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Abstract: We present novel analytic solutions of the axial-symmetric boundary value problem of
the Stokes equation for incompressible liquids with rapidly varying viscosity, which cover the
hydrodynamics of collapsing glass tubes with moving torch. We meet requirements to optimize
the contactless measuring of dynamical viscosities and surface tensions of molten glasses through
collapsing for tools working with sharply peaked axial temperature courses. We study model
solutions for axial courses of the reciprocal viscosity specified as Gaussians extended on small
distances compared to the outer tube radius, and we neglect the boundary inclination, corresponding
to measuring conditions for large torch velocities. The surface tension is assumed to be constant across
the collapsing zone. The boundary value problem becomes disentangled, changing to a gradually
independent hierarchy of streaming function, vorticity, and pressure. Axial Fourier transforms
are introduced to focus on solutions for infinitely extended tubes. Beyond the predictions of the
asymptotic collapsing theory, a successively increasing steepness of the reciprocal viscosity induces an
increasing radial pressure gradient that acts against the surface tension and diminishes the collapsing
efficiency. The arising systematic error in evaluating the viscosity from experimental data in virtue
of the asymptotic collapsing theory is corrected. Error estimations regarding deviations from the
specified viscosity course, the neglected boundary inclination, and heat conduction within the tube
wall are outlined, and preconditions to simplify the measuring of surface tensions through collapsing
are discussed.

Keywords: highly viscous fluids; molten glasses; contactless viscosity measuring; surface tension;
collapsing of glass tubes; Stokes equation with free boundaries; rapidly varying viscosity; viscous
flow and vorticity

1. Introduction

This work is interdisciplinary. It may contribute to the theoretical base to establish col-
lapsing of glass tubes as a precise, contact-free method to measure temperature-dependent
viscosities [1–11] and surface tensions [9,10] of molten glasses. There is a general consensus
that molten glasses should be treated as highly viscous Newtonian fluids. This shows that
exclusively laminar flow can occur. Our work may also contribute to succeed in the analytic
treatment of boundary value problems of the Stokes equation, in particular, if the viscosity
rapidly varies on length scales of the confinement, so that asymptotic methods [11] fail.

When an axial section of a glass tube is heated such that the glass becomes a viscous
fluid, the tube will collapse back upon itself inside the heating zone, driven by the surface
tension. We will focus here on collapsing under steady-state conditions only, and the
term “collapsing” will be exclusively used for steady-state collapsing. This occurs if the
heat source moves uniformly along the tube. Then an observer comoving with the heat
source becomes aware of a steady-state collapsing profile narrowed against the direction of
motion. It is provided, of course, that the comoving observer measures, at the same time,
an accompanying steady-state temperature field. If, in addition, different axial streaming
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velocities are impressed on both sides of the heating zone such that the impressed flow
difference will play the role of the proper driving force, one speaks of “drawing”.

Collapsing and drawing are known, first at all, as fundamental technology steps in
the fabrication of optical fibers and complex fiber structures (for a survey on theoretical
problems in the area of collapsing, see, e.g., [2,9,11], and drawing, see, e.g., [12–17]).
The principle of collapsing is also applied to the so-called redraw process to produce highly
precise glass sheets for optical applications (see, e.g., [18,19]). In our work, we focus on
preferably simple arrangements where a comprehensive understanding of all aspects of
collapsing is essential. The horizontal collapsing arrangement studied here is sketched in
Figure 1. It is the same as investigated in [11].

Figure 1. Schematic plot of steady-state collapsing of a glass tube, shown from the perspective
of an observer comoving with the torch. The comoving collapsing tube profile is depicted versus
the characteristic comoving steady-state axial course of the tube temperature. The torch velocity,
measured in the labor frame, is directed against the reduction of the tube radii.

The glass tube may be fixed in the labor frame. The tube wall may be represented
by two infinitely extended circular, coaxial cylinders. A mobile heat source (simply called
“torch” in the following) may move along the tube with uniform velocity and create, steady-
state conditions provided, a comoving steady-state peak of the tube temperature. If the
maximum temperature is large enough so that the glass becomes a viscous fluid, the surface
tension induces a radial force towards the cylinder axis. Then the moving torch becomes
accompanied by a comoving cone-like reduction of the tube dimensions against the moving
direction (see Figure 1). To determine the temperature-dependent dynamical glass viscosity
(simply called “viscosity” in the following), the input data from steady-state collapsing
measurements are the tube radii and tube wall thickness, respectively, before collapsing,
the torch velocity, and the reduction of the outer tube radius and increasing of the wall
thickness, respectively, after collapsing. These data are supplied by the current axial course
of the tube temperature. All input data can be precisely determined with the aid of optical
and pyrometric tools, respectively (not shown in Figure 1). For details, see, e.g., [9,10].
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For perpendicularly arranged drawing equipment, contactless, non-steady-state in situ
viscosity measurements on compact glass fibers have been described (for a recent version,
see, e.g., [20]). The measuring principle exploits the time-dependent fiber elongation
around a temperature hot spot where the glass becomes a highly viscose fluid and the
balance between gravity and resetting force through surface tension is slightly disturbed.
The surface tension by itself is determined from the force equilibrium conditions. A strong
hydrodynamic analysis is not known so far.

The steady-state viscosity measurement through collapsing requires the knowledge of
any ad hoc model relations describing the general temperature dependence of the viscosity
for selected material classes. This approach is necessary to determine, by calculation only,
that axial viscosity course which correlates with the measured axial temperature course.
More precisely, the measurement of the temperature-dependent glass viscosity through
collapsing comprises the determination of two or more parameters involved in such ad hoc
model relations, e.g., the Arrhenius law and the Vogel-Fulcher law with two and three
parameters, respectively (for details, see, e.g., [21]). Assuming, for a moment, these param-
eters are known, the precise axial viscosity course is known, too, and the collapsing theory
should be able to verify the measured steady-state collapsing profile. The inverse problem,
namely the back-calculation of those parameters in question from experimental data is
more complicated and to some degree straightforward only if preconditions are met to use
the asymptotic analysis. We refer to Sections 4 und 5. Clearly, the determination of two
or more unknown parameters entering formulae of the temperature-dependent viscosity
requires two or more independent collapsing measurements. Finally, measurements of
the surface tension of molten glasses can be involved into collapsing experiments [9,10].
The idea is, in principle, a modification of the well-known bubble pressure method [22],
applied to collapsing equipment. We refer to Section 4.2.

The collapsing theory outlined here as well as in previous papers is based on the
Stokes equation for incompressible liquids, regarding the extremely low Reynolds number
of molten glasses under collapsing conditions of about 10−7. Initially, very simple mathe-
matical approximations motivated more by physical intuition were used to describe the
collapse process [1,2,5–9]. In [11], a comprehensive analysis has been given, applying the
ideas of the asymptotic multi scale analysis (AMSA). It is ad hoc provided there that the
spatial dependence of hydrodynamic and geometric quantities is governed by different
length scales h and l in radial and axial direction, respectively, where ε = h/l � 1. As far as
this fundamental premise holds true in practice, AMSA considerably facilitates the analysis
of collapsing. In particular, it allows an entangled perturbation treatment of hydrodynamic
equations, boundary conditions, and kinematics in powers of ε, which is also the base to
classify various complex effects contributing to collapsing. h and l naturally stand for the
outer tube radius before collapsing, and the axial width of the reciprocal viscosity, respec-
tively, where l is also a measure of the axial width of the temperature peak. In practice,
the AMSA in zeroth order dealing with the radial flow component only, and in first order,
dealing with both the radial and axial flow component, can be performed with reasonable
effort (in [11] denoted as 1D and 2D theory, respectively). The error estimation [11] shows
that AMSA becomes successively erroneously for ε > 1/2 where the data evaluation
through AMSA becomes questionably.

Unfortunately, the preconditions where AMSA works well do not sufficiently meet
two basic experimental requirements to arrive at a highly precise ascertainment of the
above-mentioned input data after collapsing. First, the tube radii should be chosen as large
as possible (≥1 cm) to minimize the error in the optical shrinking measurements [9,10].
Secondly, the exact record of the temperature course requires the entire visibility of the glass
tube crossing the heating zone. This latter condition is well satisfied by equipment applying
oxyhydrogen ring burners [9,10] which can produce, in addition, rather sharp and well
reproducible temperature peaks. But the optimum choice regarding both the preconditions
is found for about 1 ≤ ε ≤ 3. Earlier attempts to operate with tube-shaped furnaces where
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the collapsing zone is invisible and the peak temperature must be estimated [23] are not
helpful, although the axial length of the heating zone could be arbitrarily chosen.

To the authors knowledge, no strong analytical solutions of more complex boundary
value problems of the Stokes equation have been published, which could serve as a guide
for the problem to be solved here. The general attention regarding variable viscosities
seems still focused on finding of rigorous analytical solutions as such in the first place.
In this context, the early work of Martin (1971) [24] is still of interest (see, e.g., [25–27]),
which exploits a relationship between a variable viscosity and the vorticity. However,
completely different methods, e.g., mode coupling [28,29] have been investigated, too,
for geophysical applications [29,30], but mainly to find so-called benchmark solutions to
adjust computer calculations [30,31].

Thus, our mathematical approach is novel, and without exploiting abstract functional-
analytic methods. We present a classical analysis of the hydrodynamics of collapsing
without the ad hoc restriction to sufficiently broad peaks of the axial temperature course
and reciprocal viscosity, respectively. We focus on model courses of the axially dependent
reciprocal viscosity chosen as Gaussians. The Stokes equation with the full set of boundary
conditions is solved for infinitely extended tubes with constant radii. This implies the exact
description of the collapsing kinematics for the limiting case of large torch velocities. We
use the conception of AMSA only for error estimations for more general viscosity courses,
as well as for torch velocities below the asymptotic limit. In Section 2, we start with the
Stokes equation for incompressible liquids. In particular, we focus on the transformed
version for axial symmetry and an axial viscosity dependence outlined in [11], given as
coupled equations for the stream function, vorticity and pressure. A program to arrive at a
clearly arranged treatment of boundary conditions is carried out in Section 3. The stream
function discussed in Section 3.1 is shown to be closely related to the balance of the
normal forces on both the surfaces, meanwhile the vorticity analyzed in Section 3.2 is
governed through the tangential force balance even there. Both the functions will induce
separate, space-dependent contributions to the pressure, discussed in Section 3.3. Because,
vice versa, the pressure participates in the normal force balance, an equation to guarantee
the self-consistency of all hydrodynamic functions is established and solved in Section 3.4.
The collapsing kinematics is discussed in Section 4. We point out that the earlier concise
formulae from AMSA for determining of the viscosity from collapsing data must be
supplied by a correction factor only, meanwhile the surface tension can be measured
through suppression of collapsing, where no knowledge of the viscosity course is required
at all. The general discussion in Section 5 is focused on optimized experimental conditions
to minimize unavoidable systematic errors in the viscosity measurement.

2. Equations and Boundary Conditions

The collapsing tube walls and the main components of the viscous flow and vorticity
are sketched in Figure 2. The axis of the collapsing tube may be the z-axis of a cylinder
coordinate system (r,ϕ,z). The outer and inner tube radius before collapsing may be
denoted by R0, and R1, respectively.

For incompressible fluids, the Stokes equations read

η∆v + σ′ · ∇ η = ∇ · p, (1)

∇ · v = 0. (2)

v is the viscous flow vector, p the pressure inside the tube, η the viscosity, and η·σ′

that part of the stress tensor originated by the viscous material properties. n0, n1, and t0, t1
denote the normal and tangential vector at the outer and inner tube surface, respectively.
We will focus on the analysis of the viscous flow field if the outer and inner tube radius
can be provided as constant, i.e., independent of z (see Sections 4 and 5 for a detailed
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discussion). Then the flow field is determined as solution of (1) and (2) with the boundary
conditions (see, e.g., [11])

ni · (p− η σ′) · ni = (−1)i · τ/Ri, i = 0, 1, (3)

ti · σ′ · ni = 0, i = 0, 1, (4)

where (3) and (4) is the balance condition of the normal and tangential force on both the
tube surfaces, respectively. τ is the surface tension, which is assumed to be constant (see
also Section 4.2). We will denote (3) and (4) as the radial boundary conditions. The latter
must be supplied by axial boundary conditions. In what follows, we will consider an
infinitely extended tube where away from the heating zone, the viscosity continuously but
unlimited increases so that the viscous flow driven by limited external forces must expire.
Thus, we have the axial boundary condition

v→ 0, if z→ ±∞. (5)

Figure 2. Schematic plot: Snapshot (labor frame) of a (r, z)-cross-sectional area of the tube wall across
the collapsing zone, versus axial course of the reciprocal viscosity. Solid arrows: the main (radial)
viscous flow component. Dotted arrows: the exclusively azimuthally directed vorticity vector.

The torch may move along the tube with the constant velocity vT in +z-direction.
We will restrict to steady-state conditions, i.e., an observer which comoves with the torch
may measure steady-state quantities in his frame of reference. In particular, we will
assume a model viscosity course, which is steady-state in the comoving frame of reference,
according to

η(r, ϕ, z, t) = ηmin · exp(z′2/∆z2
e ), (6)

z′ = z− vTt, (7)

where ηmin and ∆ze denote the minimum viscosity, and the half of the axial width where the
viscosity increases to its e-fold minimum value, respectively. The Stokes Equations (1) and
(2) and the boundary conditions (3) to (5) are invariant against the transformation (7) from
labor coordinates (r,ϕ,z) to coordinates (r,ϕ,z′) which comove with the torch. Therefore, we
will make the agreement to change generally to comoving coordinates, so that an explicit
time-dependence disappears in describing the steady state in comoving coordinates. More
precisely, the viscous flux and the stress tensor are understood to be measured in the labor
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frame, but treated as functions of the comoving coordinates, as with all other hydrodynamic
quantities. In the following, z may denote the comoving axial coordinate.

