustic Grids / / / 48 53 6

Generation Grid / / / 81 53 11

3.2. Comparison of the RFM and RFM-P Approaches for Both Configurations
3.2.1. Instantaneous Velocity and Pressure Fields

Instantaneous x-velocity at z = 0 is shown at the last iteration in Figure 6 for both
Single Grid and Multi Grids configurations and for both RFM and RFM-P3D simulations.
The velocity fields are zoomed in on the frame [40Λ f ,60Λ f ] × [10Λ f ,30Λ f ]. In the Single
Grid configuration, small and large scales can be observed in all of the domain, while for
the Multi Grids configuration, small scales can only be seen in the convection grid in both
figures. No significant differences are visible between RFM and RFM-P3D simulations,
considering both configurations.
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Figure 6. Velocity field along x at the last iteration for a subset of the domain at z = 0. Left column: Single Grid
configuration. Right column: Multi Grids configuration. Top plots: RFM simulations. Bottom plots: RFM-P3D simulations.

Similarly, the corresponding fluctuating pressure fields at z = 0 are shown in Figure 7.
There is a high decrease in the spurious noise between RFM and RFM-P3D simulations.
It is worth mentioning that the pressure is scaled between −50 and 50 Pa for the RFM
simulations, while it is scaled between −0.5 and 0.5 Pa for the RFM-P3D simulations. This
represents the main result of the paper, in that the RFM-P extension does not significantly
affect the velocity field, while it strongly reduces the spurious noise. When considering
only the RFM-P3D simulations in Figure 7, it can be seen that the pressure fields have
higher levels in the Multi Grids configuration than in the Single Grid one. This issue can be
attributed to the overset method where interpolations take place. As explained by Sharan
et al. [45], numerical dispersive waves can be reflected between the different grids of the
mesh. These waves can grow with time and pollute the computational domain. For the
Single Grid configuration, noise is mainly radiated from the sponge zone. This will not be
a problem for airfoil computations, since the sponge zone will be far behind the airfoil and
will be extended to a longer distance to make it more efficient.

start a new page without indent 4.6cm
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Figure 7. Fluctuating pressure field at the last iteration. Left column: Single Grid configuration. Right column: Multi Grids
configuration. Top plots: RFM simulations. Bottom plots: RFM-P3D simulations. The pressure is shown between −50 and
50 Pa for the RFM simulations, while it is shown between −0.5 and 0.5 Pa for the RFM-P3D simulations.

3.2.2. Turbulent Kinetic Energy Evolution

Figure 8 shows the decay of the resolved turbulent kinetic energy kr
t using probes

described in Section 3.1.3. In LES, only a part of the spectrum is calculated; thus, the resolved
kinetic energy kr

t is smaller than the total turbulent kinetic energy kt. In the present work,
kr

t is estimated as 0.055 m2·s−2 at the inlet, with kt = 0.0739 m2·s−2. From Figure 8, it
can be seen that RFM-P simulations are close to this value for both configurations, but
the RFM simulations overestimate it. As the RFM method is not suitable for periodic
boundary conditions, the solver must strongly adapt velocity and pressure fields to enforce
the periodicity which causes the generation of high-amplitude undesired waves. It is
important to note that the velocity fluctuations are not directly superimposed to the mean
flow but computed through Equation (2). Thus, they can be modified right at the inlet
if they do not respect the periodicity condition. This explain why the resolved turbulent
kinetic energy takes different values on x = 0 depending on the simulation. Additionally,
this issue is present because the span is very small (only 2Λ f , 11 computational points),
that means that all the points of the domain are affected by the periodicity condition,
contrary to the study [46], where the span was 5Λ f and the turbulent kinetic energy of
every simulation started from the same value. However, the high-amplitude spurious
noise problem was present even in this configuration.
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Figure 8. Resolved turbulent kinetic energy kr
t decay along x for the Single Grid and Multi Grids sim-

ulations. Decay exponents from grid-generated turbulence experiments of Mohamed and Larue [47]
(color online).

The extreme values of the empirical decay exponent for grid-generated turbulence [47]
are also plotted in Figure 8, showing that the spatial decay is really small in the simulations.
For RFM-P simulations, 25% of the initial energy is lost when reaching the airfoil leading
edge. This spatial loss should increase if the mean velocity decreases, giving more time
for dissipation. Indeed, considering dkt

dt = −ε [48], where ε is the turbulent kinetic energy
dissipation rate, and assuming a frozen turbulence, the evolution of kt with respect to x is
dkt
dx = − ε

Ux
, ε being independent from Ux.

