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Abstract: The momentum flux in a canonical turbulent boundary layer is known to have a time-
series signature that is characterised by a highly intermittent variation, which includes very short
periods of intense flux activity. Here, we study the variation in these flux signal characteristics across
almost a decade of flow Reynolds number (Reτ) by analysing datasets acquired using miniature
cross-wire probes with matched spatial resolution. The analysis is facilitated by conditionally
sampling the signal based on the quadrant (Qi; i = 1–4) and magnitude of the flux, revealing fractional
cumulative contribution from Q4 to increase at a much faster rate than from Q2 with Reτ . An episodic
description of the flux signal is subsequently undertaken, which associates this rapid increase in Q4
contributions with the emergence of extreme and rare flux events with Reτ . The same dataset is also
used to test Townsend’s hypothesis on the active and inactive components of the momentum flux,
which are obtained for the first time by implementing a spectral linear stochastic estimation-based
decomposition methodology. While the active component is found to be the dominant contributor
to the mean momentum flux consistent with Townsend’s hypothesis, the inactive component is
found to be small but non-zero, owing to the non-linear interactions associated with the modulation
phenomenon. Finally, an episodic description of the active and inactive momentum flux signal is
undertaken to highlight the starkly different time series characteristics of the two flux components.
The inactive flux signal is found to comprise individual statistically significant events associated with
all four quadrants, leading to a small net contribution to the total flux.

Keywords: boundary layer structure; turbulence modelling

1. Introduction and Motivation

The highly dissipative nature of zero-pressure gradient turbulent boundary layers
(ZPG TBL) necessitates the continuous reinforcement of its turbulent kinetic energy (TKE)
in order to maintain its quasi-steady-state characteristics [1,2]. This energy comes from the
mean shear flow and is represented by the turbulence production term in the Reynolds
transport equations. Analysis of the energy budget has been a topic of interest over many
years [3–6], which has led to the association of these energy transfer mechanisms with
coherent motions [6,7]. Reynolds shear stress (uw; where u and w denote the streamwise
and wall-normal velocity fluctuations respectively and overbar denotes time average) also
known as the mean momentum flux, forms a key component of the turbulence production
term and has long been associated with the coherent motions, since the seminal flow
visualisation studies of Kim et al. [8] and Corino and Brodkey [1]. Kim et al. [8], who
experimentally tracked the near-wall flow using hydrogen bubbles, observed coherent
motions associated with violent eruptions/bursting events (u < 0, w > 0) which, although
short-lived, corresponded to high values of Reynolds shear stress. The significance of the co-
herent motions in turbulent energy production was reaffirmed by Corino and Brodkey [1],
who in addition to bursting/ejections, also observed motions associated with the sweep
events (u > 0, w < 0), also responsible for significant momentum flux.
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The first quantitative evidence to prove the statistical significance of the ejections
(∼70%) and sweep (∼50%) events, towards their contribution to uw, was presented through
the pioneering cross-wire measurements of Wallace et al. [9] and Willmarth and Lu [10].
This was facilitated via the quadrant analysis proposed by Wallace et al. [9], which involved
conditional sampling of the momentum flux signal as per the four possible quadrants (and
the associated coherent motions) with respect to the sign of u and w: (i) Q1, outward
interactions (u > 0, w > 0); (ii) Q2, ejections (u < 0, w > 0); (iii) Q3, inward interactions (u
< 0, w < 0); and (iv) Q4, sweeps (u > 0, w < 0). Amongst these quadrants, contributions
from Q1 and Q3 (uw > 0) were estimated to be of much less significance and found to
essentially offset the excess contributions from Q2 and Q4 by their opposite signs. To
understand the nature of the flux signal, Willmarth and Lu [10] further sorted the time
(t) series signal based on the magnitude of instantaneous momentum flux, following:
| uw(t) | > k | uw |, where k is the threshold with possible values, k ≥ 0. By systematically
varying the value of k, they found that, while only 45% of the total signal had a magnitude
greater than 0.5| uw |, these samples cumulatively accounted for nearly 99% of the mean
momentum flux, revealing the intermittent character of its time series signal. Further, it
was also found that all of the highly intense flux samples (| uw(t) |> 4| uw |) corresponded
only to Q2 and Q4 and contributed approximately 60% of | uw | while being limited to
only a small part (∼10%) of the time series. This analysis, hence, brought out the very
unique variation in the magnitude of the momentum flux signal, which, as described
in the words of Willmarth and Lu [10]: “is very small for a large fraction of time relative to
shorter intervals of intense activity”. These temporal characteristics of the flux signal were
noted at wall-normal locations across the shear layer [10,11], prompting the authors to
associate the ejection phenomena with hairpin-shaped flow structures, exhibiting spatial
coherence and comprising of intense vorticity [12]. Their hypothesis, which suggested
spatial as well as temporal intermittency in the flux signal, was later confirmed with the
advent of particle image velocimetry (PIV) technique [13,14]. These PIV-based studies, in
fact, revealed association of the intense flux events with packets of hairpins (instead of
individual hairpins), which explained the simultaneous multiple ejections noted by Bogard
and Tiederman [15], Luchik and Tiederman [16] and Tardu [17] in the flux time-series.