Following [11] we will make the second agreement to change to dimensionless quan-
tities and coordinates so that (1) to (4) remain invariant. Based on three benchmarks Λ
(length benchmark), ηmin, and τ, the dimensionless radial and axial coordinate r, and z
are introduced by r = Λr, and z = Λz, respectively, and the velocity v and pressure p
in physical units become scaled through the corresponding dimensionless quantities v
and p by v = (τ/ηmin)v, and p = (τ/Λ)p, respectively. The dimensionless viscosity η
and surface tension are given by η = η/ηmin, and τ = 1, respectively. Λ will be chosen
as Λ = R0. For further details see [11]. All mathematical expressions outlined below
will be given in dimensionless units, where we will renounce the overbar (for clearness,
the symbol R0 will be used furthermore). Then the model course of the dimensionless
reciprocal viscosity yields

1/η(z) = exp(−α2z2), (8)

where α = R0/∆ze.
Through the boundary conditions (3), (4) and the precondition (6), our problem

becomes an axial-symmetrical one so that all quantities of interest will depend upon r and
z only. The further treatment according to [11] aims at the elimination of the inconvenient
restriction (2). This is done introducing the vector potential A according to

v(r, z) = ∇×A(r, z). (9)

In cylinder coordinates, A reads

A(r, z) = eϕ · Aϕ(r, z), (10)

with eϕ as the azimuthal unit vector. The azimuthal component Aϕ(r, z) of the vector
potential is the stream function of our problem, from which the radial and axial flux
component, vr(r, z) and vz(r, z), respectively, are derived according to

vr(r, z) = −(∂/∂z)Aϕ(r, z), (11)

vz(r, z) = (1/r)(∂/∂r)(rAϕ(r, z)). (12)

It is shown in [11] that, starting from (9), (10), the Stokes Equation (1) can be trans-
formed into three coupled equations for the stream function Aϕ(r, z), an auxiliary function
Q′′(r, z), and the pressure p(r, z), according to

(Dr + ∂2/∂z2)Aϕ(r, z) = Q′′(r, z)/η(z), (13)

(Dr + ∂2/∂z2)Q′′(r, z) = 2(d2η(z)/dz2) · Dr Aϕ(r, z), (14)

(∂/∂r)p(r, z) = −(∂/∂z)Q′′(r, z) + 2(dη(z)/dz) · Dr Aϕ(r, z), (15)

where the operator Dr stands for

Dr ≡ (∂/∂r)(1/r)(∂/∂r)r. (16)

The auxiliary function Q′′(r, z) introduced in [11] guarantees the compatibility of
the ansatzes (9), (10) with (1). One can show (the author thanks one of the referees of
[11] for this suggestion) that −Q′′(r, z)/η(z) agrees with the azimuthal component of the
vorticity vector Ω(r, z) = ∇× v(r, z) = ∇×∇×A(r, z). Indeed, evaluating the r. h. s.
of the foregoing relation and observing ∇ ·A = 0, as concluded from (10), we arrive at
Ω(r, z) = −∆A(r, z) = −eϕ · (Dr + ∂2/∂z2)Aϕ(r, z) (see, e.g., [32]), and the argued result
follows from (13).
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For the remaining of this paper, we abbreviate

S(r, z) = Q′′(r, z)/η(z). (17)

S(r, z) will be denoted as the vorticity function, the equation of which is simply found
substituting (17) into (14). At this point, we take a step further to circumvent complicated
expressions of η(z) involved in (14). If we ad hoc commit ourselves to the model course
(8) of the reciprocal viscosity, further substitute Dr Aϕ(r, z) on the r. h. s. of (14) via (13),
and divide by η(z), where η(z) 6= 0, we obtain

(Dr + ∂2/∂z2 + 4α2z∂/∂z− 2α2 − 4α4z2)S(r, z)

= −(4α2 + 8α4z2)(∂2/∂z2)Aϕ(r, z). (18)

To derive the radial boundary conditions of Aϕ(r, z) and S(r, z) to be applied in
practice we need the following tensor components of σ′ (see, e.g., [32])

σ′rr = 2(∂/∂r)vr(r, z) = −2(∂2/∂r∂z))Aϕ(r, z), (19)

σ′rz = (∂/∂z)vr(r, z) + (∂/∂r)vz(r, z) = (−∂2/∂z2 +Dr)Aϕ(r, z), (20)

to be substituted in (3) and (4), respectively. Because σ′ is expressed in terms of the
streaming function Aϕ(r, z) only, apparently, Aϕ(r, z) would become over-constrained
through the four boundary conditions (3), (4) regarding the radial dependence. Indeed,
the vorticity function S(r, z) provides the missing degrees of freedom required to satisfy all
balance conditions on both the tube boundaries, as seen below.

The pressure p(r, z) is given by the radial integration of (15) up to an arbitrary constant
p0, as shown in [11]. In what follows, it is very useful to subdivide p(r, z) into a constant
and a variable part, p0 and ∆p(r, z), respectively, according to

p(r, z) = p0 + ∆p(r, z), (21)

where the radial integration of (15) may be carried out such that

∆p(R1, z) = 0. (22)

We will call ∆p(r, z) the variable “hydrodynamic” pressure part, because depending
upon the viscous flow only. The boundary condition (3) can be rewritten, taking into
account (19):

(p0 + ∆p(r, z)) exp(−α2z2) + 2(∂2/∂r∂z))Aϕ(r, z)

= ±(1/r) exp(−α2z2), (23)

where the upper and lower sign on the r.h.s. of (23) is valid for r = R0 and r = R1,
respectively.

The boundary condition of the tangential force balance (4) will be reformulated to
become a boundary condition for the vorticity function. This boundary condition remains
dependent upon the stream function. Observing (20) and introducing S(r, z) according to
(13) and (17), we get

S(r, z) = 2Dr Aϕ(r, z) at r = R0 and r = R1. (24)

The reciprocal viscosity 1/η(z) governs the axial symmetry of the hydrodynamic
functions. The model course (8) of 1/η(z) as well as ∆p are even in z, meanwhile the
stream function Aϕ, its contributions Aϕh and Aϕp introduced below, as well as S are odd
in z. The same symmetry properties hold true for the axial Fourier transforms discussed in
the next sections.
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3. The Hydrodynamic Functions
3.1. Stream Function and Flow Components

We have to do with two coupled second-order partial differential equations and
boundary conditions to determine the stream function Aϕ(r, z) and the vorticity function
S(r, z). Some peculiarities are to be observed. First, Aϕ(r, z) and S(r, z) are coupled
together not only through the differential equations, but also via boundary conditions.
In particular, ∆p(r, z) which depends upon Aϕ(r, z) and S(r, z) via (15), (17) couples back to
Aϕ(r, z) through the boundary condition of the normal force balance (23). Secondly, there
appear increasing z-dependent coefficients, due to the extremely increasing viscosity in
axial direction. At first glance, it is not obvious whether the axial boundary condition (5) at
infinite z can be satisfied at all. It is a fortunate circumstance to show that, in fact, this holds
true, and in addition, the hydrodynamic functions can be represented by Fourier integrals
with respect to z, so that (5) is not needed explicitly. Thirdly, to disentangle the complex
problem to be solved, we will perform a refined subdivision of the hydrodynamic functions.
In particular, we separate a leading part of the stream function determined through input
parameters only. In what follows, an overall consistency condition is derived which must
be satisfied by all other subdivided parts of the hydrodynamic functions. In this way we
demonstrate, too, that the stream function and therefore, the overall viscous flux is widely
governed through the balance of the normal forces at the boundaries.

Assuming, for a moment, S(r, z) and ∆p(r, z) are known, the stream function Aϕ(r, z)
and therefore, the overall viscous flux would be uniquely determined through the differen-
tial Equation (13) together with (17), and the boundary condition (23). That part of Aϕ(r, z)
depending explicitly upon the vorticity function can be separated, subdividing Aϕ(r, z)
according to

Aϕ(r, z) = Aϕh(r, z) + Aϕp(r, z), (25)

where the “homogeneous” contribution Aϕh(r, z) may be solution of the homogeneous part
of (13), satisfying the boundary condition (23), and vice versa, the “particular” contribution
Aϕp(r, z) may be solution of the inhomogeneous Equation (13), satisfying the homogeneous
boundary condition

(∂/∂r)Aϕp(r, z) = 0 at r = R0 and r = R1. (26)

Instead of Aϕh(r, z), it is more convenient, at the moment, to consider the radial flux
vrh(r, z) induced by Aϕh(r, z):

vrh(r, z) = −(∂/∂z)Aϕh(r, z), (27)

which obeys
(Dr + ∂2/∂z2)vrh(r, z) = 0, (28)

to be solved with the boundary condition derived from (23)

2(∂/∂r))vrh(r, z)

= (p0 + ∆p(r, z)) exp(−α2z2)∓ (1/r) exp(−α2z2), (29)

at r = R0 and r = R1, with the lower sign at r = R1.
According to (29), vrh(r, z) apparently tends to zero for z → ± ∞, which means

that the radial boundary condition (29) properly implies the axial boundary condition (5).
Therefore, we look for hydrodynamic functions that are ad hoc represented by Fourier
integrals in z, with Fourier transforms being solutions of ad hoc Fourier-transformed
differential equations and boundary conditions. Presuppositions and consistency of this
treatment are in summary discussed in Appendix C.
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Here and in what follows, the corresponding Fourier transforms will be denoted by a
tilde. At the beginning, we will introduce

vrh(r, z) = (1/2π)
∫ ∞

−∞
dk exp(ikz)ṽrh(r, k). (30)

The Fourier integral representation (30) is an important base for subsequent consider-
ations and will be analyzed below in detail. A regular Fourier transform of Aϕh(r, z) does
not exist because Aϕh(r, z) does not vanish (but needs not vanish) for z→ ±∞. For formal
reasons and for convenience, we will introduce the singular Fourier transform Ãϕh(r, k)
derived by a straightforward z-integration of (30) which creates a pole at k = 0:

Ãϕh(r, k) = (i/k)ṽrh(r, k). (31)

Together with the (regular) representation of Aϕp(r, z)

Aϕp(r, z) = (1/2π)
∫ ∞

−∞
dk exp(ikz)Ãϕp(r, k) (32)

we introduce the Fourier transform Ãϕ(r, k) of the total stream function according to

Ãϕ(r, k) = Ãϕh(r, k) + Ãϕp(r, k). (33)

In addition, we provide

S(r, z) = (1/2π)
∫ ∞

−∞
dk exp(ikz)S̃(r, k). (34)

The hydrodynamic part ∆p of the pressure is needed at the boundary r = R0 only,
observing (22) and (23). It is convenient to introduce the ad hoc modified Fourier integral
representation

∆p(R0, z) exp(−α2z2) = (1/2π)
∫ ∞

−∞
dk exp(ikz)∆ p̃1(R0, k). (35)

The Fourier-transformed version of (28) and (29) yields now, observing (22) and (35):

(Dr − k2)ṽrh(r, k) = 0, (36)

2(∂/∂r)ṽrh(r, k) = (p0 − 1/r)(
√

π/α) exp(−k2/4α2) + ∆ p̃1(R0, k)

at r = R0, (37)

2(∂/∂r)ṽrh(r, k) = (p0 + 1/r)(
√

π/α) exp(−k2/4α2) at r = R1. (38)

An appropriate solution of (36) to (38) is found by series expansions in R1 ≤ r ≤ R0 in
terms of orthonormal functions ψA(n, r), n = 0, 1, 2, · · · :∫ R0

R1

dr r ψA(n, r) ψA(m, r) = δnm, (39)

with ψA(n, r) being the eigenfunctions of the self-adjoint eigenvalue problem

DrψA(n, r) = λA(n)ψA(n, r), (40)

satisfying boundary conditions such as (26):

(d/dr)ψA(n, r) = 0 at r = R0 and r = R1, (41)
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δnm is the Kronecker delta, and the eigenvalues λA(n), n = 0, 1, 2, ... obey

0 > λA(0) > λA(1) > · · · . (42)

See Appendix A for details. Thus, we arrive at

ṽrh(r, k) = −
∞

∑
n=0

ψA(n, r)βA(n, k)
λA(n)

k2 − λA(n)
, (43)

βA(n, k) = β−A(n)C
−
A (k, ∆ p̃1(R0, k)) + β+

A(n)C
+
A (k, ∆ p̃1(R0, k), p0), (44)

C−A (k, ∆ p̃1(R0, k))

=
1
2

[√
π

α
exp

(
− k2

4α2

)
R0 R1

R0 − R1
− ∆ p̃1(R0, k))

R2
0 R2

1
R2

0 − R2
1

]
, (45)

C+
A (k, ∆ p̃1(R0, k), p0)

=
1
2

[√
π

α
exp

(
− k2

4α2

)
(p0 −

1
R0 − R1

) + ∆ p̃1(R0, k)
R0

R0 − R1

]
. (46)

The coefficients β−A(n) and β+
A(n) are defined through the series expansions in

R1 ≤ r ≤ R0

− 1/r =
∞

∑
n=0

ψA(n, r)β−A(n), and r =
∞

∑
n=0

ψA(n, r)β+
A(n). (47)

We continue the subdivision (25) and (33) of the total stream function, respectively,
by splitting the contribution involving ∆ p̃1(R0, k) from the (singular) Fourier transform
Ãϕh(r, k). Observing (45) to (47), we write

Ãϕh(r, k) = Ã(0)
ϕh (r, k) + ∆ p̃1(R0, k)Ã(1)

ϕh (r, k), (48)

Ã(0)
ϕh (r, k) = −

√
π

α
exp

(
− k2

4α2

) ∞

∑
n=0

ψA(n, r) β
(0)
A (n, p0)

i
k

λA(n)
k2 − λA(n)

, (49)

Ã(1)
ϕh (r, k) = −

∞

∑
n=0

ψA(n, r) β
(1)
A (n)

i
k

λA(n)
k2 − λA(n)

, (50)

β
(0)
A (n, p0) =

1
2
·
[

β−A(n)
R0 R1

R0 − R1
+ β+

A(n)(p0 −
1

R0 − R1
)

]
, (51)

β
(1)
A (n) =

1
2
·
[
−β−A(n)

R2
0 R2

1
R2

0 − R2
1
+ β+

A(n)
R2

0
R2

0 − R2
1

]
. (52)

Contrary to Aϕh(r, z), Aϕp(r, z) is represented by a regular Fourier integral (32), pro-
vided the same holds true for the same of the vorticity function (34). Ãϕp(r, k) obeys
the equation

(Dr − k2)Ãϕp(r, k) = S̃(r, k), (53)

to be solved with the boundary condition

(∂)/∂r)Ãϕp(r, k) = 0 at r = R0 and r = R1. (54)

We find (see Appendix A)

Ãϕp(r, k) = −
∞

∑
n=0

ψA(n, r)
∫ R0

R1

dr1 r1ψA(n, r1)
S̃(r1, k)

k2 − λA(n)
. (55)
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The axial flow component vz(r, z) is derived from the stream function Aϕ(r, z) through
the operation (12) with respect to r only. Because the Fourier transform Ãϕ(r, k) given by
(31), (33) is singular, particular attention is required to show that both vz(r, z) as well as its
z-derivative are represented by regular Fourier integrals, according to

vz(r, z) = (1/2π)
∫ ∞

−∞
dk exp(ikz)ṽz(r, k), (56)

(∂/∂z)vz(r, z) =(1/2π)
∫ ∞

−∞
dk exp(ikz) i k ṽz(r, k). (57)

We will show below that (57) implies an important condition to guarantee the consis-
tency of all hydrodynamic functions.