If the turbulence temporal decay does not depend on the Mach number, its spatial
decay does, as seen above. Here, M = 0.1 is sufficiently low to be able to capture some
changes in the turbulence statistics during its convection along the domain length Lx.
Indeed, the convection time at a distance of Lx = 95Λ f can be expressed as

τLx = 6.7× 10−2 s = 11.75τη = τΛ f /1.61, (9)

where τη =
√

ν
ε is the Kolmogorov time scale and τΛ f =

Λ f√
2/3kt

is the decaying time for
the largest scales. Thus, only the small scales have the time to evolve in this particular
situation, meaning that the small spatial decay observed could only be a consequence
of the relatively high Mach number of this particular situation in comparison with the
Mach number of Comte-Bellot and Corrsin’s experiments [40]. The ratio between the
numerical and experimental turbulent kinetic energy spatial decays can be expressed as

dkt
dx

∣∣∣
Simu.

dkt
dx

∣∣∣
Expe.

= MExpe.

MSimu. = 0.37. Additionally, the same small energy decay was already observed

in a previous study [46] using the same numerical tools but with a larger domain length
Lx = 250Λ f . As a consequence, the convection time was comparable to the large-scale
decaying time. Thus, even when the large scales have the time to evolve during their
convection, most of the dissipation is due to the small scales, meaning that the turbulent
kinetic energy should remain nearly the same at a sufficiently long distance to reach the
airfoil leading edge.

The fact that the numerical decay is not in agreement with the empirical one comes
from the synthetic turbulence generation method. Indeed, the third-order moment is not
reproduced and this moment is responsible for the energy transfer from the large scales to
the smallest, as explained by Dhamankar et al. [11] in their review. However, for airfoil
simulations, this disagreement can be beneficial since the turbulent kinetic energy at the
leading edge can be the same as or very close to the energy set at the inlet. Finally, Figure 8
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shows that the energy using the Multi Grids configuration increases slightly compared
to the one of the Single Grid configuration for RFM-P simulations. This increase is of 7%
only. To explain it, Figure 9 compares the turbulent kinetic energy decay obtained for two
different turbulence realizations using the Single Grid configuration. One can notice that
the results between the two realizations are different and that the increase in the kinetic
energy in the second realization is similar to the one obtained in Figure 8 with the Multi
Grids configuration. The overestimation with the RFM method is still present compared to
the other simulations. Thus, the difference in the kinetic energy between the Multi Grids
and Single Grid configurations in Figure 8 is not necessarily the consequence of the different
configurations but of the different realizations. The increase in the energy in Figure 8 for
the Multi Grids-RFM-P2D simulation after 20Λ f is also due to the realization variability
since the same behavior is visible in Figure 9 for Realization 2 in the Single Grid-RFM-P2D
simulation. More realizations would be desirable to compute an uncertainty error in the
method, but that would also be very computationally expensive.
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Figure 9. Resolved turbulent kinetic energy kr
t decay along x for two realizations, for the Single Grid

configuration only (color online).

3.2.3. One-Dimensional Spectra

One-dimensional spectra Evv along the y direction are obtained using probes described
in Section 3.1.3. The top plots of Figure 10 show these spectra for the Single Grid and
Multi Grids simulations at the box inlet, x = 0, while the bottom plots show the same
spectra at x = 90Λ f . The resolution limit plotted as a vertical line corresponds to the
smallest wavenumber that can be accurately calculated by the numerical scheme with
the chosen mesh size. First, by comparing Figure 10a and Figure 10b, similar results are
obtained between configurations Single Grid and Multi Grids at the inlet. The simulations
are also compared to the measurements of Comte-Bellot and Corrsin [40], showing that
both methods are capable of reproducing the desired experimental spectrum. However, the
RFM method seems to overestimate the energy at the lowest wavenumber which can be
explained by the same reason given for the kinetic energy overestimation in Section 3.2.2.
The RFM-P extension tends to underestimate the energy at the lowest wavenumber. This
could be due to the small domain length Lz = 2Λ f , that may not be sufficient to introduce
the largest scales. Indeed, using the same turbulence parameters, it was observed in [46]
that the energy was correctly computed at the lowest wavenumber when the domain length
along z was more than twice the present one.
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Figure 10. One-dimensional spectra at x = 0 for configurations (a) Single Grid and (b) Multi Grids, and at x = 90Λ f for configurations
(c) Single Grid and (d) Multi Grids. CBC curve represents the Comte-Bellot and Corrsin experiment results [40] on their first
measurement plane (color online).