The seminal work of Willmarth and co-workers [10,11,18] inspired the studies by
Narasimha and co-workers [19,20], who attempted an episodic description of the flux
signal acquired in the near-neutral atmospheric boundary layer (ABL). This involved
representation of the flux time series as a combination of various statistically significant
events contributing to uw, wherein an ‘event’ corresponded to a sequence of time series
observations with a significant flux magnitude. Such a description was argued based on
the fact that the other conventional methodologies of describing a time series, namely
harmonic or wavelet descriptions, only explained contributions to the fluctuations of the
time series (i.e., uw - uw) instead of the mean (uw) itself. In their analysis, the statistically
significant flux events were detected based on a sorting criterion inspired from the one
used previously by Willmarth and Lu [10]: | uw(t) | > k(uw)sd, where (uw)sd refers
to the standard deviation of the flux signal and k is again the threshold. This criterion
was found to be more robust, as compared to that used previously by Willmarth and
co-workers [10,11]. In this manner, Narasimha et al. [20] were able to obtain a minimal
description of the system by selecting an optimal k value, which led to the detection
of the minimum number of events responsible for nearly all the mean flux. The low
amplitude flux events which did not meet the optimal criterion (and hence contributed
negligibly to uw) were associated with passive or ‘inactive’ events as per the definition
of Townsend [21,22], and were described as a background noise, comprising of signals
with small and equal amplitude but opposite sign. Alternatively, those which did meet the
criterion were considered as ‘active’ events [21,22] of the momentum flux and characterised
as per the requirement of an episodic description. This involved defining the various event
types, event amplitude, event duration, etc. for the active flux, which was found to be
typical of a Poisson point process [23].
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While a lot of effort has already been dedicated towards investigating the momentum
flux signal over the past 50 years, most of the aforementioned studies [10,11,19,20] were
conducted either at low Reτ in the laboratory (Reτ . 2000) or in the ABL, with each dataset
having its own set of limitations. The data from the ABL are typically insufficient to achieve
statistical convergence, as well as suffer from the varying stability conditions during the mea-
surement. Studies conducted in the low Reτ regime, on the other hand, were predominantly
focused in the near-wall/buffer region, owing to the peak in the turbulence production
and TKE located in this region. Availability of high Reτ datasets in laboratory environ-
ments over time [24–27], however, has confirmed that contribution to the bulk production
(at high Reτ) comes from the logarithmic (log) region [28]. Further, the ability to simulate
experimental conditions with high fidelity direct numerical simulation datasets [29–31] has
revealed the possibility of significant measurement inaccuracies originating from poor spa-
tial resolution while using cross-wire probes (or X-probes) in the near-wall region. These
studies have inspired the development of miniature X-wire probes with sufficiently good
resolution [26,27,29,31] for measuring velocity statistics in the high Reτ log-region. The avail-
ability of these high-fidelity datasets across a range of Reτ has also permitted application of
several post-processing algorithms (e.g., spectral linear stochastic estimation (SLSE) [32,33])
to present empirical evidence [34,35] in support of Townsend’s attached eddy hypothesis
(discussed briefly ahead in Section 1). The aforementioned experimental and theoretical
developments, since the first measurements reported by Willmarth and co-workers [10,11],
suggest the need to revisit the momentum flux analysis with sufficiently resolved high Reτ

ZPG TBL datasets, which is attempted in the present study. Throughout this manuscript,
u, v and w represent the velocity fluctuations along the streamwise (x), spanwise (y) and
wall-normal (z) directions, respectively, while superscript ‘+’ denotes normalisation by the
mean friction velocity (Uτ) and kinematic viscosity (ν). Capital letters or overbars are used
to indicate the time-averaged quantities, while lower case letters indicate fluctuations. The
friction Reynolds number, Reτ = Uτδ

ν , with δ the boundary layer thickness. The words
‘structures’, ‘motions’ and ‘eddies’ used across the manuscript essentially conform to the
definition of a coherent motion given by Robinson [7].

Townsend’s Attached Eddy Hypothesis

The attached eddy model of wall-turbulence (AEM [36,37]), which is based on Townsend’s
attached eddy hypothesis [22], is one of the most popular and well cited conceptual models
in the literature. As per this hypothesis, the kinematics in the log (or inertial) region of
the canonical wall-bounded flow can be modelled by a hierarchy of inertially dominated
(inviscid), geometrically self-similar attached eddies randomly distributed in the flow field.
The term ‘attached’ here is used to refer to any coherent structure having a geometric extent
scaling with its distance from the wall, z. These attached eddies, as per the hypothesis, have
a population density inversely proportional to their height (H), which can vary in the range
O(zi) .H . O(δ), where zi refers to the beginning of the inertial region. The cumulative
contribution from these eddies results in the logarithmic variation of the streamwise (u2)
and spanwise (v2) variance in the inertial region (z+i < z+ . 0.15Reτ) while the wall-normal
velocity variance (w2) remains constant following:

u2+ = B1 − A1 ln(
z
δ
),

v2+ = B2 − A2 ln(
z
δ
),

w2+ = B3, and uw+ = B4,

(1)

where A1−2 and B1−4 are constants with B4 ≈ −1. These expressions have received
empirical support in recent literature [26,27,34,38–40], albeit with the recognition that other
non-self-similar eddies play an important role at finite Reτ .
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Noting the Reτ-dependence of u2 and v2 for a fixed z+ in contrast to the Reτ-invariance
of w2 and uw depicted by Equation (1), Townsend [21] commented: “it is difficult to reconcile
these observations without supposing that the motion at any point consists of two components, an
active component responsible for turbulent transfer and determined by the stress distribution and an
inactive component which does not transfer momentum or interact with the universal component”.
As per his hypothesis, “the inactive motion is a meandering or swirling motion made up from
attached eddies of large size which contribute to the Reynolds stress much further from the wall than
the point of observation”. Thus, for a purely attached eddy-based flow (i.e., one in which the
attached eddies are the only flow structures), the flow at any z in the inertial region is a
combination of active and inactive contributions at z [21,22,35]. The active contributions
come solely from the velocity fields of the attached eddies of height, H ∼ O(z), which
add to u(z), v(z), w(z) and consequently uw(z). The inactive contributions, on the other
hand, come from the velocity fields of relatively tall and large attached eddies of height,
O(z) � H < O(δ), which add to u(z) and v(z) but not to w(z) (and hence not to uw(z)).
These differences are owing to the spatially localised nature of the w-velocity signature,
in comparison to u- and v-signatures, from the attached eddies (illustrated in Figure 1 of
Deshpande et al. [41]). Following the aforementioned discussion, the decomposition of the
attached eddy fields may be expressed mathematically as per Panton [42]:

u = ua + uia,

v = va + via,

w = wa,

(2)

with subscript ‘a’ and ‘ia’ representing active and inactive contributions, respectively.
According to the original hypothesis of Townsend [21,22], the inactive and active fields
are uncorrelated [43], owing to which the Reynolds stresses listed in Equation (1) can be
decomposed for a purely attached eddy field following:

u2 = u2a + u2ia,

v2 = v2a + v2ia,

w2 = w2a,

uw = (ua)(w).

(3)

Recently, Deshpande et al. [35,41] proposed an SLSE-based methodology to decom-
pose the Reynolds stress components in Equation (3) and validated it by testing the active
and inactive components for the various scaling arguments as per Townsend [21,22]. It
was, however, found from their analysis that u2ia comprised of energy contributions from
both self-similar as well as δ-scaled motions (i.e., superstructures [34,44]), wherein the
latter, although not strictly conforming to the definition of an attached eddy [34,45,46],
were argued to also have an inactive signature as per the definition of Townsend [21,22].
These superstructures, which span across the log-region, are known to modulate the
relatively smaller (active) motions localised in the log-region and below via non-linear
interactions [25,33,35,47–49]. Hence, contrary to Townsend’s hypothesis, the active and
inactive motions cannot be deemed completely uncorrelated in a real TBL [50], resulting in
the Reynolds stress decomposition in (3) to be redefined following [42]:

u2 = u2a + u2ia + 2uauia,

v2 = v2a + v2ia + 2vavia,

w2 = w2a,

uw = (ua)(w) + (uia)(w).

(4)



Fluids 2021, 6, 168 5 of 17

Considering Townsend’s hypothesis, however, the terms representing the non-linear
interactions across the active and inactive motions would be expected to be much smaller
than the respective Reynolds stress components (i.e., uauia � u2, vavia � v2, (uia)(w)
� uw). In the present study, we apply the active-inactive decomposition methodology
proposed by Deshpande et al. [35] on existing high-Reτ X-probe datasets. The idea is to
investigate the active (uaw) and inactive (uiaw) momentum flux characteristics through
the analysis strategies used by Willmarth and co-workers [10,11] and Narasimha and
co-workers [19,20] and understand their relative statistical significance with respect to the
mean total flux, uw.

2. ZPG TBL Datasets

The present study considers four published experimental ZPG TBL datasets [25,26],
all of which have been acquired at the High Reynolds Number Boundary Layer Wind
Tunnel (HRNBLWT) facility at the University of Melbourne. Table 1 lists these datasets
along with necessary details associated with the individual experiments. The working
section of the wind tunnel facility has a cross-section of ' 0.92 m × 1.89 m and operates
under ZPG conditions as well as sufficiently low free-stream turbulence levels up to its
maximum speed of 45 ms−1 [24]. The unique feature of this facility is its very long working
section length of 27 m, which permits generation of a high Reτ shear layer via growth
of a physically thick turbulent boundary layer along the streamwise direction. Such an
approach of investigating the TBL, popularly known as the ‘big and slow’ approach, allows
one to conduct experiments over a range of Reτ without changing the free-stream speeds,
thereby maintaining nominally the same smallest energetic scale (i.e., the viscous scale).

Table 1. Summary of the various experimental ZPG TBL datasets analysed in the present study. Terminology associated
with the geometry of the X-probe and other measurement parameters is described in Section 2.

x U∞ Reτ ν/Uτ ∆t+ TU∞ /δ l+x l+z ∆s+y Single-Point/ Reference
(in m) (in ms−1) (in µm) Multi-Point

2 15.2 2600 28 0.513 18,000 14 14 7 Single Baidya et al. [26]
7 15.2 5100 30 0.436 19,000 13 13 7 Single Baidya et al. [26]
18 14.8 10,600 32 0.377 18,000 12 12 6 Single Baidya et al. [26]
20 19.0 15,000 24.6 0.496 30,900 17 17 8.5 Multi Talluru et al. [25]

Each dataset listed in Table 1 comprises measurements of the streamwise and wall-normal
velocity components at 50 wall-normal locations across the TBL via the same miniature X-
probe custom-built at Melbourne [29]. This probe comprised of two Wollaston wires each of
diameter, d = 2.5 µm, spaced at a distance (∆sy) 0.2 mm apart, with an etched sensor length
of 0.5 mm (≈

√
l2
x + l2

z ). Data were acquired at sufficiently high sampling rates and for a
total time duration over several eddy turn over times (TU∞/δ), to get well converged mean
statistics. Amongst the four datasets mentioned in Table 1, those associated with the Reτ

range 2500 . Reτ . 10,000 were acquired at the same free-stream speed of approximately
15 ms−1 but with the X-probe placed at different streamwise (x) locations with respect to the
start of the working section, leading to negligible variation in the viscous scale associated with
the measurement. This permits investigation of the Reynolds number effects on the velocity
statistics (demonstrated previously by Baidya et al. [26]) as well as on the momentum flux
signal without any adverse influence of the spatial resolution effect [30,31].