We will assume, for a moment, that both (56) and (57) are correct. Then (56) implies
vz(r, z)→ 0 for z→ ± ∞, and we can further conclude, taking the inverse of the Fourier
transform (57)

lim
z→∞

vz(r, z)− lim
z→−∞

vz(r, z)=
∫ ∞

−∞
dz(∂/∂z)vz(r, z) = lim

k→0
i k ṽz(r, k) = 0. (58)

The explicit representation of ṽz(r, k) is found from (12), (31), and (33) according to

ṽz(r, k) =
1
r

∂

∂r
r

∞

∑
n=0

ψA(n, r)
1

k2 − λA(n)
−i
k

[
λA(n)βA(n, k)+

+
∫ R0

R1

dr1 r1ψA(n, r1)S̃(r1, k)
]
. (59)

Because S(r, z) is odd in z and therefore, S̃(r, k) is odd in k, we conclude S̃(r, k) = O(k)
for k → 0, so that the second term in the bracket of (59) multiplied with the prefactor is
holomorphic at k = 0. Thus, the condition (58) becomes

lim
k→0

i k ṽz(r, k) =
1
r

∂

∂r
r

∞

∑
n=0

ψA(n, r)βA(n, 0) = 0. (60)

βA(n, k) is holomorphic at k = 0 so that the singularity of (59) at k = 0 is completely
removed, and both the representations (56) and (57) are regular ones.

The sum in (60) can be evaluated in closed form, applying (44) and (47) and observing
(1/r)(∂/∂r)r · (1/r) = 0. Summarizing, the condition (58) and (60), respectively, results in

lim
k→0

C+
A (k, ∆p1(R0, k), p0) = 0. (61)

Thus, the free pressure constant p0 must be adjusted such that the condition (61) holds
true. This requires the knowledge of limk→0 ∆p1(R0, k), which on its part requires the
knowledge of a consistent set of all hydrodynamic functions including p0, derived below.
The overall consistency is discussed in Section 3.4.

3.2. The Vorticity Function

The equation and the boundary condition of S̃(r, k) are given by the Fourier-transformed
version of (18) and (24), respectively. We have

(Dr − k2 − 4α2(∂/∂k)k− 2α2 + 4α4∂2/∂k2) S̃(r, k)

= (4α2 − 8α4∂2/∂k2) k2 Ãϕ(r, k), (62)

S̃(r, k) = 2Dr Ãϕ(r, k) at r = R0 and r = R1. (63)
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Like (25), we subdivide S̃(r, k) according to

S̃(r, k) = S̃h(r, k) + S̃p(r, k), (64)

where S̃h(r, k) may be the solution of the homogeneous part of (62), satisfying the boundary
condition (63), and vice versa, S̃p(r, z) may be the particular solution of the inhomogeneous
Equation (62), satisfying the homogeneous boundary condition

S̃p(r, k) = 0 at r = R0 and r = R1. (65)

As they are Fourier transforms, S̃h(r, k) and S̃p(r, k) must satisfy, in addition,

lim
k→ ± ∞

S̃ h
p
(r, k) = 0. (66)

We look for series expansions of both S̃h(r, k) and S̃p(r, k) for R1 ≤ r ≤ R0 in terms of
orthonormal functions ψQ(m, r), m = 0, 1, 2, . . .

∫ R0

R1

dr r ψQ(n, r) ψQ(m, r) = δnm, (67)

where ψQ(m, r) are the eigenfunctions of the self-adjoint eigenvalue problem

DrψQ(m, r) = λQ(m)ψQ(m, r), (68)

satisfying the boundary conditions

ψQ(m, r) = 0 at r = R0 and r = R1, (69)

where the eigenvalues λQ(m), m = 0, 1, 2, . . . obey

0 > λQ(0) > λQ(1) > · · · . (70)

Equation (62) is separable and decays with

S̃h(r, k) =
∞

∑
m=0

ψQ(m, r) S̃1h(m, k), (71)

S̃p(r, k) =
∞

∑
m=0

ψQ(m, r) S̃1p(m, k) (72)

into a set of ordinary differential equations for S̃1h(m, k) and S̃1p(m, k), m = 0, 1, 2, · · · ,
respectively. We introduce, in addition, S̃2h(m, k) and S̃2p(m, k) by means of the substitution

S̃1h(m, k) = exp(k2/4α2) S̃2h(m, k), (73)

S̃1p(m, k) = exp(k2/4α2) S̃2p(m, k). (74)

S̃2h(m, k) and S̃2p(m, k) obey differential equations with identical differential operator and
boundary conditions, but with different inhomogeneous terms. Meanwhile the derivation
for S̃2p(m, k) is straightforward, more effort is required with respect to S̃2h(m, k) (see
Appendix B). We find

L(m) S̃2p(m, k) = F̃h(m, k) + F̃p(m, k), (75)

L(m) S̃2h(m, k) = F̃2h(m, k), (76)

lim
k→±∞

S̃2p(m, k) = 0 and lim
k→±∞

S̃2h(m, k) = 0, (77)
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where L(m) abbreviates the differential operator

L(m) ≡ d2/dk2 + λQ(m)/4α2 − 1/α2 − (1/2α4)k2. (78)

Thus, we can summarize

S̃2(m, k) = S̃2p(m, k) + S̃2h(m, k), (79)

L(m) S̃2(m, k) = F̃2(m, k), (80)

lim
k→±∞

S̃2(m, k) = 0, (81)

F̃2(m, k) = F̃h(m, k) + F̃p(m, k) + F̃2h(m, k), (82)

where the expressions on the r. h. s. of (82) are

F̃h
p
(m, k) =

∫ R0

R1

dr r ψQ(m, r) exp
(
− k2

4α2

)(
1
α2 − 2

∂2

∂k2

)
k2 Ã

ϕ h
p
(r, k), (83)

F̃2h(m, k) = (λQ(m)/4α4)×

×
(

β−Q(m) C(−)
S (k, ∆p1(R0, k), p0) + β+

Q(m)C(+)
S (k, ∆p1(R0, k), p0)

)
, (84)

C(−)
S (k, ∆p1(R0, k), p0)

= − R0R1

R2
0 − R2

1

(
R0 Φ

(
R1, k, ∆p1(R0, k), p0

)
− R1 Φ

(
R0, k, ∆p1(R0, k), p0

))
, (85)

C(+)
S (k, ∆p1(R0, k), p0)

=
1

R2
0 − R2

1

(
R0 Φ

(
R0, k, ∆p1(R0, k), p0

)
− R1 Φ

(
R1, k, ∆p1(R0, k), p0

))
, (86)

Φ
(
r, k, ∆p1(R0, k), p0

)
= −2 exp

(
− k2

4α2

)
k2
[

Ã(0)
ϕh (r, k) + ∆ p̃1(R0, k)Ã(1)

ϕh (r, k) + Ãϕp(r, k)
]
. (87)

The dependence of Φ
(
r, k, ∆p1(R0, k), p0

)
upon p0 arises from Ã(0)

ϕh (r, k) through (49)
and (51).

The coefficients β−Q(m), β+
Q(m) are defined through the series expansions in R1 ≤ r ≤ R0

according to

− 1/r =
∞

∑
m=0

ψQ(m, r)β−Q(m), and r =
∞

∑
m=0

ψQ(m, r)β+
Q(m). (88)

We note that the singularity of Ãϕh(r, k) at k = 0 is removed on the r. h. s. of (82).
Details of the derivation are given in Appendix B.

If both the r. h. s. of (62) and (63) are square-integrable in−∞ ≤ k ≤ ∞, F̃2(m, k) given
by (82) is square-integrable in −∞ ≤ k ≤ ∞, too. This is the precondition to determine
S̃2(m, k), m = 0, 1, 2, · · · through solution of (79) to (81) based on a regular eigenvalue
problem defined for the infinite k-interval −∞ ≤ k ≤ ∞. In particular, we get the series
expansions in terms of the orthonormal functions ψS2(p, k), p = 0, 1, 2, . . . in −∞ ≤ k ≤ ∞,
according to

S̃2(m, k) =
∞

∑
p=0

s2(m, p)ψS2(p, k), (89)

∫ ∞

−∞
dk ψS2(p, k) ψS2(q, k) = δpq, (90)
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where ψS2(p, k) are the eigenfunctions of the regular self-adjoint eigenvalue problem

L(m) ψS2(p, k) = λS2(m, p) ψS2(p, k), (91)

lim
k→±∞

ψS2(p, k) = 0. (92)

ψS2(p, k) and λS2(m, p) are given by

ψS2(p, k) = (1/
√

21/4α) ψ(p, k/21/4α), (93)

and
λS2(m, p) = −(1/

√
2α2) (1 +

√
2 + 2p) + (1/4α4)λQ(m), (94)

respectively, where

ψ(n, x) = (2n n!
√

π)−1/2 exp(−x2/2)H(n, x) (95)

is the “physical” Hermite function (see, e.g., [33]), and H(n, x) is the Hermite polynomial
of the order n. Because the inhomogeneous term F̃2(m, k) given by (82) can be expanded as

F̃2(m, k) =
∞

∑
p=0

f2(m, p) ψS2(p, k), (96)

the coefficients s2(m, p) of (89) are given by

s2(m, p) = f2(m, p)/λS2(m, p). (97)

For symmetry reasons, we must have s2(m, p) = 0 for even p. The eigenvalues
λS2(m, p), p = 0, 1, 2, . . . form an equidistant sequence without finite limiting value.

The Fourier transform of the vorticity function S̃(r, k) follows through combining (89),
(71) to (74) and (64). We arrive at the convergent series expansion

S̃(r, k) =
∞

∑
m=0

ψQ(m, r)
∞

∑
p=0

s2(m, p)ψS2(p, k) exp(k2/4α2). (98)

We note that ψS2(p, k) exp(k2/4α2) ∝ kp exp
(
−(
√

2− 1)k2/4α2) → 0 for k → ±∞.
In practice, S̃(r, k) will be approached by S̃m1,p1(r, k) where the sum (98) is truncated at
m = m1 and p = p1. Therefore S̃m1,p1(r, k) obeys

S̃m1,p1(r, k) =∝ kp1 exp
(
−(
√

2− 1)k2/4α2)→ 0 for k→ ±∞, (99)

which is the precondition of S̃m1,p1(r, k) being a Fourier transform, too. Because of the
convergence of (98), we have

S̃(r, k) = lim
m1→∞

lim
p1→∞

S̃m1,p1(r, k). (100)

The sum (98) and the limiting process (100), respectively, converge rather poorly.
As shown below, we need S̃(r, k) in the limit k→ 0 to calculate collapsing-relevant parame-
ters. Because the accuracy of this limiting value depends upon the truncation indices, this
is a typical situation to succeed in an analytical work applying computer-aided tools.