A different behavior is observed at intermediate wavenumbers (30 m−1 ≤ ky ≤60 m−1).
On the one hand, the RFM and RFM-P3D approaches are close to each other. On the other
hand, the RFM-P2D simulation shows lower energy levels compared to the two other sim-
ulations at x = 0. An explanation for this observation will be proposed later in this section.

Spectra right at the inlet are not the best criteria to assess the relevance of the RFM-P
extension. Indeed, peaks in the spectra are present because of the discrete distribution
of the energy between modes. It is necessary to look at the spectra near the end of the
computational domain since this will be the location of the airfoil leading edge in future
simulations. The adaptation distance between the inlet and the outlet allows the energy
transfer between modes to be carried out by the Navier–Stokes equations. Spectra in
Figure 10c,d are indeed smoother, and the three simulations give similar results. The
high-wavenumber energy has been numerically dissipated between x = 0 and x = 90Λ f
because of a lack of grid resolution, as the red dashed vertical line shows. Retrieving
high-wavenumber energy is only possible by decreasing the mesh size. The RFM-P sim-
ulation with two-dimensional structures seems to be, again, less energetic than the other
simulations at low wavenumbers, but only for the Single Grid configuration. Note that
the Comte-Bellot and Corrsin [40] measurements correspond to the inlet plane (x = 0) for
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all plots of Figure 10. It is not possible to compare numerical spectra at x = 90Λ f with
measurements at the same location because the mean flow velocity is different from the
one used in the experiments.

Finally, Figure 11 shows the results between both planes for the Single Grid con-
figuration and only for the RFM-P extension because the RFM method was shown to
overestimate the low-wavenumber energy due to the periodicity problem. It can be seen
that the energy at low wavenumbers is nearly the same between both positions, while the
energy at high wavenumbers is dissipated. Spectra become smoother and non-resolved
scales are attenuated, that explains the decay of the turbulent kinetic energy in Figure 8.
It means that the large structures are purely convected and that the transfer towards the
small scales does not take place, as already explained. Notice that smaller scales could be
added to the simulation by reducing the mesh size. Thus, a full range of scales could be
obtained, without dissipation between the inlet and the airfoil.
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Figure 11. One-dimensional spectra for the Single Grid configuration for RFM-P2D and RFM-P3D
simulations (color online).

As conducted for the kinetic energy, the results for a second turbulence realization are
compared with those of the first realization for the Single Grid configuration in Figure 12.
On the first plane, results between realizations seem to be quite similar for low wavenum-
bers only. The difference visible at high wavenumbers comes from the different distribu-
tions of modes between realizations. On the second plane, the difference between the two
realizations can hardly be seen, and the RFM-P2D simulation still contains less energy
at low wavenumbers. Looking at Figures 10–12 for x = 0, the RFM-P2D simulation is
less energetic for ky ≤ 70 m−1. This is a consequence of the algorithm of Figure 2 used to
generate the wavenumbers. Indeed, setting kz = 0 allows greater values of ky to be reached

in order to fill all the wavenumbers k =
√

k2
x + k2

y + k2
z of the desired spectrum. Thus,

more energy is injected at higher values of ky compared to the RFM-P3D simulation where
kz 6= 0. In conclusion, regarding spectra, the RFM-P3D simulation gives better results
than the RFM one because there is no energy overestimation at the inlet for the lowest
wavenumbers.
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Figure 12. One-dimensional spectra for the Single Grid configuration and two different turbulence realizations at (a) x = 0
and (b) x = 90Λ f . CBC curve represents the Comte-Bellot and Corrsin experiment results [40] on their first measurement
plane (color online).

3.2.4. Computational Cost

In this section, the computational costs of all simulations are presented. Section 3.1.4
should be kept in mind while reading the present results since the distribution and number
of cores are not the same between configurations, meaning that the performance’s results
are approximate. Table 4 shows the computational cost in core hours for each simulation.
The Multi Grids configuration seems to be less expensive which is due to the smaller
mesh number in comparison with the Single Grid configuration. A gain of 25% in the
computational cost can be achieved, which can be useful for expensive airfoil simulations.

Table 4. Computational cost of each simulation.