The fourth dataset, however, is an exception in the sense that the high Reτ (≈15,000)
was achieved by increasing the free-stream speed to ∼19 ms−1, leading to a slight drop in
the viscous scale (and a corresponding increase in the viscous-scaled sensor geometry) as
compared to the other three datasets. The unique aspect of this measurement, however, is
its multi-point nature. The dataset comprises measurements of the skin-friction velocity
fluctuations (uτ) synchronously with every X-probe measurement (u,w) across the TBL.
These fluctuations were acquired using a hot-film sensor placed on the wall vertically
below the X-probe sensor. Availability of this multi-point dataset permits application of the
SLSE-based decomposition methodology proposed previously by Deshpande et al. [35]
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(Appendix A) to estimate the active and inactive components of the momentum flux
(Equation (4)) for the present investigation.

3. Effect of Reτ

3.1. Conditional Sampling

The analysis begins by first investigating the effect of Reτ on the flux time series
characteristics. This is facilitated by conditionally sampling the signal [51] acquired in the
TBL across a range of Reτ (Table 1). The analysis is inspired from previous studies [9,10,20]
discussed in Section 1 and is conducted using two sorting criteria:

1. Criterion 1 is used to sort the flux samples in accordance to the particular quadrant
(Q1-Q4) to which they belong using [9,10]:

hi(t) ≡

1
for any time t at which the point (u(t),w(t))
is in the quadrant Qi of the u,w plane

0 otherwise,
(5)

for i = 1, 2, 3 and 4. Thus, hi(t) demarcates the flux signal (uw(t)) into four segments
([uw]i(t)) following:

[uw]i(t) = hi(t)uw(t). (6)

2. Criterion 2 is used to identify the fraction of the time series signal with flux magnitude
beyond a pre-defined threshold, and it is given as per [10,20]:

|uw(t)| > k(uw)sd (7)

If suppose N samples of the time series (expressed as (uw)j, with j = 1–N) are found
to conform to the condition in (7) for a particular threshold k, then the fractional
contribution to the mean flux from these N(k) samples may be defined as

〈uw〉(k) =
1

uwN(k)

N(k)

∑
j=1

(uw)j, (8)

and the fractional cumulative time duration (Tf (k)) for which the flux signal crosses
the threshold is given by

Tf (k) =
N(k)

total samples
. (9)

By definition, Tf (k = 0) = 1 and 〈uw〉(k = 0) = 1. Criteria 1 and 2, defined above, may
also be fused together to estimate the fractional contribution, 〈[uw]i〉 to uw from the Ni(k)
samples in each of the four quadrants following [10]:

〈[uw]i〉(k) =
1

uwN(k)

Ni(k)

∑
j=1

([uw]i)j, for i = 1 to 4. (10)

Here, 〈[uw]i〉(k) and Ni(k) may be respectively related with 〈uw〉(k) and N(k) follow-
ing:

〈uw〉(k) =
4

∑
i=1
〈[uw]i〉(k) and N(k) =

4

∑
i=1

Ni(k). (11)

Figure 1a shows the variation of 〈uw〉 and Tf with respect to k for the momentum
flux signals acquired at the nominal lower bound of the inertial region (z+ ≈ 100) at
various Reτ . The respective curves for varying Reτ are found to overlap over one another,
indicating invariance of the statistics with respect to the flow Reynolds number. A similar
behaviour was noted when considering these curves at various z+ in the inertial-region
(not shown here), suggesting universality in these flux signal characteristics in the inertial
region. The present analysis yields k ≈ 0.25 as the optimal, Reτ-invariant threshold [20],
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using which, one would recover nearly all (∼99%) of the mean flux from the minimum
number of samples (∼ 58%). When the threshold is increased to k = 3, only∼2% of the total
samples have a magnitude greater than 3(uw)sd, but these samples are found to contribute
approximately 30% of the mean flux. These results, which are analysed here in the inertial
region, are consistent with the initial findings of Willmarth and Lu [10] in the near-wall
region. Indeed, the flux signal has a very low magnitude for most of the time-signal, while
the major contributions to the mean flux come from small intervals of intense activity. The
present analysis provides empirical evidence to this interpretation over a decade of Reτ . It
also establishes k = 0.25 as an optimal, Reτ-invariant threshold to extract the statistically
significant part of the flux signal [20].

Figure 1. (a) Fractional contribution to the mean flux, 〈uw〉, and the cumulative fractional duration of the detected flux
samples, Tf , varying as a function of the threshold k used to detect these samples. (b) Fractional contribution to the mean
flux demarcated into individual contributions from the four quadrants, 〈[uw]i〉 (i = 1–4) varying as a function of k. All flux
signals considered for this analysis were recorded at z+ ≈ 100 at respective Reτ (indicated by various colours).

Figure 1b considers 〈uw〉 split into the individual contributions from the four quad-
rants, 〈[uw]i〉 for i = 1–4, for the case of the highest and lowest Reτ . It is evident that
ejections (〈[uw]2〉) contribute more to the mean flux than the sweeps (〈[uw]4〉), irrespec-
tive of the variation in k, suggesting the former to be of relatively greater significance
than the latter in the present Reτ range. This is consistent with observations made by
Wallace et al. [9] and Willmarth and Lu [10]. Furthermore, contributions from Q1 and Q3
are found to be statistically less significant and simply nullify the excess contribution from
Q2 and Q4, as noted by Willmarth and Lu [10]. Considering the effect of Reτ , contribution
from all quadrants are found to increase with Reτ at k = 0. Interestingly, however, the
contribution from Q4 increases at a much faster rate than Q2, suggesting that sweep events
may become the dominant contributors to the mean flux at very high Reτ . This explains
the observations made by Narasimha et al. [20] in the ABL at Reτ ∼ 107, who found per-
centage contribution from sweeps to be ∼79% of uw while ejections contributed ∼68%. On
increasing k & 1, the effect of Reτ on contributions from Q2 is found to be negligible. In
case of Q4, on the other hand, an increment can be noted even for large k values, suggesting
emergence of more intense sweep events with increase in Reτ . These observations motivate
the need for a more detailed analysis of the instantaneous flux signal characteristics for
varying Reτ , which is presented in the next subsection.