3.3. The Pressure

We rewrite (15). Regarding (8), (17), and (21), we find:

exp(−α2z2)
∂

∂r
∆p(r, z) = −

( ∂

∂z
+ 2α2z

)
S(r, z) + 4α2zDr Aϕ(r, z). (101)
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Observing (22) and (35), the Fourier transform of ∆p(R0, z) exp(−α2z2) obeys

∆ p̃1(R0, k) = −i
∫ R0

R1

dr(k + 2α2 ∂

∂k
)S̃(r, k) + 4α2i

∫ R0

R1

dr
∂

∂k
Dr Ãϕp(r, k)

+ 4α2i
∫ R0

R1

dr
∂

∂k
Dr Ãϕh(r, k). (102)

(102) shows that ∆ p̃1(R0, k) consists of two parts depending upon the stream function
and vorticity function only, respectively. According to (48), Ãϕh(r, k) consists of two parts,

too, where Ã(0)
ϕh (r, k) directly depends upon the experimental input parameters, meanwhile

the residual explicitly depends upon ∆ p̃1(R0, k). We rearrange (102) to collect all terms
involving ∆ p̃1(R0, k) on the l. h. s. We arrive at

∆ p̃1(R0, k)− 4α2i ∆ p̃1(R0, k)
∫ R0

R1

dr
∂

∂k
Dr Ã(1)

ϕh (r, k)

− 4α2i
[ ∂

∂k
∆ p̃1(R0, k)

] ∫ R0

R1

drDr Ã(1)
ϕh (r, k)

= 4α2i
∫ R0

R1

dr
∂

∂k
Dr Ã(0)

ϕh (r, k)

− i
∫ R0

R1

dr
(
k + 2α2 ∂

∂k
)
S̃(r, k) + 4α2i

∫ R0

R1

dr
∂

∂k
Dr Ãϕp(r, k). (103)

Thus, the apparently straightforward relation (101) turns out to become the linear,
inhomogeneous, first-order differential Equation (103) for ∆ p̃1(R0, k), where the solution
must satisfy

lim
k→±∞

∆ p̃1(R0, k) = 0. (104)

Obviously, ∆ p̃1(R0, k) can be split in two parts

∆ p̃1(R0, k) = ∆ p̃1A(R0, k) + ∆ p̃1S(R0, k), (105)

and (103) decays into two equations

∆ p̃1A(R0, k) + P1

{
∆ p̃1A

}
= PA(k), (106)

∆ p̃1S(R0, k) + P1

{
∆ p̃1S

}
= PS

{
S̃
}

. (107)

For evaluation, we apply Dr Aϕh(r, k) = k2 Aϕh(r, k). Then the operators P1 and
PS abbreviate

P1

{
f̃
}
= −4α2i

∫ R0

R1

dr
∂

∂k

[
f̃ (k)

∞

∑
n=0

ψA(n, r)β
(1)
A (n)

−ikλA(n)
k2 − λA(n)

]
, (108)

PS

{
S̃
}
= −i

∫ R0

R1

dr
(
k + 2α2 ∂

∂k
)
S̃(r, k) + 4α2i

∫ R0

R1

dr
∂

∂k
Dr Ãϕp(r, k)

= −i
∫ R0

R1

dr
(
k + 2α2∂/∂k

)
S̃(r, k)

− 4α2i
∫ R0

R1

dr
∂

∂k

[ ∞

∑
n=0

∫ R0

R1

dr1ψA(n, r)r1ψA(n, r1)
λA(n)S̃(r1, k)

k2 − λA(n)

]
, (109)
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respectively, and PA(k) denotes

PA(k) = 4α2i
∫ R0

R1

dr
∂

∂k

[√π

α
exp

(
− k2

4α2

) ∞

∑
n=0

ψA(n, r)β
(0)
A (n, p0)

−ikλA(n)
k2 − λA(n)

]
. (110)

Solutions of (106), (107) must be found which satisfy, analogously to (104),

lim
k→±∞

∆ p̃1A(R0, k) = 0 and lim
k→±∞

∆ p̃1S(R0, k) = 0. (111)

∆ p̃1A(R0, k) corresponds to that part of the variable pressure which is directly induced
through the experimental input parameters, meanwhile ∆ p̃1S(R0, k) is attributed to the
indirect contribution via Ãϕp(r, k) and S̃(r, k).

The solution of the differential Equations (106) and (107) satisfying (111) is a non-
trivial task. As shown in Appendix C, the infinite sums involved in (108) and (110) are
meromorphic functions of k with singularities on the imaginary k-axis only, and there exists
a strip K := {| =k |< a}, 0 < a ≤

√
| λA(0) | along the real k-axis where the coefficients

of the differential Equations (106) and (107) are holomorphic. We must look for particular
solutions that are holomorphic for k ∈ K and vanish for k ∈ K, k → ±∞. Our approach
is predetermined by the basic theorem on local, regular, analytic solutions of differential
equations and their analytic continuation [34].

We start with (106), which may be abbreviated as

∆ p̃1A(R0, k) = (d/dk)
(

g0(k) · ∆ p̃1A(R0, k) + g1(k) · exp(−k2/4α2)
)

. (112)

g0(k) and g1(k) are odd functions, holomorphic for k ∈ K, and O(k) for k → 0. Then it
is verified by a power series ansatz at k = 0 that a unique and even solution ∆ p̃1A(R0, k)
which is O(1) for k → 0 only exists if g1(k) 6≡ 0, i.e., for the particular solution of (112)
exclusively. These power series converge for |k| <

√
−λA(0) only, but can be analytically

continued to be a holomorphic function for all k ∈ K. To succeed for k→ ±∞, we note that
g0(k) = O(1), g1(k) = O(1) for k ∈ K, k→ ±∞ (see Appendix C). Then the comparison of
the leading order of (112) for k→ ±∞ yields the asymptotic behavior

∆ p̃1A(R0, k) = exp(−k2/4α2) ·O(1) for k→ ±∞. (113)

Based the presupposition of S̃(r, k) outlined and verified in Appendix C, a similar
analysis can be carried out for (107) to show that ∆ p̃1S(R0, k) is holomorphic for k ∈ K,
with the asymptotic behavior (A43). We refer to Appendix C.

To represent the solution of (106) for the entire k-range it is suggested to determine
∆ p̃1A(R0, k) as series expansion for −∞ ≤ k ≤ ∞ in terms of orthonormal, adjusted
Hermitian functions

ψPA(p, k) = (1/
√

21/2α)ψ(p, k/21/2α), p = 0, 2, 4, · · · (114)

which involve the exponential exp(−k2/4α2), like PA(k) in (106). Our starting ansatz is the
truncated series expansion

∆ p̃1A(R0, k) =
p2

∑
q=0

bA(q) ψPA(q, k). (115)

We substitute (115) on the l. h. s. of (106) and introduce the truncated series expansions
on both the l. h. s. and r. h. s. of (106) in terms of ψPA(q, k), according to

PA(k) =
p2

∑
q=0

bPA(q)ψPA(q, k), (116)
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P1

{
ψPA(q, k)

}
=

p2

∑
q1=q

ΛP1(q, q1)ψPA(q1, k), (117)

where bA(q) = 0, bPA(q) = 0 for odd q, ΛP1(q, q1) = 0 for odd q− q1. Through comparison
of coefficients, we get the linear equation system

bA(q) +
p2

∑
q1=0

ΛP1(q1, q)bA(q1) = bPA(q), q = 0, 2, · · · p2 even, (118)

to determine bA(q), q = 0, 2, · · · p2 even, which enter (115).
To determine ∆ p̃1S(R0, k) as solution of (107), we first substitute S̃(r, k) given by

(98) into (107), noting that the coefficients s2(m, p) are yet unknown. Because (107) is
linear, ∆ p̃1S(R0, k) is given as superposition of elementary contributions ∆q̃S(m, p ; k) for
all indices {m, p}. The starting ansatz is the truncated series

∆ p̃1S(R0, k) =
m2

∑
m=0

p1

∑
p=0

s2(m, p)∆q̃S(m, p ; k), (119)

where ∆q̃S(m, p ; k) is solution of

∆q̃S(m, p ; k) + P1

{
∆q̃S(m, p ; k)

}
= PS

{
ψQ(m, r) ψS2(p, k) exp(k2/4α2)

}
,

m = 0, 1, 2, · · ·m1, p = 1, 3, · · · p1, p1 odd,

∆q̃S(m, p ; k) = 0, p even. (120)

(120) can be solved analogously to (106). The r. h. s. of (120) involves the exponential
exp

(
−(
√

2− 1)k2/4α2), as concluded from (99), (109). Therefore, it is suggested to look
for ∆q̃S(m, p ; k) as series expansion for −∞ ≤ k ≤ ∞ in terms of the orthonormal, adjusted
Hermitian functions ψPS(p, k) given by

ψPS(p, k) = ((
√

2− 1)/2)1/4α−1/2 ψ(p, ((
√

2− 1)/2)1/2k/α). (121)

We choose

∆q̃S(m, p ; k) =
p1

∑
q=0

bS(m, p, q)ψPS(q, k), (122)

where bS(m, p, q) = 0 for even q, and introduce the truncated series expansions

PS

{
ψQ(m, r) ψS2(p, k)

}
=

p1

∑
q=0

bPS(m, p, q)ψPS(q, k), (123)

P1

{
ψS2(q, k)

}
=

p1

∑
q1=0

ΛS1(q, q1)ψPS(q1, k), (124)

where bPS(m, p, q) = 0 for even p and q, and ΛP1(q, q1) = 0 for odd q− q1. If substituted
into (120), the coefficients bS(m, p, q) which enter (122) are determined by comparison of
coefficients through the linear equation system

bS(m, p, q) +
p1

∑
q1=0

ΛS1(q1, q) bS(m, p, q1) = bPS(m, p, q)

p = 1, 3, · · · p1, q = 1, 3, · · · p1, p1 odd. (125)

We note that the coefficients bA(q) and bS(m, p, q) also depend upon the truncation
indices p2, and p1, respectively.
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Finally, we show that ∆ p̃1(R0, k) given by the starting relation (102) can be evaluated
in almost closed form in the limit k → 0. First, we rewrite the last term on the r. h. s. of
(102), observing (31) and (43):

4α2i
∫ R0

R1

dr
∂

∂k
Dr Ãϕh(r, k)

= 4α2i
∫ R0

R1

dr
∂

∂k
Dr

∞

∑
n=0

ψA(n, r)βA(n, k)
i
k

[
− 1 +

k2

k2 − λA(n)

]
. (126)

Substituting βA(n, k) by (44), the sum on the r. h. s. of (126) can be evaluated
with respect to the first term of the bracket, observing (47), which yields zero because of
Dr(1/r) = 0 and Dr r = 0. With respect to the second term of the bracket, we apply (40)
and use that βA(n, k) is even in k, holomorphic and non-vanishing around k = 0. Then the
series expansion at k = 0 yields

4α2i
∫ R0

R1

dr
∂

∂k
Dr Ãϕh(r, k) = 4α2

∫ R0

R1

dr
∞

∑
n=0

ψA(n, r)
(

βA(n, 0) + O(k2)
)
. (127)

Again, the sum on the r. h. s. of (127) can be evaluated observing (47), and βA(n, 0)
can be substituted by (44), where, in addition, (61) must be observed. We arrive at

lim
k→0

4α2i
∫ R0

R1

dr
∂

∂k
Dr Ãϕh(r, k) = 4α2 log(

R0

R1
) C−A (0, ∆ p̃1(R0, 0))

= 2α2 log(
R0

R1
)

[√
π

α

R0 R1

R0 − R1
− ∆ p̃1(R0, 0))

R2
0 R2

1
R2

0 − R2
1

]
, (128)

The remaining contribution on the r. h. s. of (103) equals PS

{
S̃
}

given by (109). With
respect to the last term on the r. h. s. of (109), we first carry out the Taylor expansion at
k = 0 and find

∞

∑
n=0

∫ R0

R1

dr1ψA(n, r)r1ψA(n, r1)
λA(n)S̃(r1, k)

k2 − λA(n)
= −k

[
(∂/∂k)S̃(r, k)

]
k=0

+ O(k3). (129)

It is taken into account here that S̃(r, k) is odd in k, and that the Dirac δ-function
appears in the order k1 of the Taylor expansion so that the sum of n can be evaluated again.
The overall result is

lim
k→0
PS

{
S̃
}
= 2α2i lim

k→0

∫ R0

R1

dr
(
∂/∂k

)
S̃(r, k). (130)

Observing (128), (103) taken in the limit k→ 0 becomes a linear algebraic equation for
∆ p̃1(R0, 0). The solution is

∆ p̃1(R0, 0)

= 2α2
(
√

π/α) log(R0/R1) · R0R1/(R0 − R1) + i limk→0
∫ R0

R1
dr
(
∂/∂k

)
S̃(r, k)

1 + 2α2 log(R0/R1) · R2
0R2

1/(R2
0 − R2

1)
. (131)

The dependence of ∆ p̃1(R0, 0) upon the vorticity function is available as series expan-
sion only. We find from S̃(r, k) given by (98):

lim
k→0

∫ R0

R1

dr
(
∂/∂k

)
S̃(r, k)

= lim
k→0

∞

∑
m=0

∫ R0

R1

dr ψQ(m, r)
∞

∑
p=0

(∂/∂k)s2(m, p)ψS2(p, k) exp(k2/4α2)
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=
∞

∑
m=0

∫ R0

R1

dr ψQ(m, r)
∞

∑
p=0

s2(m, p)
π1/4 p 2p/2

23/8 α3/2
√

p! Γ( 2−p
2 )

, (132)

with Γ as the Euler gamma function.

3.4. Rearrangement and Consistency

The subdivision (105) of ∆ p̃1(R0, k) is the guide to rearrange the stream function as a
whole. We start with

Ãϕ(r, k) = Ã(A)
ϕ (r, k) + Ã(S)

ϕ (r, k). (133)

Ã(A)
ϕ (r, k) is that part separated from the stream function, which depends upon experimen-

tal input parameters only, i.e., without feedback from other contributions. Because Ãϕ(r, k)

is governed through the normal forces balance at the boundaries, Ã(A)
ϕ (r, k) must include

∆ p̃1A(R0, k) being solution of (106) and given by (115). Ã(A)
ϕ (r, k) also depends upon p0

via Ã(0)
ϕh (r, k). For clarity, we will widely omit p0 in this subsection and take up it at the

end. We have therefore

Ã(A)
ϕ (r, k) = Ã(0)

ϕh (r, k) + ∆ p̃1A(R0, k)Ã(1)
ϕh (r, k). (134)

Ã(S)
ϕ (r, k) collects the remaining parts of the stream function, where all of them depend

upon S̃(r, k). Observing (25), (48), (105), and (55), we have

Ã(S)
ϕ (r, k) = ∆ p̃1S(R0, k)Ã(1)

ϕh (r, k) + Ãϕp(r, k). (135)

Starting from known input parameters, the vorticity function is the yet missing con-
tribution to calculate the whole stream function Aϕ(r, z) and the viscous flow. This is the
matter of the outstanding overall consistency condition. In what follows, the latter will be
derived in three steps.