Simulation Cost (Core Hours)

RFM_Single_Grid 6150
RFM-P3D_Single_Grid 6150
RFM-P2D_Single_Grid 6300

RFM_Multi_Grids 4700
RFM-P3D_Multi_Grids 4750
RFM-P2D_Multi_Grids 4600

4. Conclusions

To compute airfoil leading edge noise and to trigger boundary layer instabilities us-
ing compressible large eddy simulations, synthetic turbulence compatible with periodic
boundary conditions is needed. When the classical random Fourier modes method is
used to generate synthetic turbulence, spurious noise is present because this method does
not respect the periodicity condition in the spanwise direction, since the wavenumber
components are randomly chosen. In the present work, an adaptation of the random
Fourier modes method for periodic boundary conditions, called the RFM-P extension, was
developed and compared with the RFM method in a case of spatially decaying homo-
geneous isotropic turbulence, using two-dimensional or three-dimensional modes. The
RFM-P algorithm computes modes whose wavenumber component in the lateral direction
is compatible with the periodic boundary condition. Two geometrical configurations were
considered to study the spatial decay of turbulence using both approaches. The first con-
figuration, called Single Grid, is a simple box with a constant mesh size, and the second
one, called Multi Grids, reduces the computational cost by up to 25% by decreasing the
mesh size where detailed turbulence is not needed. Results show that the RFM-P extension
permits a better control of the turbulent kinetic energy compared to the RFM method,



Fluids 2021, 6, 193 20 of 23

while the spectral shape is not disturbed. Furthermore, the decay of the turbulent kinetic
energy is small compared to the empirical decay exponents. This decrease is only due
to the dissipation of the smallest scales, while larger scales are unchanged and purely
convected towards the outlet. The RFM method produces undesired high-amplitude
waves generated at the inlet to force the turbulent fluctuations to be periodic. The RFM-P
extension, developed in this work, is effective in getting rid of these waves. The drawback
of the second configuration is the interpolation using the Chimera method, which causes
additional spurious pressure fluctuations at the inlet compared to the constant mesh size
configuration. In the future, the RFM-P approach will be tested in airfoil simulations to
study the effect of inflow turbulence on the broadband noise emitted by an airfoil at various
angles of attack.

Finally, the authors of the present work are aware of the RFM-P extension’s limitations,
inherited from the RFM method, such as the spatial and temporal periodicities of the
fluctuations or the inability to introduce a turbulent field directly into the computational
domain. Gea-Aguilera et al. [28] showed that the advanced digital filtering and RFM
methods resulted in similar airfoil leading edge noise predictions, in a two-dimensional
configuration. Therefore, a comparison between the RFM-P extension, the incompressible
SEM of Kim and Haeri [22] and the advanced digital filtering method of Gea-Aguilera
et al. [28] in a three-dimensional configuration could be worthwhile.
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Appendix A. Details about the Random Fourier Modes method

This appendix provides some details about the RFM method. The formulation used in
the present work is based on Gloerfelt et al. [39]. To meet the condition kn • σn = 0 given in
Equation (4), the vector σn must be in the (eθn ,eφn ) plane, as seen in Figure 1. It is described
in this plane by the angle αn, so that

σn = cos αneθn + sin αneφn . (A1)

The eθn , eφn and ern are expressed in the Cartesian coordinate system by

eθn =

 cos θn cos φn
cos θn sin φn
− sin θn

, eφn =

 − sin φn
cos φn

0

, ern =

 sin θn cos φn
sin θn sin φn

cos θn

. (A2)

The wavenumber amplitude kn is logarithmically distributed for a good discretization
of the energetic low wavenumbers using

kn = exp[ln k1 + (n− 1)∆(ln kn)], n = 1, 2, .., N, (A3)

where k1 is the lowest wavenumber and ∆(ln kn) is given by

∆(ln kn) =
ln(kN)− ln(k1)

N − 1
, (A4)

where kN is the highest wavenumber. The parameters to set are the wavenumbers k1 and
kN , and the number of modes N. To respect isotropy, the probability densities for αn, θn

and φn are p(αn) = 1
2π , p(θn) = sin(θn)

2 and p(φn) = 1
2π [39]. The random phase is

chosen so that p(ψn) = 1
2π . The mode amplitude ũn is computed using

ũn =
√

E(kn)∆kn, (A5)

to obtain the imposed turbulent kinetic energy kt, where E is the desired turbulent spectrum
and ∆kn is the step between two successive wavenumbers. In this work, E is the modified
von Kármán spectrum, that depends on the desired turbulent kinetic energy kt and the
longitudinal integral length scale Λ f . This spectrum is written as [17]

E(k) = αs
2kt

3
(k/ke)

4

ke

[
1 + (k/ke)

2
]17/6 exp

(
−2
(

k
kη

)2
)

, (A6)

where kη is the Kolmogorov wavenumber and αs and ke are constants. These constants
take the following values:

αs =
55
√

πΓ(5/6)
9Γ(1/3)

' 1.453, (A7)

ke =

√
πΓ(5/6)

Γ(1/3)Λ f
' 0.747

Λ f
, (A8)

as computed in [49] to respect both the imposed turbulent kinetic energy kt and the integral
length scale Λ f .
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