3.2. Episodic Description

We now attempt an episodic description of the momentum flux signal following
Narasimha et al. [20], to better understand how the characteristics of the individual flux
events in each quadrant are affected with varying Reτ . Here, we refer to an event as a
sequence of time instants for which |uw| > k(uw)sd, as depicted in Figure 2, with k = 0.25
being the optimal, Reτ-invariant threshold estimated in Section 3.1. To this end, we
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characterise the momentum flux events as per their various types, their amplitude and
durations [20], each of which are schematically represented in Figure 2 and defined below:

1. Event type: For each event identified in the flux time series, the sign of the u and w
samples at the corresponding instants is used to assign a particular quadrant (Q1–Q4)
to which the event belongs.

2. Event duration (∆T): This refers to the time interval associated with the identified
event and is expressed as ∆T.

3. Event amplitude (A): It is defined as A =
∫

∆T uw(t) dt
uw∆T , with A essentially being the

ratio of the average momentum flux over ∆T (obtained by computing the occupied
area) to the mean momentum flux.

𝑢𝑤

𝑘 𝑢𝑤 𝑠𝑑

−𝑘 𝑢𝑤 𝑠𝑑

Δ𝑇

Event area = Δ𝑇 𝑢𝑤(𝑡) 𝑑𝑡 = 𝒜 𝑢𝑤 Δ𝑇

𝑢𝑤

𝑡

𝑢

𝑡

𝑤

𝑡

𝑢 > 0

𝑤 > 0
X𝑄1

Figure 2. Schematic depicting the characterisation of statistically significant flux event (highlighted with grey background)
in accordance to the episodic description of the momentum flux signal proposed by Narasimha et al. [20]. Definition of the
various terminologies is given in Section 3.2.

It should be noted here that A is not sign definite and would vary depending on
whether the event corresponds to Q2 and Q4 (A > 0) or Q1 and Q3 (A < 0).

Figure 3a–c shows the density scatter plots between the absolute value of the event
amplitude (|A|) and its corresponding duration (∆T) for all the statistically significant
events detected in the flux signals at z+ ≈ 100, for various Reτ . The colour map represents
the population density of the events, and hence differentiates the characteristics of the
events that are more likely to happen (referred as common events) from the relatively ‘rare’
events. These event characteristics are further segregated in accordance to their respective
quadrants, to bring out the similarities as well as differences between the events in the
four quadrants. The density scatter plots reveal that the characteristics of these statistically
significant events span over a range of time scales—from small ∆T, high A events to large
∆T, small A events—in all four quadrants. Such information, however, is obscured when
representing the flux signal characteristics via statistics such as mean time duration [11], etc.
At each Reτ , the maximum ∆T and A values associated with the events in Q2 and Q4 are
larger than those in Q1 and Q3, leading to a ‘bow-tie’ shaped asymmetric distribution of the
event characteristics amongst the four quadrants. Q2 and Q4, quite understandably, also
have a higher number of events associated with them than Q1 and Q3, which is reflected
by the asymmetry in the colour map.

Certain event characteristics, however, can be seen changing with increasing Reτ, such
as the gradual spreading of the event amplitude and duration to greater magnitudes, which
is better represented by the contour plot in Figure 3d. This plot considers how the contours of
constant population density change with Reτ, where contours representing 0.001% density
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represent characteristics of relatively rare events in comparison to the more common events
(0.1% density). In general, the rare events are observed to spread out towards larger ∆T and
A with increase in Reτ. However, this spread is more significant for events corresponding to
Q4 as compared to the other quadrants, in particular the high A and small ∆T events in Q4.
It is the emergence of these rare and extreme events, which can be considered responsible
for the increased contribution from 〈[uw]4〉 to the mean flux (Figure 1b) at very high Reτ [20].
Interestingly, though, these increments tend to be balanced out in the mean by respective
increments in Q1 and Q3 keeping u+w+ ≈ −1 in the log-region at all Reτ [25,26]. The
present analysis, thus, encourages further investigation into the emergence of extreme events
in the TBL with increasing Reτ. Such events are responsible for the non-Gaussian tails in
the probability distribution function of the flux signal, and hence are of significance to the
meteorological community interested in predicting ABL turbulence [20,52].

Figure 3. (a–c) Density scatter plot between the absolute value of the flux event amplitude (|A|) and the associated viscous
scaled duration (∆T+) of the statistically significant events (using k = 0.25) at z+ ≈ 100 for Reτ ≈: (a) 2500; (b) 5000; and
(c) 15,000. The data are plotted in four quadrants to represent the characteristics of the events in the respective quadrants.
The population density for a specific Reτ case is calculated by considering the statistically significant events from all four
quadrants as a reference. (d) Constant density contours highlighting the changes in event characteristics for the relatively
rare (0.001%) and common (0.1%) events as a function of Reτ (indicated by various colours).