First, other occurring functions, if represented as linear expressions in Ãϕ(r, k), will
be rearranged like (133). We will use the superscript (A) and (S), too, to indicate the
dependence upon Ã(A)

ϕ (r, k) and Ã(S)
ϕ (r, k) only, respectively, noting that (A) also indicates

the explicit dependence upon p0.
Starting with (87), the substitution of (133) to (135) on the r. h. s. yields

Φ
(
r, k, ∆p1(R0, k), p0

)
= Φ(A)

(
r, k
)
+ Φ(S)(r, k

)
, (136)

Φ(A)
(
r, k
)
= −2 exp

(
− k2

4α2

)
k2 Ã(A)

ϕ (r, k), (137)

Φ(S)(r, k
)
= −2 exp

(
− k2

4α2

)
k2 Ã(S)

ϕ (r, k). (138)

The subdivision (136) can be traced back from (87) to (84), leading to a likewise
rearrangement according to

F̃2h(m, k) = F̃(A)
2h (m, k) + F̃(S)

2h (m, k). (139)

In the same way, (82) can be rearranged, starting from (83)

F̃h(m, k) + F̃p(m, k) = F̃(A)
hp (m, k) + F̃(S)

hp (m, k), (140)

F̃(A)
hp (m, k)

=
∫ R0

R1

dr r ψQ(m, r) exp
(
− k2

4α2

)(
1
α2 − 2

∂2

∂k2

)
k2 Ã(A)

ϕ (r, k), (141)
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F̃(S)
hp (m, k)

=
∫ R0

R1

dr r ψQ(m, r) exp
(
− k2

4α2

)(
1
α2 − 2

∂2

∂k2

)
k2 Ã(S)

ϕ (r, k), (142)

so that we arrive at
F̃2(m, k) = F̃(A)

2 (m, k) + F̃(S)
2 (m, k), (143)

F̃(A)
2 (m, k) = F̃(A)

hp (m, k) + F̃(A)
2h (m, k), (144)

F̃(S)
2 (m, k) = F̃(S)

hp (m, k) + F̃(S)
2h (m, k). (145)

Secondly, we show that even the vorticity function can be formally rearranged, fol-
lowing the schema (133). Substituting (143) on the r. h. s. of (80), the set of linear,
inhomogeneous differential Equations (80) becomes split according to

S̃2(m, k) = S̃(A)
2 (m, k) + S̃(S)

2 (m, k), (146)

L(m) S̃(A)
2 (m, k) = F̃(A)

2 (m, k), (147)

L(m) S̃(S)
2 (m, k) = F̃(S)

2 (m, k), (148)

m = 0, 1, 2, · · · , to be solved with the boundary conditions

lim
k→±∞

S̃
(A)
(S)

2 (m, k) = 0. (149)

S̃(A)
2 (m, k) and S̃(S)

2 (m, k) are solutions of the mutually independent differential

Equations (147) and (148), respectively, where S̃(A)
2 (m, k) is determined through Ã(A)

ϕ (r, k)

only, i.e., through the experimental input parameters only, and S̃(S)
2 (m, k) is determined

through Ã(S)
ϕ (r, k), i.e., through the (Fourier-transformed) vorticity function S̃(r, k) itself.

Thus, (146) is the key to determine the vorticity function self-consistently.
(147) together with (149) can be solved, strictly following the outlined schema (89) to

(97) how to solve (80), (81). The adequate ansatzes are

F̃(A)
2 (m, k) =

∞

∑
p=0

f (A)
2 (m, p) ψS2(p, k), (150)

S̃(A)
2 (m, k) =

∞

∑
p=0

s(A)
2 (m, p) ψS2(p, k), (151)

s(A)
2 (m, p) = f (A)

2 (m, p)/λS2(m, p). (152)

Thirdly, we determine S̃(S)
2 (m, k) by formal solution of (148), (149). It is provided that

S̃(r, k) involved in F̃(S)
2 (m, k) is represented by the series (98). Then F̃(S)

2 (m, k) given by
(145) can be decomposed as series according to (98). The key is the linear dependence of
F̃(S)

2 (m, k) upon Ã(S)
ϕ (r, k) where, vice versa, Ã(S)

ϕ (r, k) given by (135) is a linear expression

in S̃(r, k). We therefore start with Ã(S)
ϕ (r, k), which will be ad hoc represented as series in

terms of superposed elementary contributions Ã(SE)
ϕ (m, p, r, k) with coefficients s2(m, p)

according to

Ã(S)
ϕ (r, k) =

∞

∑
m=0

p1

∑
p=0

s2(m, p)Ã(SE)
ϕ (m, p ; r, k), (153)
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where Ã(SE)
ϕ (m, p ; r, k) = 0 for even p. Thus, the decomposition of (135) results is

Ã(SE)
ϕ (m, p ; r, k) = ∆q̃S(m, p ; k)Ã(1)

ϕh (r, k)

−
∞

∑
n=0

ψA(n, r)
∫ R0

R1

dr1r1ψA(n, r1)ψQ(m, r1)
ψS2(p, k) exp(k2/4α2)

k2 − λA(n)
,

m = 0, 1, 2, · · · , p = 1, 3, 5, · · · , (154)

where the first term on the r. h. s. is from (120), (121), and the last one is derived from (55).
If (153) is substituted into (138), Φ(S)(r, k

)
becomes decomposed according to

Φ(S)(r, k
)
=

∞

∑
m=0

p1

∑
p=0

s2(m, p) Φ(SE)(m, p ; r, k), (155)

Φ(SE)(m, p ; r, k
)
= −2 exp

(
− k2

4α2

)
k2 Ã(SE)

ϕ (m, p ; r, k). (156)

The decomposition (155) can be traced back to (84) and (139), which results in the de-
composition

F̃(S)
2h (m, k) =

∞

∑
m1=0

p1

∑
q=0

s2(m1, q) F̃(SE)
2h (m ; m1, q ; k), (157)

where F̃(SE)
2h (m ; m1, q ; k) = 0 for even q. If (153) is substituted into (142), F̃(S)

hp (m, k) decays,
in the same way, in superposed contributions according to

F̃(S)
hp
(
m, k

)
=

∞

∑
m1=0

p1

∑
q=0

s2(m1, q) F̃(SE)
hp (m ; m1, q ; k), (158)

F̃(SE)
hp (m ; m1, q ; k)

=
∫ R0

R1

dr r ψQ(m, r) exp
(
− k2

4α2

)(
1
α2 − 2

∂2

∂k2

)
k2 Ã(SE)

ϕ (m1, q ; r, k). (159)

Thus, we find the wanted decomposition of F̃(S)
2 (m, k), substituting (157) and (158)

into (145):

F̃(S)
2 (m, k) =

∞

∑
m1=0

p1

∑
q=0

s2(m1, q) F̃(SE)
2 (m ; m1, q ; k), (160)

F̃(SE)
2 (m ; m1, q ; k) = F̃(SE)

2h (m ; m1, q ; k) + F̃(SE)
hp (m ; m1, q ; k). (161)

where F̃(SE)
2 (m ; m1, q ; k) = 0 for even q.

(160) is the wanted decomposition of F̃(S)
2 (m, k).

If the decomposed form (160) of F̃(S)
2 (m, k) is substituted into the r. h. s. of (148), it

implies the analogous decomposition of S̃(S)
2 (m, k). We have

S̃(S)
2 (m, k) =

∞

∑
m1=0

p1

∑
q=0

s2(m1, q) S̃(SE)
2 (m ; m1, q ; k), (162)

where S̃(SE)
2 (m ; m1, q ; k) is uniquely determined through

L(m) S̃(SE)
2 (m ; m1, q ; k) = F̃(SE)

2 (m ; m1, q ; k), (163)

lim
k→±∞

S̃(SE)
2 (m ; m1, q ; k) = 0, (164)



Fluids 2021, 6, 179 22 of 39

where S̃(SE)
2 (m ; m1, q ; k) = 0 for q even.

S̃(SE)
2 (m ; m1, q ; k) is determined, like (151), (152), through the ansatzes

F̃(SE)
2 (m ; m1, q ; k) =

∞

∑
p=0

f (SE)
2 (m, p ; m1, q) ψS2(p, k), (165)

S̃(SE)
2 (m ; m1, q ; k) =

∞

∑
p=0

s(SE)
2 (m, p ; m1, q) ψS2(p, k), (166)

s(SE)
2 (m, p ; m1, q) = f (SE)

2 (m, p ; m1, q)/λS2(m, p). (167)

The final step to arrive at the overall consistency of all hydrodynamic functions is the
self-consistent determination of the coefficients s2(m, p) which enter the representation
(98) of S̃(r, k). Starting from (146), we substitute S̃2(m, k) by (89), S̃(A)

2 (m, k) by (151),

and S̃(S)
2 (m, k) by its decomposed representation (162) together with (166). Equating the

coefficients of ψS2(p, k) for each m results in the linear equation system

s2(m, p) =
∞

∑
m1=0

∞

∑
q=0

s(SE)
2 (m, p ; m1, q) s2(m1, q) + s(A)

2 (m, p),

m = 0, 1, 2, · · · , p = 1, 3, 5, · · · , q = 1, 3, 5, · · · . (168)

The full consistency is reached if the pressure constant p0 is determined. At first, we
note that the coefficients s(A)

2 (m, p) depend upon p0, as seen tracing back to (133). This
p0-dependence is a linear one, as concluded from further tracing back to (46). Therefore
s(A)

2 (m, p) and s2(m, p) are correctly represented writing

s(A)
2 (m, p) = s(A)

20 (m, p) + p0 s(A)
21 (m, p), (169)

s2(m, p) = s20(m, p) + p0 s21(m, p). (170)

Thus, (168) stands for two linear equation systems to determine s20(m, p) and s21(m, p).
Then the substitution of (170) in (98) implies the linear p0-dependence of the vorticity
function according to

S̃(r, k) = S̃(0)(r, k) + p0 S̃(1)(r, k)

=
∞

∑
m=0

ψQ(m, r)
∞

∑
p=0

[
s20(m, p) + p0 s21(m, p)

]
ψS2(p, k) exp(k2/4α2). (171)

Secondly, the limiting value ∆ p̃1(R0, 0) given by (131) depends upon the vorticity
function, which implies the linear dependence of ∆ p̃1(R0, 0) upon p0. Observing (171), we
rewrite (131)

∆ p̃1(R0, 0, p0) = ∆ p̃10(R0, 0) + p0 · ∆ p̃11(R0, 0)

= 2α2
(
√

π/α) log(R0/R1) · R0R1/(R0 − R1) + i limk→0
∫ R0

R1
dr
(
∂/∂k

)
S̃(0)(r, k)

1 + 2α2 log(R0/R1) · R2
0R2

1/(R2
0 − R2

1)

+ p0 · 2α2
i limk→0

∫ R0
R1

dr
(
∂/∂k

)
S̃(1)(r, k)

1 + 2α2 log(R0/R1) · R2
0R2

1/(R2
0 − R2

1)
, (172)

where the evaluation follows the schema of (132).
As the third and last step, p0 is determined through substitution of (172) into (61), i.e.,
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C+
A

(
0, ∆ p̃10(R0, 0) + p0 · ∆ p̃11(R0, 0), p0

)
=

1
2

{√π

α

[
p0 −

1
R0 − R1

]
+
[
∆ p̃10(R0, 0) + p0 · ∆ p̃11(R0, 0)

] R0

R0 − R1

}
= 0. (173)

(173) is the detailed version of the condition (61). This condition now appears as
closure relation to guarantee the consistency of all hydrodynamic functions involved.

In Figure 3a,b we present, by way of example, the characteristic axial courses of
the relevant flow and stress tensor components, respectively, inside the wall, calculated
according to the methods of Section 2 and 3. The underlying axial course of the reciprocal
viscosity, with the same axial scale, is shown in Figure 3c.

(a) (b)

(c)

Figure 3. (a) Characteristic axial courses of the radial flow component vr, axial flow component vz, and vorticity function S
(dimensionless coordinates and units). Calculation for α = 2.5 (sharply peaked heating zone), R1 = 0.7, and r = 0.85 (wall
center). The change of direction of vr on the edges of the collapsing zone is real inside the wall and no numerical artifact.
(b) Characteristic axial courses of σ′rr, and σ′rz (dimensionless coordinates and units). Calculation for α = 2.5 (sharply
peaked heating zone), R1 = 0.7, and r = 0.85 (wall center). The hydrodynamic stress components result by multiplying
with η(z). (c) Axial course of 1/η(z) = exp(−α2z2) for α = 2.5 (sharply peaked heating zone) across the collapsing zone
(dimensionless coordinates and units), as base of the courses outlined in (a,b). We further have p0 = 0.816 (dimensionless),
the z- mean value of ∆p(R0, z) exp(−α2z2) is 0.910 (dimensionless).



Fluids 2021, 6, 179 24 of 39

4. Collapsing Profiles and Data Evaluation
4.1. Collapsing Kinematics and Determination of the Viscosity

We are interested in the steady-state profiles of the tube boundaries due to collapsing,
outlined in comoving coordinates and dimensionless quantities introduced in Section 2.
The dimensionless torch velocity u (in +z-direction) is

u = (ηmin/τ) vT . (174)

The steady-state axial course of the outer and inner tube radius may be denoted by
R̄0(z) and R̄1(z), respectively. For z→ ∞, R̄0(z) and R̄1(z) approach the outer and inner
tube radius R0 and R1 before collapsing, respectively.

In the Stokes approach, the instantaneous viscous flow is governed through the
instantaneous collapsing profiles R̄0(z) and R̄1(z). We will assume, for a moment, that
the flow components may be known for arbitrary R̄0(z) and R̄1(z). This fictive functional
dependence may be denoted by vr(r, z, {R̄0, R̄1}) and vz(r, z, {R̄0, R̄1}). Then R̄0(z) and
R̄1(z) obey the kinematic equations (see, e.g., [11])

dR̄i(z)/dz = −
vr
(

R̄i(z), z, {R̄0(z), R̄1(z)}
)

u− vz(R̄i(z), z, {R̄0(z), R̄1(z)
}) , i = 0, 1, (175)

to be solved with the boundary conditions

lim
z→∞

R̄i(z) = Ri, i = 0, 1. (176)

In collapsing experiments, the reduction ∆R0 of the outer tube radius and the increase
∆W of the tube wall thickness can be measured with high accuracy [9]. We have

∆R0 = lim
z→∞

R̄0(z)− lim
z→−∞

R̄0(z)

= −
∫ ∞

−∞
dz

vr
(

R̄0(z), z, {R̄0(z), R̄1(z)})
u− vz(R̄0(z), z, {R̄0(z), R̄1(z)})

, (177)

∆W = lim
z→−∞

(R̄0(z)− R̄1(z))− (R0 − R1). (178)

From Section 3, the flow components vr(r, z) and vz(r, z) are known for constant
R̄0(z) ≡ R0 and R̄1(z) ≡ R1 (the parametric dependence upon R0 and R1 will be omitted
in the following). Their substitution into (175) is allowed if any corrections from non-
vanishing boundary inclinations dR̄0(z)/dz and dR̄1(z)/dz can be neglected. Because of
dR̄0(z)/dz→ 0 and dR̄1(z)/dz→ 0 for u→ ∞, as concluded from (175), obviously, this is
possible for sufficiently large u. At this point, we outline the more general result, which
includes a remainder of the order of the relative error of (179) due to the neglected boundary
inclination. We have

∆R0 = −(1/u)
∫ ∞

−∞
dz vr(R0, z) ·

(
1 + O(1/w3u2)

)
. (179)

The remainder in (179) is governed by the dimensionless torch velocity u and the
dimensionless wall thickness before collapsing w = R0 − R1. The detailed discussion is
given in Section 5.

To evaluate (179) we introduce the Fourier integral representation of the total radial
flow component vr(r, z)

vr(r, z) = (1/2π)
∫ ∞

−∞
dk exp(ikz) ṽr(r, k), (180)
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where from (11), (25), and (30)

ṽr(r, k) = ṽrh(r, k)− i k Ãϕp(r, k). (181)

The reverse of (180) is

ṽr(r, k) =
∫ ∞

−∞
dz exp(−ikz) vr(r, z), (182)

so that ∫ ∞

−∞
dz vr(r, z) = lim

k→0
ṽr(r, k) = � vr(r, z)�, (183)

where� vr(r, z)� may abbreviate the axial overall integral of the radial flow component
on the l. h. s. of (183). Then (179) yields

∆R0 = −(1/u)� vr(R0, z)� ·
(
1 + O(1/w3u2)

)
. (184)

� vr(r, z) � can be represented combining (181), (43), (44) and (55), with regarding the
constraint (61). We arrive at

� vr(r, z)� = −(1/r) lim
k→0

C(−)
A
(
k, ∆ p̃1(R0, k)

)
. (185)

(185) can be further evaluated observing (45) and (173) so that an almost closed
representation in terms of experimental input parameters is reached. We find

� vr(r, z)�

= −(1/r)
{√π

α

R0R1

2(R0 − R1)
−
[
∆ p̃10(R0, 0) + p0 · ∆ p̃11(R0, 0)

] R2
0R2

1
2(R2

0 − R2
1)

}
, (186)

where ∆ p̃10(R0, 0) and ∆ p̃11(R0, 0) are given by (172), and the constant pressure contribu-
tion p0 is determined through (173).

The formulae (184) to (186) represent the main result of our analysis. Because no
closed analytic expressions are available, we summarize for practical applications (dimen-
sionless units)

∆R0 =
1
u

√
π

α

R1

2(R0 − R1)
· Fac(R1/R0, α) ·

(
1 + O(1/w3u2)

)
. (187)

The three factors on the r. h. s. of (187) stand for the successive improvement of the
collapsing theory. The first factor corresponds to the earlier result of the asymptotic 1D
and 2D theory [11]. The second one summarizes the corrections resulting from the strong
analysis of this work. Characteristic courses of the correction factor Fac(R1/R0, α) are
shown in Figure 4, and analytic approximants of Fac(R1/R0, α) (relative accuracy ≤ 10−3)
are outlined in Appendix D. The remainder involved in the third factor comes from (179)
and estimates the relative error if (187) is applied beyond the asymptotic limit u→ ∞ (see
Section 5). For sufficiently large u where the remainder in (187) can be neglected, ∆R0 · u
only depends upon geometry parameters entering the r. h. s. of (187). This dependence,
rewritten in SI units, is plotted in Figure 5 for different R1/R0. The correction factor
Fac(R1/R0, α) was first introduced in [9] (therein denoted as the F-factor) to quantify the
deviations of actual FEM calculations from the 1D theory.

Based on (187), an adequate relation for ∆W exists in virtue of the principle of local
mass conservation far from the collapsing region [11] according to

∆W = (
√

π/2αu) · Fac(R1/R0, α) ·
(
1 + O(1/w3u2)

)
. (188)
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We will abandon the detailed calculation of the courses R̄0(z) and R̄1(z). The evalua-
tion shows that in practice, R̄0(z) equals its limiting values for z→ ±∞ for axial distances
|z| � (α2(R0 − R1))

−1 from the temperature peak. This is the condition to measure ∆R0
and ∆W with a sufficient accuracy, too.

The minimum viscosity ηmin according to the maximum tube temperature Tmax of the
heating zone is implicitly involved in the dimensionless torch velocity u given by (174).
Changing to SI units and observing (8), we find from (187)

ηmin =

√
π

2
· τ ∆ze

vT ∆R0
· R1

W
· Fac(

R1

R0
,

R0

∆ze
) ·
(
1 + O(1/w3u2)

)
, (189)

where W = R0 − R1. The half-width ∆ze of the axial viscosity course according to (6)
must be fitted from the measured axial temperature course based on appropriate model
relations describing the temperature-dependent viscosity of molten glasses, as discussed in
Section 1.

Figure 4. Correction factor Fac(R1/R0, α) versus α, according to Equations (187) and (188),
for R1/R0 = 0.6, 0.7, 0.8, 0.9, 0.95 (from below).

Figure 5. Dependence of the reduction ∆R0 of the outer tube radius upon the half-width ∆ze of the
axial reciprocal viscosity course for large torch velocities. Plots for R1/R0 = 0.6, 0.7, 0.8, 0.9, 0.95
(from below). R0, R1 outer and inner tube radius, respectively, before collapsing, ηmin minimum
viscosity, τ surface tension, vT torch velocity. All quantities in SI units.
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4.2. Suppression of Collapsing and Measuring of Surface Tensions

The contactless measuring of the surface tension τ of molten glasses through collapsing
has been first described in [9] in detail. The principle can be understood as modification of
the well-known bubble pressure method to determine τ (see, e.g., [22]). The data analysis
outlined in [9] to determine τ is a refined version of the 1D theory. We will point out that
the hydrodynamic theory predicts “hydrostatic” conditions which allow the measurement
of τ without the knowledge of details of the viscosity courses across the collapsing zone,
as well as without the knowledge of details of the hydrodynamic theory at all.

We focus on an axial tube region closely around the temperature peak, and provide that
the surface tension τ of molten glasses can be assumed as constant for the corresponding
temperature interval. We again consider a collapsing tube with sufficiently small boundary
inclinations dR̄0(z)/dz and dR̄1(z)/dz. Then the (dimensionless) normal forces induced
by the surface tension at the outer and inner surface are independent of z and equal to
−1/R0 and 1/R1, respectively. The force balance at the boundaries becomes disturbed
if an additional “hollow”-pressure ph in the hollow space r < R1 of the tube, and quite
similarly, if an additional, external “torch”-pressure pT in the exterior of the tube r > R0
is applied. Both of them will cause a disturbing normal force at the adjacent boundary
against the normal direction, which may be assumed as independent of z (at least across
the collapsing zone). Thus, the surface tension-induced normal force at the outer and inner
boundary must be substituted by −1/R0 − pT and 1/R1 − ph, respectively, to be denoted
as the disturbed normal forces in the following. In [9], this substitution is introduced
into the 1D- theory, and τ is determined through extrapolation from collapsing data for
different R0 and R1.

Obviously, the viscous flow and therefore, the collapsing must expire if the disturbed
normal forces on both the boundaries become equal, i.e., for

− 1/R0 − pT = 1/R1 − ph. (190)

If (190) is satisfied, the constant pressure p0 inside the tube will solely balance the
disturbed normal forces on both the boundaries. This implies, at the same time, the absence
of the viscous flow, so that neither a tangential force at the boundaries, nor a hydrody-
namic pressure contribution will exist. Both ph and pT can be involved into the general
formalism outlined in Sections 2 and 3. In doing so, ∆p(R0, z) has to be substituted by
∆p(R0, z) + ∆pex for r = R0 in (23), where ∆pex = ph − pT , meanwhile there remains
∆p(R1, z) = 0 for r = R1. The step by step analysis shows that the viscous flow becomes
expired, in accordance with (190), if ∆p(R0, z) reaches the critical value

∆pex = ∆pCex = (R0 + R1)/R0R1. (191)

Changing to SI units, the surface tension τ follows from (191) according to

τ = ∆pCexR0R1/(R0 + R1). (192)

In practice, ∆pCex may be determined through successive change of ∆pex and ex-
trapolation to zero reduction ∆R0 → 0, where the precondition of negligible boundary
inclinations is satisfied.

5. Discussion
5.1. General

We discuss three aspects. First, there is the problem of validity of our results if applied
to torch velocities u where the precondition of the asymptotic limit u → ∞ is not well
satisfied. Available analytic methods allow, at least, an error estimation of the results of
Section 3, if taking into account the effect of the boundary inclination. Using the principles
of AMSA outlined and discussed in detail, e.g., in [11], the geometry parameters R0 and
R1 are considered to be no longer constant, but slightly dependent upon the “slow” axial
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variable Z = εz, ε � 1. This implies the substitution of ∂/∂z by ∂/∂z + ε∂/∂Z, as the
base of a perturbation treatment of the hydrodynamic equations, boundary conditions,
and kinematic equations in powers of ε. Then the kinematic equations specify ε = 1/wu.
For symmetry reasons, the lowest-order correction to ∆R0 as outlined in (179) and (187)
results in the order ε2.

Secondly, the correction factor Fac(R1/R0, α) in (187) and (188) outlined in Appendix D
and plotted in Figure 4 quantifies the deviation of the established zeroth and first-order
asymptotic analysis of collapsing (1D- and 2D-theory [11]) from the exact analytic theory.
Fac(R1/R0, α) monotonously decreases with α from unity for α = 0 to the order 10−1 for
α > 1. These findings are in accordance with error estimations given within the frame of
the 1D and 2D-theory [11], where the breakdown of the asymptotic analysis for α→ 1 is
predicted. Remarkably, FEM results for 0 ≤ α ≤ 1 outlined in [11], too, as well as FEM
results for α > 1 reported in [9] do not well agree with (187) for α > 1/2. In particular,
the correction factor calculated from FEM should much weaker decrease for α > 1/2, com-
pared with our strong analytic results. This discrepancy is open for discussion. The reason
may be an inappropriate FEM algorithm in treating axial boundary conditions ad infinity,
where η(z) increases beyond all limits.

We see from (186) that the correction factor Fac(R1/R0, α) is related to the hydrody-
namic pressure contribution ∆p(R0, z) only. The latter, on its part, is induced through the
axial viscosity dependence only. In this context, we note that ∆p(R0, z) vanishes for α→ 0
where boundary condition (23) of the normal force balance is solved for ∆p(R0, z) = 0
(see [11], Section 3.1). Fac(R1/R0, α) decreases ∝ α2 for small α. This is a second-order
effect in α, which is not accessible in zeroth and first perturbation order of AMSA (1D and
2D theory [11]) where ∆p(R0, z) is not involved. The hydrodynamic pressure contribution
∆p(R0, z) acts against the surface tension. Therefore, the collapsing efficiency becomes
diminished for increasing α, compared to the predictions of the 1D and 2D-theory.

To evaluate experimental data, on the other hand, the formulae from the 1D-theory
represent a very convenient framework to calculate the minimum viscosity along the
axial viscosity course, which corresponds to the maximum temperature of the heating
zone [9]. This advantage also persists if working with the correct formulae (187) to (189).
Thus, the minimum viscosity ηmin1D calculated from the 1D-theory must be corrected to
ηmin = ηmin1D · Fac(R1/R0, α) (see also [9]), provided the preconditions of (184) hold true.
In other words, the data evaluation according to the 1D-theory involves a systematic error
so that the minimum viscosity attributed to the maximum temperature is calculated to
be too large in comparison to the reality. Regarding the range of Fac(R1/R0, α), the actual
temperature-dependent viscosity data may be smaller up to one order of magnitude
compared with the data evaluated by means of the 1D-theory.

The third aspect concerns the question how our theoretical results are changed if the
viscosity course in axial and radial direction does not completely meet the preconditions
of our theory. We will first assume that the temperature measured at the external tube
boundary indeed equals the temperature across the tube wall, so that a radial viscosity
dependence does not occur, but 1/η(z) may deviate from the Gaussian model course (6).
This is a typical problem to be answered through AMSA [11].

We provide dimensionless quantities and coordinates. If 1/η(z) deviates from the
Gaussian model course, AMSA shows that the prefactor

√
π/α in (187) and (188) must be

substituted by
∫ ∞
−∞ dz/η(z), where 1/η(z) is the reciprocal viscosity course, back-calculated

from experimental temperature data and normalized to the maximum value unity. This
suggests an extension to sharply peaked, non-Gaussian 1/η(z)-profiles where the model
parameter α must be chosen such that∫ ∞

−∞
dz
(

δ(1/η(z))
)2

=
∫ ∞

−∞
dz
(

1/η(z)− exp(−α(z− z0)
)2

= Min!, (193)
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looking for the minimum with respect to α and z0. Because (193) also implies∫ ∞
−∞ dz δ(1/η(z)) = 0, the principles of AMSA predict a second-order correction only, which

results in relative corrections of ∆R0 and ∆W of the order O
(
(α2/π)

∫ ∞
−∞ dz (δ(1/η(z))2).

A more serious problem arises if the axial temperature course measured at the outer
tube boundary does not exactly represent the temperature distribution inside the tube
wall. In particular, the heat flux from the torch passing the outer tube boundary and
flowing through the tube wall away from the heating zone creates a positive radial tem-
perature gradient near the torch. In addition, convective effects due to the torch motion
cause a distortion of the comoving temperature field inside the tube wall, leading to an
enhancement of this radial temperature gradient. Because the viscosity increases with
decreasing temperature, a viscosity measurement which evaluates the surface temperature
only and neglects the positive radial temperature gradient would result in a higher viscosity
assigned to the measured maximum temperature, compared to the reality. Superposed
thermal radiation effects have been earlier discussed for slender geometries [23]. It has
been concluded therein that the thermal radiation would increase the effective thermal
conductivity of molten glasses by a factor of about 3 and reduce the systematic error
due to heat conduction. Tube geometries as here described, sharply peaked temperature
profiles and peak temperatures at least up to about 2200 K provided, exact solutions of
the convective heat conduction equation and the integral equation of thermal radiation
(Th. Klupsch, unpublished) show that the energy transport via heat conduction strongly
dominates the superposed thermal radiation.