4. Active and Inactive Momentum Flux
4.1. Estimating the Active and Inactive Flux Signal

With the characteristics for the total flux signal (uw) now established, we investi-
gate its sub-components, i.e., the active (uaw) and inactive (uiaw) parts of the momen-
tum flux (Equation (4)), which can be obtained here only for the multi-point dataset of
Talluru et al. [25]. To this end, we implement the SLSE-based decomposition methodology
(Appendix A) proposed by Deshpande et al. [35] to obtain uia at a wall-normal location
(z+) corresponding to the inertial region following:

ũia(z+; f+) = HL(z+; f+)ũτ( f+), (12)
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where ũτ( f+) = F (u+
τ (t+)) is the Fourier transform of the skin-friction velocity fluctuation,

uτ(t+) in time. Further, HL corresponds to a complex-valued, scale-specific transfer kernel
between the synchronously acquired u(z) and uτ , and it is defined as per [33]:

HL(z+; f+) =
{ũ(z+; f+)ũ∗τ( f+)}
{ũτ( f+)ũ∗τ( f+)} , (13)

where the asterisk (∗) and curly brackets ({}) denote the complex conjugate and ensemble
averaging, respectively. Interested readers may refer to Appendix A for the complete
procedure followed to arrive at Equation (12). It is worth noting that the SLSE-based energy
decomposition is carried out here only as a function of the frequency domain, owing to
the limitations of the dataset, as opposed to that for both the frequency and spanwise
wavenumber in case of Deshpande et al. [35]. Following (12), the time domain equivalent
of uia can be estimated simply by the inverse Fourier transform:

uia(z+; t+) = F−1(uia(z+; f+)). (14)

with uia known, the time series of the active component (ua) at z+ can be obtained follow-
ing (2):

ua(z+; t+) = u(z+; t+)− uia(z+; t+). (15)

Figure 4a,b depicts a portion of the u-time series and its corresponding active and
inactive sub-components at z+ ≈ 100 as an example. ua is found to resemble the small-scale
(high frequency) characteristics of u, given its association with motions localised at z+

(active). uia, on the other hand, represents large-scale variations owing to its association
with taller/inactive motions, and has a very low magnitude for most of the time.

Figure 4. (a,b) Example of a u-time series at z+ ≈ 100 (in (a)) decomposed into its active and inactive components (in (b)).
The w-time series synchronously acquired at the same z+ is also plotted in (b). (c,d) Comparison of the total flux time series
(u+w+) computed from u- and w-time series in (a), with its corresponding (c) active and (d) inactive component.

The availability of the time series of both active and inactive streamwise components,
along with the synchronously measured w (Figure 5a), permits the estimation of the
respective momentum flux time series following Equation (4). The active and inactive
components of the momentum flux are respectively compared with the total flux (u+w+)
in Figure 4c,d. uaw can be seen to follow the uw-signal reasonably well, suggesting the
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active part of the momentum flux to be the dominant contributor to uw, consistent with
the hypothesis of Townsend [21,22]. In contrast, the magnitude of uiaw-signal is close to
zero for the majority of the signal, except in certain instants where both uia, w 6= 0.

Figure 5. Viscous scaled (a) streamwise turbulence intensity and (b) momentum flux profiles from the dataset of Talluru et al. [25],
decomposed into their respective active and inactive components following (4) for z+ in the inertial region (indicated by the grey
shaded region).

To analyse the statistical significance of the active and inactive components across the
inertial region, Figure 5b shows all the mean momentum flux components (active, inactive
and total) estimated by using Equations (12)–(15) for various z+. The individual compo-
nents obtained via decomposition of the streamwise turbulence intensity (u2; Equation (4))
are also plotted for comparison in Figure 5a. It is evident that the active part (uaw) repre-
sents the dominant contribution to the mean momentum flux [21,22]. However, it is also
worth noting the non-zero contribution from uiaw (≈ 0.15), which may be ascertained to the
non-linear interactions (such as the modulation phenomenon) between the superstructure
signatures in uia and the predominantly active signatures in w [21,22,35,50]. A similar
interaction can also be noted between the active and inactive components of the streamwise
velocity (uauia), which is estimated to be of the same order (≈ 0.3) as uiaw. The order of
magnitude similarity between these two components is consistent with the comparable
values of the amplitude modulation coefficient, estimated by Talluru et al. [25], for both u
and w components. It should be noted here that the statistical trends depicted in Figure 5,
such as uiaw, uiaua 6= 0, conflict with the original hypothesis of Townsend [21,22], which
was based on the assumption of a TBL comprising solely active and inactive motions (both
of which are associated with the attached eddies). The differences can be ascertained to the
coexistence of non-self-similar motions such as superstructures, fine dissipative scales, etc.
in a real TBL [35], which also contribute to each sub-component of the Reynolds stresses
(apart from the attached eddies).

Next, the investigation is directed towards analysing the time-series characteristics
of the uaw and uiaw signals, as done previously for the uw-signal in Section 3. Readers
interested in the analysis of the normal Reynolds stress components (u2, v2, w2) are referred
to the work by Deshpande et al. [35,41] for a detailed discussion on that topic.

4.2. Conditional Sampling

We begin the analysis of the uaw and uiaw signals by first estimating the fractional
contribution from the statistically significant active and inactive flux samples to the mean
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momentum flux, uw. For this, we extend the same sorting criteria (Criteria 1 and 2) defined
previously in Equation (10) (Section 3.1) to uaw and uiaw following:

〈[uaw]i〉(k) =
1

uwNa(k)

Na
i (k)

∑
j=1

([uaw]i)j, for i = 1,2,3 and 4, and (16)

〈[uiaw]i〉(k) =
1

uwNia(k)

Nia
i (k)

∑
j=1

([uiaw]i)j, for i = 1,2,3 and 4, (17)

with Na
i and Nia

i , respectively, referring to the number of detected samples in the active
and inactive flux signals for the quadrant i and threshold k. It should be noted that both
〈[uaw]i〉 and 〈[uiaw]i〉 are computed here with respect to the mean momentum flux (uw)
to estimate the fractional contribution to the total flux. Following (11), the cumulative
fractional contributions as well as the total number of statistically significant samples for
uaw and uiaw can be calculated using (16) and (17) following:

〈uaw〉(k) =
4

∑
i=1
〈[uaw]i〉(k) and Na(k) =

4

∑
i=1

Na
i (k), (18)

〈uiaw〉(k) =
4

∑
i=1
〈[uiaw]i〉(k) and Nia(k) =

4

∑
i=1

Nia
i (k). (19)

Similarly, the fractional cumulative duration for which the two signals lie beyond a
pre-defined threshold can be expressed as:

Ta
f (k) =

Na(k)
total samples

; Tia
f (k) =

Nia(k)
total samples

. (20)

Figure 6a shows the variation of 〈uw〉, 〈uaw〉, 〈uiaw〉 and Tf , Ta
f , Tia

f with respect to
k from the respective momentum flux signals at z+ ≈ 100 at Reτ ≈ 15000. The nature
of variation of the active contributions (〈uaw〉), for varying threshold values, is similar
to the full flux signal (〈uw〉), with the vertical offset nominally equivalent to uiaw. A
similar nature of variation was also noted when the respective flux signals were analysed
at different z+ in the inertial region (not shown here). Extending the concept of obtaining a
minimal description of the flux signal [20] to active and inactive components, k = 0.25 is
found as an effective threshold to recover ∼99% of uaw as well as uiaw by considering the
minimum number of samples – Ta

f ≈ 0.5 and Tia
f ≈ 0.25. While Tia

f ≈ 0.25 is comprehensible
given the very dormant state of the signal seen in Figure 4d, the fact that Ta

f ≈ 0.5 indicates
that even the active flux signal comprises of statistically insignificant events (with respect to
the mean flux), which is in contrast to the hypothesis of Narasimha et al. [20]. Interestingly,
〈uiaw〉 ≈ 0 for k & 1.5, suggesting that nearly all inactive contributions could be removed
from the total flux signal by setting the threshold at k = 1.5. This criterion, however, cannot
be used to segregate the active and inactive components of the uw-signal since it also
removes significant contributions (∼40%) from the active flux signal. It is important to
note that 〈uiaw〉 ≈ 0 does not indicate 〈[uiaw]i〉 ≈ 0, motivating the investigation into the
latter in Figure 6b.

On sorting the uaw-signal based on the individual contributions from the four quad-
rants, the nature of variation of 〈[uaw]i〉 is seen to be similar to 〈[uw]i〉. Contributions from
Q2 and Q4 are found to be significantly more than those from Q1 and Q3 for all k. On the
other hand, 〈[uiaw]i〉 behaves starkly different to these two. Contributions from all four
quadrants are nearly equal irrespective of the variation of k, indicating the positive (Q1 and
Q3) and negative (Q2 and Q4) flux events tend to nearly cancel out each other, subsequently
resulting in uiaw� uw. It is important to note here that, while 〈uiaw〉(k = 0)≈ 0.1, 〈[uiaw]2〉
≈ 〈[uiaw]4〉 ≈ 0.2 at k = 0, which is a non-negligible fraction of the mean flux. This suggests
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the presence of individual statistically significant events in the uiaw-signal, motivating a
detailed characterisation of these events, as done above in Section 3.2.

Figure 6. (a) Fractional contribution to mean total flux, 〈uw〉 and the cumulative fractional duration of the detected flux
samples, Tf varying as a function of the threshold k used to detect these samples. (b) Fractional contribution to flux
demarcated into individual contributions from the four quadrants, 〈[uw]i〉 (i = 1–4) varying as a function of k. Black, green
and red lines respectively represent these statistics for the total (uw), active (uaw) and inactive (uiaw) flux signals computed
at z+ ≈ 100 for Reτ ≈ 15000.

4.3. Episodic Description

We now extend the episodic description of the flux signal [20] to the uaw and uiaw-
signal by following the same definitions of the event type, amplitude and duration as
given above in Section 3.2, with A for all signals normalised by uw. Figure 7a–c shows
the density scatter plots between the absolute value of the event amplitude (|A|) and its
corresponding duration (∆T) for all the statistically significant events (k = 0.25) detected in
uw, uaw and uiaw-signal at z+ ≈ 100. As would be expected based on the observations in
Figures 4 and 6, distribution of the event characteristics for the uaw-signal are found to be
similar to those seen in the uw-signal. The density scatter plots, in particular, bring out the
clear differences between the characteristics of the active and inactive flux events in the four
quadrants. The key difference is that the ‘bow-tie’ shaped asymmetric distribution of the
event characteristics, noted for both uw or uaw, is not observed for uiaw. This is because the
maximum A of the inactive flux events, associated with Q2 and Q4, is significantly smaller
than that for the uw or uaw flux events. Interestingly, the characteristics of the inactive flux
events are distributed in a quasi-symmetric manner about |A| = 0 axis, suggesting events
in Q1 and Q2 being of nearly equal intensity (but of opposite sign) than those in Q4 and Q3,
respectively. This symmetry is also noted for the population density of the inactive events,
which is more clearly reflected by the constant density contours in Figure 7d, explaining
why uiaw� uw. It is worth noting here that, although most of the ‘rare’, yet extreme events
(∼ 0.001% density), which have high A and short ∆T, are present in the uaw-signal, the
uiaw-signal does not correspond solely to weak amplitude events, with the maximum |A|
≈ 10. Hence, although inactive events do not contribute substantially to the mean, the
present analysis suggests that these motions should not be disconsidered while modelling
turbulent flows given their statistical relevance in the instantaneous sense.
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Figure 7. (a–c) Density scatter plot between the absolute value of the flux event amplitude (|A|) and the associated viscous
scaled duration (∆T+) of the statistically significant events (using k = 0.25) in the (a) uw, (b) uaw and (c) uiaw signals at
z+ ≈ 100 for Reτ ≈ 15,000. The data are plotted in four quadrants to represent the characteristics of the events in the
respective quadrants. The population density is calculated by considering the statistically significant events found in the
respective signals from all four quadrants as a reference. (d) Constant density contours highlighting the changes in event
characteristics for the various flux signals (indicated by different colours).