To estimate the systematic error in viscosity measurements caused by heat conduction,
we briefly report on model calculations (Th. Klupsch, unpublished) on the convective heat
transport within the wall of infinitely extended tubes, assuming a prescribed temperature
course at the outer boundary r = R0 in comoving dimensionless coordinates according to

T(z) = (Tmax − T∞) exp(−z2/∆z2
Te) + T∞, (194)

and a vanishing radial heat flux at the inner boundary r = R1. 2∆zTe is the axial 1/e-width
of the temperature peak at the outer boundary, and Tmax, and T∞ now denote the peak
temperature at the outer boundary, and the room temperature, respectively. The maximum
temperature difference ∆T between opposite points in radial direction at the outer and
inner boundary can be roughly estimated to (in SI units)

∆T/(Tmax − T∞) ≈ (W/∆zTe) · 1.66 · 10−2, if vT/κ < 1 · 102 m−1, (195)

∆T/(Tmax − T∞) ≈ (W/∆zTe) · (vT/κ) · 1.66 · 10−4 m, if vT/κ > 1 · 102 m−1, (196)

where κ = 0.9 · 10−6m2/s is the temperature conductivity of molten glasses [21]. The
threshold vT/κ = 1 · 102 m−1 characterizes the transition to a dominating convective
heat transport. The axial viscosity model course ηmod(z) at the outer boundary r = R0
(corresponding to (6)) may be derived from the empirical relation of the temperature-
dependent viscosity of molten glasses (silica) [11]

ηemp(T) = exp(−18.77 + 66420/T) (197)

(ηemp in Pa s, T in K), so that ηmod(z) follows substituting (194) into (197). For T0 = 2200 K,
T∞ = 300 K, and ∆zTe = 2 (dimensionless) corresponding to R0 = 1 · 10−2 m and
∆zTe = 2 · 10−2 m, the minimum value of ηmod(z) is ηmin = 9.1 · 104 Pa s, and (193)
yields α = 2.6. The radial temperature gradient will cause the uncertainty ∆ηmin of the
ηmin-value attributed to the maximum temperature T0 at the outer boundary. From (197),
this systematic error in viscosity measurements caused by heat conduction is roughly
estimated to

|∆log ηmin/ log ηmin| ≈ ∆T/(Tmax − T∞). (198)
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5.2. Optimizing Experimental Conditions

We will discuss arrangements which meet the requirements of our theory, as precondi-
tion to arrive at a correct data evaluation. We are interested, in addition, in conditions to
minimize accompanying errors, which is necessary to estimate an accuracy limit of viscosity
measurements through collapsing. According to our original motivation, we will focus
on equipment using sharply peaked axial temperature courses. From viewpoint of the
hydrodynamic theory, the accuracy of the viscosity, if back-calculated from collapsing data,
is in any case limited through the neglected boundary inclination. The order of this relative
error is given by the remainders of (187) and (188). Provided that the data evaluation is
based on the formulae (187) and (188) we will exclusively look for arrangements where
the relative error due to the neglected boundary inclination does not exceed a prescribed
limit. This mandatory error limit may be denoted by Erhy. Keeping w = R0 − R1 fixed,
Erhy = 1/u2w3 determines a minimum dimensionless torch velocity umin which at least
must be applied. Thus, measurements have been carried out for the precondition

u ≥ umin = 1/Erhy1/2w3/2. (199)

According to (187) and (188), both the collapsing-relevant parameter ∆R0 as well
as ∆W drop down for increasing u. Substituting (199) in (187) and (188), we see that in
any case, the experimental tools must be arranged such that both ∆R0 and ∆W (both in
dimensionless units) must not exceed a maximum value according to

∆R0 ≤ Erhy1/2w1/2(1− w)(
√

π/2α)Fac(R1/R0, α), (200)

∆W ≤ Erhy1/2w3/2(
√

π/2α)Fac(R1/R0, α). (201)

We note that w1/2(1−w) assumes its maximum 0.385 at w = 0.33, and ∆W overcomes
∆R0 for w > 0.5.

In continuing with the numerical example of Section 5.1, we prescribe Erhy = 1 · 10−1

and w = 0.33, so that Erhy1/2w1/2(1 − w) = 0.12, Erhy1/2w3/2 = 0.06, and
(
√

π/2α)Fac(R1/R0, α) = 0.15 for α = 2.6. This provided, the tolerable range of ∆R0
and ∆W according to (200) and (201) is restricted to ∆R0 ≤ 1.9 · 10−2 and ∆W ≤ 9.2 · 10−3,
respectively.

In SI units, this result can be summarized as follows: Continuing the numerical
example at the end of Section 5.1, we consider a tube with the outer radius 1 · 10−2 m and the
thickness W = w · 1 · 10−2 = 3.3 · 10−3 m before collapsing. Then the collapsing equipment
must be arranged such that the reduction ∆R0 of the external tube radius does not exceed
1.9 · 10−4 m, and the increasing ∆W of the wall thickness does not exceed 9.2 · 10−5 m,
respectively. This provided, the preconditions are satisfied to evaluate the experimental
data, applying (187) or (188), with a relative accuracy of about ten percent. The permissible
range of the dimensionless torch velocity is u ≥ 1.67 · 101. For a surface tension of molten
glasses τ = 4 · 10−1 Pa ·m [21,22], the torch velocity in SI units must satisfy the restriction
vT = u · τ/ηmin ≥ 7.3 · 10−5m/s. We note that, of course, both ∆R0 and ∆W assume
their permitted maximum if the minimum torch velocity is applied. From W/∆zTe = 0.16
and vT/κ ≥ 8.1 · 101 m−1 we find, according to (195), ∆T/(Tmax − T∞) ≥ 3 · 10−3 for
the entire range of the permitted torch velocity, where the minimum is assumed for the
minimum torch velocity. This means that, applying the permitted minimum torch velocity,
the mandated relative error Erhy = 1 · 10−1 for data evaluation overcomes the collateral
error through heat conduction. This also means that the general precondition of our theory,
namely to neglect a radial viscosity dependence is acceptable.

The numerical example outlined above shows that despite the provided ten per-
cent order of Erhy, the measurement of the relevant geometry parameter, in particular,
the change of the outer tube radius and wall thickness, respectively, would require a
considerable accuracy [9]. Such a requirement could be substantially reduced choosing
larger widths of the axial temperature peak. If ∆zTe is doubled to ∆zTe = 4 (dimensionless),
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corresponding to 4 · 10−2 m, but keeping other parameters fixed, we get α = 1.3 and
(
√

π/2α)Fac(R1/R0, α)=0.59, and the permitted range of ∆R0 and ∆W would increase by
a factor 4 to (in SI units) ∆R0 ≤ 7.2 · 10−4 m and ∆W ≤ 3.5 · 10−4 m, respectively. In addi-
tion, the relative error through heat conduction on the entire range of the permitted torch
velocity would be reduced according to ∆T/(Tmax − T∞) ≥ 1.4 · 10−3. That means that for
both the numerical examples considered the error through heat conduction is negligible
if working with the minimum permitted torch velocity, and at the same time, the basic
premise to deal with an only z-dependent viscosity is justified in turn. The collateral error
through heat conduction may arrive at the ten percent range if torch velocities vT of the
order 10−3 m/s would be necessary to get acceptable collapsing efficiencies. This is the
case, according to (174), if ηmin approaches or falls below the order 103 Pa s. Regarding
the extreme temperature dependence of the glass viscosity, this may be realistic for peak
temperatures exceeding 2200 K.

6. Summary

We improve the theoretical base to understand collapsing of glass tubes, as necessary
precondition to establish the steady-state collapsing with moving torch as a precise and
contact-free method to determine temperature-dependent viscosities and surface tensions
of molten glasses. We focus, in particular, on novel analytical solutions of the covering
boundary value problem of the Stokes equation for sharply peaked axial courses of the
reciprocal viscosity. Our aim is to extend the validity range beyond the limits of the
established asymptotic methods (AMSA). The strong solutions derived here neglect the
inclinations of the tube boundaries, which meets the conditions of the collapsing kinematics
for sufficiently large torch velocities. We take up the ideas of AMSA to estimate the order
of the corrections, if the boundary inclination should be taken into account.

Despite the neglected boundary inclination, the presupposed strong axial viscosity
dependence leads to a substantial complication of the boundary value problem. For disen-
tanglement, we derive a gradually interdependent hierarchy of equations and boundary
conditions for the stream function, the vorticity and pressure, starting from the experi-
mental input conditions. In addition, we introduce axial Fourier transforms to set up of
solutions for infinitely extended tubes, which obey axial boundary conditions according to
the expiring viscous flow behavior for unboundedly increasing viscosity courses beyond
the collapsing zone. We outline model solutions for the course of the reciprocal viscosity
specified as Gaussians, the axial half-width of which may be much smaller than the outer
tube radius.

We show that for sufficiently sharply peaked axial temperature courses, a connection
exists between the steepness of the axial course of reciprocal viscosity, the vorticity of the
viscous flow, and the radial pressure gradient. The latter acts against the surface tension and
retards the collapsing kinematics. This effect is not predicted by the established asymptotic
theory. Thus, the minimum viscosity attributed to the peak temperature, if evaluated from
experimental date according to the asymptotic1D and 2D theory, is found to be too large
up to one order of magnitude.

For data evaluation in practice, in particular, for the back-calculation of the viscosity
from experimental input data, we outline a simple extension of convenient formulae from
the 1D theory in virtue of a correction factor only. In addition, we outline error estimations
regarding both the unavoidable boundary inclination and convective heat conduction
within the tube wall. Both systematic errors will work against each other, if the torch
velocity is considered to be a run parameter. But model calculations predict the existence
of a reasonable compromise.
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Appendix A. Solution of Certain Differential Equations

Operating with Fourier transforms, boundary value problems of ordinary differential
equations for r-dependent functions have to be solved, as seen, e.g., by (36) to (38), where
the Fourier variable k appears as parameter. Because the closed solution in terms of cylinder
functions is intransparent, we look for a solution as series expansion in r and meromorphic
function of k. We consider as prototype the boundary value problem

(Dr − k2)yh(r, k) = 0, (A1)

(d/dr)yh(r, k)|r=R0 = f0(k), (d/dr)yh(r, k)|r=R1 = f1(k). (A2)

We solve (A1), (A2) as series expansion in terms of ψA(n, r) with k-dependent coef-
ficients where poles appear at the imaginary k-axis. Obviously, yh(r, k) is solution of the
integral equation

yh(r, k) = y0(r, k) + k2
∫ R0

R1

dr1G0(r, r1)yh(r1, k), (A3)

where y0(r) is solution of

Dry0(r, k) = 0 (A4)

with the boundary conditions (A2), and G0(r, r1) is the Greens function of the operator Dr,
which obeys

DrG0(r, r1) = δ(r− r1) (A5)

with the homogeneous boundary conditions

(d/dr)G0(r, r1)|r=R0 = 0, (d/dr)G0(r, r1)|r=R1 = 0. (A6)

G0(r, r1) is represented in terms of ψA(n, r) and λA(n), introduced by (39) to (41),
according to

G0(r, r1) =
∞

∑
n=0

ψA(n, r)r1ψA(n, r1)/λA(n). (A7)

y0(r, k) is explicitly given by

y0(r, k) = c(−)(k) · (−1/r) + c(+)(k) · r, (A8)

c(−)(k) = −( f0(k)− f1(k))R2
0R2

1/(R2
0 − R2

1), (A9)

c(+)(k) = ( f0(k)R2
0 − f1(k)R2

1)/(R2
0 − R2

1). (A10)

The series expansion of y0(r, k) in terms of ψA(n, r) according to (47) yields

y0(r, k) =
∞

∑
n=0

ψA(n, r)β(n, k), β(n, k) = c(−)(k)β−A(n) + c(+)(k)β+
A(n). (A11)

Substituting (A7) and (A11) into (A3), and applying (39), we arrive at

yh(r, k) = −
∞

∑
n=0

ψA(n, r)
β(n, k)λA(n)
k2 − λA(n)

. (A12)

The particular solution yp(r, k) of the ordinary inhomogeneous differential equation

(Dr − k2)yp(r, k) = g(r, k) (A13)
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with homogeneous boundary condition

(d/dr)yp(r, k)|r=R0 = 0, (d/dr)yp(r, k)|r=R1 = 0 (A14)

is given by

yp(r, k) =
∫ R0

R1

dr1 G(r, r1, k) g(r1, k). (A15)

G(r, r1, k) is the Greens function of the operator on the l. h. s. of (A13), according to

(Dr − k2) G(r, r1, k) = δ(r− r1), (A16)

which satisfies homogeneous boundary conditions according to (A6). The direct ansatz yields

G(r, r1, k) = −
∞

∑
n=0

ψA(n, r) r1 ψA(n, r1)/(k2 − λA(n)). (A17)

yh(r, k) as well as yp(r, k) are represented as meromorphic functions of k (for conver-
gence, see Appendix C). Because of λA(n) < 0, all poles are on the imaginary k-axis, beside
the path of the k-integration along the real k-axis. The orthonormal base, in the present
case ψA(n, r), n = 0, 1, 2, · · · , must be chosen in any case in accordance with the boundary
conditions to be satisfied by the Greens functions G0(r, r1) and G(r, r1, k). In this respect,
the boundary conditions of y0(r, k) are irrelevant because, regarding the expansions (A11),
each continuous function can be approached through any complete orthonormal base in
R1 ≤ r ≤ R0 with arbitrary accuracy in the quadratic mean.

Appendix B. Derivation of (76)

As outlined in Section 3.2, the solution S̃(r, k) of (62) which satisfies the radial bound-
ary condition (63) can be attributed to the solution of two sets of inhomogeneous ordinary
differential Equations (75) and (76). Meanwhile the mathematical steps are straightfor-
wardly carried out for the particular solution S̃p(r, k) of (62), we must use the methods of
Appendix A to derive a similar equation set for the homogenous solution S̃h(r, k) of (62).

We first interchange the order of separation and substitution, as outlined in Section 3.2,
and start with the substitution

S̃h(r, k) = exp(k2/4α2)S̃hs(r, k), (A18)

where S̃hs(r, k) obeys the differential equation

Dr S̃hs(r, k) =
(

4α2 + 2k2 − 4α4∂2/∂k2
)

S̃hs(r, k), (A19)

to be solved with the boundary condition

S̃hs(r, k) = 2 exp(−k2/4α2)Dr Ãϕ(r, k) at r = R0, R1. (A20)

The r. h. s. of (A19) and (A20) may be denoted by

F̃hs(r, k) =
(

4α2 + 2k2 − 4α4∂2/∂k2
)

S̃hs(r, k), (A21)

Φ(r, k, ∆p1(R0, k), p0) = 2 Dr Ãϕ(r, k), (A22)

respectively, where Φ(r, k, ∆p1(R0, k), p0) is outlined by (87). Both the functions may be
considered, for a moment, to be arbitrary functions depending upon r and the arbitrary
parameter k. Then (A19) is an ordinary inhomogeneous differential equation with respect
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to r, to be solved with the boundary condition (A20). Following the schema of Appendix A,
we have

S̃hs(r, k) = S̃hs0(r, k) +
∫ R0

R1

dr1GQ(r, r1)F̃hs(r1, k), (A23)

where S̃hs0(r, k) is solution of

Dr S̃hs0(r, k) = 0 (A24)

which obeys the boundary conditions (A20), and GQ(r, r1) is the Greens function of Dr
with the boundary condition

GQ(r, r1)|r=R0 = 0, GQ(r, r1)|r=R1 = 0. (A25)

We have

S̃hs0(r, k) = (−1/r) C(−)
S (k, ∆p1(R0, k), p0) + r C(+)

S (k, ∆p1(R0, k), p0), (A26)

where C(−)
S and C(+)

S are given by (85) and (86), respectively. GQ(r, r1) is represented in
terms of λQ(m) and ψQ(m, r) introduced by (67), (68) according to

GQ(r, r1) =
∞

∑
m=0

ψQ(m, r) r1 ψQ(m, r1)/λQ(m). (A27)

Analogously to (A11), we expand S̃hs0(r, k) according to

S̃hs0(r, k) =
∞

∑
m=0

ψQ(m, r)βQ(m, k), (A28)

βQ(m, k) = β
(−)
Q (m)C(−)

S (k, ∆p1(R0, k), p0) + β
(+)
Q (m)C(+)

S (k, ∆p1(R0, k), p0), (A29)

where β
(−)
Q (m) and β

(+)
Q (m) are given by (88).

Following the schema prescribed by (A11), (A12) and (A28), S̃hs(r, k) given by (A23)
will be expanded according to

S̃hs(r, k) =
∞

∑
m=0

ψQ(m, r) S̃2h(m, k). (A30)

Obviously, S̃2h(m, k) on the r. h. s. of (A30) always appears on the r. h. s. of (73),
as concluded from (64), (71), and (73). Thus, S̃2h(m, k) is determined substituting (A30),
(A21) and (A28) into (A23) and equating the coefficients of ψQ(m, r). We get

S̃2h(m, k) = βQ(m, k) +
(

1/λQ(m)
) ∫ R0

R1

dr ψQ(m, r) r F̃hs(r, k)

= βQ(m, k) + S̃2h(m, k) · (4α2 + 2k2)/λQ(m)− (4α4/λQ(m))(d2/dk2)S̃2h(m, k), (A31)

which equals (76).

Appendix C

Arguments from the complex analysis will be used to show that (i) the Fourier-
transformed hydrodynamic functions formally introduced in Section 3 satisfy the general
preconditions as Fourier transforms, and (ii) belonging to a function class obeying further
restrictive conditions. The Fourier-transformed equations of Section 3 appear as relation-
ships within this function class only. The rearrangement of the hydrodynamic functions
carried out in Section 3.4 will be taken as guide.
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First, we estimate the analytic behavior of infinite sums with respect to n for k→ ±∞,
occurring, e.g., in (108), and (110). As prototype, we consider

∞

∑
n=0

ψA(n, r) β
(1)
A (n)

λA(n)
k2 − λA(n)

=
∞

∑
n=0

ψA(n, r) β
(1)
A (n)

( k2

k2 − λA(n)
− 1
)

. (A32)

(A32) is meromorphic in k with singularities on the imaginary k-axis only and holomorphic
at least in the strip K defined in Section 3.3. Regarding the second term in the bracket,
the evaluation of the sum is elementary, applying (51), (52), and (47). To succeed with the
first term, we conclude from (40), (41) that ψA(0, r) is almost constant, meanwhile for n ≥ 1,
ψA(n, r) which has n nodes for R1 ≤ r ≤ R0 can be approached by trigonometric functions,
using the asymptotic representation of the cylinder functions which enter ψA(n, r). Thus,
we arrive at the estimations |ψA(n, r) β

(1)
A (n)| < N0 for n ≥ 0, and −λA(n) > N1 · n2 for

n ≥ 1, where N0 > 0, N1 > 0 are appropriately chosen positive numbers (N1 ≈ 100). By
contrast, −λA(0) ≈ 1.4 is exceptional small compared with the other negative eigenvalues.
After substitution of these estimations into (A32), the infinite sum can be evaluated in
closed form. We arrive at (The Landau symbol O can be used to denote an estimated
upper bound of the order for k→ ±∞, notwithstanding a lower-order behavior may occur
in reality.)

∞

∑
n=0

ψA(n, r) β
(1)
A (n)

λA(n)
k2 − λA(n)

= O(k), k ∈ K, k→ ± ∞. (A33)

There are further meromorphic functions of k involving infinite sums like (A32), also
as holomorphic for k ∈ K. Applying (A33), we find from (110), (49), and (50)

PA(k) = exp(−k2/4α2) ·O(k3), k ∈ K, k→ ± ∞, (A34)

k2 Ã(0)
ϕh (r, k) = exp(−k2/4α2) ·O(k2), k ∈ K, k→ ± ∞, (A35)

k2 Ã(1)
ϕh (r, k) = O(k2), k ∈ K, k→ ± ∞. (A36)

Taking into account (113), (134), we have

k2 Ã(A)
ϕ (r, k) = exp(−k2/4α2) ·O(k2), k ∈ K, k→ ± ∞, (A37)

and together with (137), (139), and (141), we arrive at

F̃(A)
2 (m, k) = exp(−k2/2α2) ·O(k4), k ∈ K, k→ ± ∞, m = 0, 1, 2, · · · . (A38)

The functions (A34) to (A38) satisfy the preconditions to be Fourier transforms.
In particular, ∫ ∞

−∞
dk | F̃(A)

2 (m, k) |2< ∞. (A39)

(A39) is in turn the precondition that the solution S̃(A)
2 (m, k) of (147), (149) is a Fourier

transform, too, and represented as convergent series expansion in terms of ψS2(p, k) ac-
cording to (151).

The overall consistency is proved showing that the hydrodynamic equations permit
solutions of the vorticity function S̃(r, k), to be holomorphic for k ∈ K, and obeying

S̃(r, k) = exp(−βk2) ·O(kp), k ∈ K, k→ ± ∞, β > 0, (A40)

with β and p to be determined later. If (A40) holds true, S̃(r, k) is Fourier transform.
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We start with the ad hoc presupposition that (A40) holds true. This also means that
S̃(r, k) with including the first and second k-derivative obey

| S̃(r, k) |< M0, | (∂/∂k)S̃(r, k) |< M1, | (∂2/∂k2)S̃(r, k) |< M2, k ∈ K, (A41)

with appropriate positive bounds M0, M1, M2. Using the methods outlined here and in
Section 3.4, we arrive at further estimations, namely from (109)

PS

{
S̃
}
= exp(−βk2) ·O(kp+1), k ∈ K, k→ ± ∞, (A42)

so that from (107)

∆ p̃1S(R0, k) = exp(−βk2) ·O(kp+1), k ∈ K, k→ ± ∞. (A43)

In addition, we get from (55)

Ãϕp(r, k) = exp(−βk2) ·O(kp−1), ; k ∈ K, k→ ± ∞, (A44)

and from (135) together with (A36)

Ã(S)
ϕ (r, k) = exp(−βk2) ·O(kp+1), ; k ∈ K, k→ ± ∞. (A45)

Summarizing, we conclude from the initial presupposition (A40) that F̃(S)
2 (m, k) given

by (145) is holomorphic for k ∈ K and obeys

F̃(S)
2 (m, k) = exp

(
− (β + 1/4α2) k2

)
·O(kp+5), k ∈ K, k→ ± ∞. (A46)

We substitute S̃(r, k) by S̃2(m, k) via (64) and (71) to (74). The functional dependence
upon S̃2(m, k) may be underlined writing

F̃(S)
2 (m, k) = F̃(S2)

2 (m, k, {S̃2}). (A47)

The result of this section can be rewritten as follows: If (A37) holds true, and S̃2(m, k) obeys

S̃2(m, k) = exp(−β2 k2) ·O(kp), k ∈ K, k→ ±∞, β2 > 0, (A48)

then (A46) is holomorphic for k ∈ K, and (A43) becomes

F̃(S2)
2 (m, k, {S̃2}) = exp(−β2 k2) ·O(kp+5), k ∈ K, k→ ±∞. (A49)

We again discuss the differential Equation (80). We split F̃2(m, k) on the r. h. s.
according to (143)

F̃2(m, k) = F̃(A)
2 (m, k) + F̃(S2)

2 (m, k, {S̃2}). (A50)

(80) is a system of implicit, linear differential equations where second-order derivatives
of S̃2(m1, k) appear on the r. h. s., as seen from (83) together with (55). Considered to be a
linear algebraic equation system for (d2/dk2)S̃2(m, k), this system is regularly resolved for
(d2/dk2)S̃2(m, k), near the real k-axis, to become the normal form of explicit second-order
systems of differential equations with holomorphic coefficients for | =k |< a (see the
definition of K in Section 3.4). For the parameter area considered in our work, we find
a ≈ 0.4 <

√
| λA(0) |. This provided, it is concluded from fundamental theorems on

local, regular, and analytic solutions of ordinary differential equations and their analytic
continuation [34] that, say around k = 0, the equation system (80) is solved for holomorphic
solutions S̃2(m, k) only, which can be analytically continued for all k with k ∈ K. This
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approach is found again in the self-consistent determination of the vorticity function
discussed in Section 3.4.

The consistency is finally verified showing that S̃2(m, k), considered to be particular
solution of (80), belongs to the function class characterized by (A48). Provided (A48) holds
true, we determine β2 and p by comparison of the leading order in (80) for k ∈ K, k→ ±∞,
substituting (A50), (A38) and (A46) on the r. h. s. of (80) and using

L(m)S̃2(m, k) = exp(−β2 k2) ·O(kp+2), k ∈ K, k→ ±∞. (A51)

We arrive at β2 = 1/2α, p + 5 = 4, so that

S̃2(m, k) = exp(−k2/2α2) ·O(1/k), k ∈ K, k→ ±∞, (A52)

and from (73) and (74)

S̃(r, k) = exp(−k2/4α2) ·O(1/k), k ∈ K, k→ ±∞, (A53)

We note that according to (A53), S̃(r, k) stronger decreases for k→ ±∞ than predicted
by the truncated series expansion (99).

Appendix D. Analytic Fit of Fac(R1/R0, α)

For 0.60 ≤ R1/R0 ≤ 0.95 and 0 ≤ α ≤ 3, the correction factor Fac(R1/R0, α) is given
by the analytic approximant

Fac(R1/R0, α) =
1

1 + c2α2 + c4α4 + c6α6

with an accuracy better than ±1 · 10−3.

Table A1. Coefficients of Fac(R1/R0, α).

R1/R0 c2 c4 c6

0.60 0.06641 0.02852 −0.00145
0.70 0.06084 0.02658 −0.00117
0.80 0.05805 0.01776 −0.00056
0.90 0.06280 0.00498 0.00000
0.95 0.06358 0.00164 −0.00001

Appendix E. List of Recurring Mathematical Symbols Used in Several Paragraphs

The number behind denotes the equation number where the symbol is defined or
explained in the corresponding text. The tilde to indicate Fourier transforms is neglected.
No distinction is made between dimensionless quantities and quantities with a dimension.
Arguments are not explained (see text).

A (9), Aϕ (10), Aϕh, Aϕp (25), A(0)
ϕh , A(1)

ϕh (48), A(A)
ϕ (134), A(S)

ϕ (135), A(SE)
ϕ (154),

C+
A (45), C−A (46), C+

S (85), C−S (86), Dr (16), Erhy (199), Fac (187), Fh, Fp, F2, F2h (82),

F(A)
2h , F(S)

2h (139), F(SA)
hp , F(S)

hp (158), F(A)
2 , F(S)

2 (143), F(SE)
2h (157), F(A)

hp , F(S)
hp (140), F(S)

hp (158),

F(SE)
hp (159), f2 (96), f (A)

2 (160), f (SE)
2 (165),

L (78), p (1), p0 , ∆p (21), ∆p1 (35), pT , ph (190), ∆p1A, ∆p1S (105), PA (110), P1 (108),
PS (109),

r, R0, R1 (1), ∆R0 (177), S (17), Sh, Sp (64), S2h (73), S2p (74), S(A)
2 (146), S(S)

2 (147), Sm1,p1

(99), s2 (97), s(A)
2 (151), s(S)2 (167),

u (174), v (1), vr (11), vT (7), vz (12), vrh (27),
W (189), ∆W (178), w (179), z (1), ∆ze (6),
α (8), βA (43), β−A, β+

A (47), β
(0)
A , β

(1)
A (51), β−Q, β+

Q (88),
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η (1), ηmin (6), λA (40), λQ (68), λS2 (94),
σ′ (1), σ′rr (19), σ′rz (20), τ (8),
ψ (95), ψA (39), ψQ (68), ψS2 (93), ψPA (114), ψPS (121),
Φ (87), Φ(A) (137), Φ(S) (138), Φ(SE) (156)
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