5. Conclusions

The present paper revisits the momentum flux analysis, conducted almost half a
century ago by Willmarth and co-workers [10,11] and Wallace et al. [9], with sufficiently re-
solved ZPG TBL datasets now available, varying over a range of Reτ [25,26]. Inspired from
the aforementioned studies, the flux signals acquired in the log-region are conditionally
sampled based on: (i) the (u,w) quadrant to which the samples belong; and (ii) the magni-
tude of the momentum flux. The analysis on the new datasets yields results consistent with
the initial findings of Willmarth and Lu [10], revealing the highly intermittent nature of the
momentum flux signal. While contributions from the second quadrant (Q2; ejections) are
found to be more significant than from the fourth (Q4; sweeps) for the present datasets, the
comparison over almost a decade change of Reτ suggests the relative contributions from
the latter to be increasing at a much faster rate than the former with Reτ . Notably, these
increased contributions from Q4 (with Reτ) are found to be associated with highly intense
flux events, which are balanced by much milder increments in Q1 and Q3 contributions
to yield u+w+ ≈ −1 at all Reτ . This unique behaviour of the Q4 contributions is further
characterised via the episodic description methodology by Narasimha et al. [20], which
reveals the high amplitude and short duration (i.e., extreme) nature of these events. More
importantly, these extreme events are estimated to be a rare occurrence, suggesting the
inherent difficulty in prediction of such statistically significant events for very high Reτ

ABL phenomenon.
Analysis along the same lines is also later extended to the active and inactive compo-

nents [21,22] of the momentum flux, which are obtained by implementing the SLSE-based
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methodology proposed recently by Deshpande et al. [35]. The active component of the flux
is found to be the dominant contributor to the mean momentum flux (uw) across the inertial
region, providing the first empirical evidence to the hypothesis of Townsend [21,22]. Ac-
cordingly, the signal characteristics of this flux component are very similar to that exhibited
by the total flux. On the other hand, the inactive flux component, which was hypothesised
by Townsend [21,22] to be nominally zero for a purely attached eddy field, is found to make
non-zero contributions to uw. These contributions are likely associated with the non-linear
interactions, in the form of modulation [25,33,48], between the superstructures and the
active motions in the inertial region of a ZPG TBL. Conditional sampling of the inactive
flux signal revealed almost equal but non-negligible (≈ 0.2) fractional contribution from all
four quadrants, suggesting individual inactive flux events to be of statistical significance,
despite uiaw� uw. This was reaffirmed by undertaking the episodic description of the
inactive flux signal, which revealed the presence of short duration events with sufficiently
high amplitude (≈ 10uw) from Q1 and Q4, suggesting inactive events should be considered
while attempting turbulence modelling of instantaneous flow phenomena.

Author Contributions: Conceptualisation, R.D. and I.M.; methodology, R.D.; software, R.D.; validation,
R.D.; formal analysis, R.D.; investigation, R.D.; resources, I.M.; writing—original draft preparation, R.D.;
writing—review and editing, R.D. and I.M.; supervision, I.M.; project administration, I.M.; and funding
acquisition, I.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Australian Research Council.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request from the authors.

Acknowledgments: We are grateful to Talluru et al. [25] and Baidya et al. [26] for making their
respective data available. This work was motivated by the seminal work of W. W. Willmarth and
co-workers, and we are very pleased to be able to contribute to these proceedings celebrating his
distinguished career.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ABL atmospheric boundary layer
HRNBLWT high Reynolds number boundary layer wind tunnel
PIV particle image velocimetry
SLSE spectral linear stochastic estimation
TBL turbulent boundary layer
TKE turbulent kinetic energy
ZPG zero pressure gradient

Appendix A. SLSE-Based Methodology to Decompose the Flux Time Series

This section demonstrates the methodology to estimate a component of the u-time
series at any wall-normal location (say zo), representing contributions from certain specific
coherent motions coexisting at zo, via the spectral linear stochastic estimation (SLSE)
approach. The procedure outlined here has been merely adapted from earlier studies
introducing SLSE [32,33], which can be directly referred for a detailed understanding on
this technique. According to this approach, a scale-specific conditional output at zo is
obtained from a scale-specific unconditional input at zr following:

ũE(z+o ; f+) = HL(z+o , z+r ; f+)ũ(z+r ; f+), (A1)
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where ũ(z+r ; f+) is the Fourier transform of u(z+r ; t+) in time, t. Here, HL represents the
scale-specific linear transfer kernel and the superscript E represents the estimated quantity.
Such an approach enables an estimation of those scales at zo which are also coherent with
zr. For this, HL is computed from an ensemble of data following:

HL(z+o , z+r ; f+) =
{ũ(z+o ; f+)ũ∗(z+r ; f+)}
{ũ(z+r ; f+)ũ∗(z+r ; f+)}

= | HL(z+o , z+r ; f+) |eiψ(z+o ,z+r ; f+), (A2)

with ψ and | HL | the scale-specific phase and gain, respectively, and the asterisk (∗), curly
brackets ({}) and vertical bars (||) denoting the complex conjugate, ensemble averaging
and modulus, respectively. For the case of z+r � z+o , ũE(z+o ; f+) would be representative of
the energy contributions from all coexisting motions significantly taller than zo, which as
per the discussion in Deshpande et al. [35] leads to:

ũE(z+o ; f+)
∣∣
z+r ≈0 → uia(z+o ; f+), (A3)

where uia represents the inactive component of the streamwise velocity.
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