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Abstract: This paper analyses the two-dimensional unsteady and incompressible flow of a non-
Newtonian hybrid nanofluid over a stretching surface. The nanofluid formulated in the present study
is TiO2 + Ag + blood, and TiO2 + blood, where in this combination TiO2 + blood is the base
fluid and TiO2 + Ag + blood represents the hybrid nanofluid. The aim of the present research work
is to improve the heat transfer ratio because the heat transfer ratio of the hybrid nanofluid is higher
than that of the base fluid. The novelty of the recent work is the approximate analytical analysis of the
magnetohydrodynamics mixed non-Newtonian hybrid nanofluid over a stretching surface. This type
of combination, where TiO2 +blood is the base fluid and TiO2 + Ag + blood is the hybrid nanofluid,
is studied for the first time in the literature. The fundamental partial differential equations are
transformed to a set of nonlinear ordinary differential equations with the guide of some appropriate
similarity transformations. The analytical approximate method, namely the optimal homotopy
analysis method (OHAM), is used for the approximate analytical solution. The convergence of the
OHAM for particular problems is also discussed. The impact of the magnetic parameter, dynamic
viscosity parameter, stretching surface parameter and Prandtl number is interpreted through graphs.
The skin friction coefficient and Nusselt number are explained in table form. The present work is
found to be in very good agreement with those published earlier.

Keywords: TiO2 + Ag + blood; TiO2 + blood; optimal homotopy analysis method; magnetochydro
dynamics; stretching surface

1. Introduction

In the history of fluid mechanics, the derivation of the boundary layer equation and
the solution using similarity transformation is the most important area for the researcher.
With the help of boundary layer theory, both Newtonian and non-Newtonian fluids can be
modeled. The results obtained with the help of boundary layer theory have more similarity
to the experimental work. The industrial application of non-Newtonian fluid is higher
compared to Newtonian fluid because of the uses of non-Newtonian fluid in petroleum
drilling polymer engineering, hot rolling wire and fiber coating, manufacturing of food,
metal spinning glass fiber production and paper production, etc. Many nonlinear relations
are observed for the stress and the rate of strain for non-Newtonian fluids; to express
all those properties of non-Newtonian fluids in a single equation is difficult work. The
flow due to the stretching sheet of the boundary layer of non-Newtonian fluid has some
important application in several manufacturing fields. The non-Newtonian fluid model
has a great deal of mechanical applications. The study of heat transfer in nanofluids is of
great importance due to their many uses in various sectors.

In 1995, in the American Society of Mechanical Engineers winter annual conference,
Choi [1] was the first scientist who introduced the term nanofluid. In the consideration
of thermal assets, it is the core issue with traditional types of heat carrying fluids such as
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ethylene glycol, water, oil and lubricants, as they lack in the larger heat transport features.
Nanofluid has invented a revolutionary modification in the field of fluid dynamics to en-
hance the thermal conductivity of conventional fluids. Several scientists have investigated
the nanofluids, both experimentally and from a theoretical point of view. Accordingly,
nanoparticles investigators yield various ingredients in order to make them useful in en-
hancing the thermal conductivity. Such nanoparticles contain ceramic (Al2O3, CuO), metals
(Ag, Cu, Au), ferro particles (CoFe2O4, Fe3O4, Mn-ZnFe2O4), metal nitrides (AlN, SiN)
and carbon in various forms (diamonds, graphite and carbon nanotubes). Many studies
have been conducted about nanofluids up to now, and hybrid nanofluid is one of the new
types of nanofluid that has attracted the attention of researchers.

Hybrid nanofluids are produced in two forms. The first form is whereby two or more
types of nanofluid are suspended in a base fluid, the second one is when nanoparticles are
suspended in a base fluid like composite. In fact, the reason for researcher’s attention to
this issue is that the heat transfer rate enhancement and production cost reduction can be
achieved by application of these nanofluids. Hybrid nanofluids are presented to propose
superior thermo-physical characteristics and excellent rheological behavior with enriched
heat transport features. The hybrid nanofluids are the extension of nanoliquids containing
two distinct nanoparticles scattered in a base fluid, a novel kind of heat transport fluid that
attracts the consideration of many scientists. Hybrid nanofluids has been widely used in
various sectors of heat transport, such as micro-electric, generator cooling, reduction of
drugs, cooling of atomic system, refrigeration, cooling of transformers, etc. The concept
of hybrid nanofluids has improved the progressive features of ordinary nanofluid that
were discovered by Suresh et al. [2]. Recently, few numerical studies were examined
on hybrid nanofluids as a new idea in the field of science and technology. Devi and
Devi [3,4] examined the problems of the heat transfer and the flow of hydro-magnetic
hybrid nanofluids (Cu-Al2O3-Water) over a stretching sheet. Tayebi and Chamkha [5]
attended numerically the problem of heat transfer of Cu-Al2O3-Water hybrid nanofluids in
an annulus. The characteristics of TiO2-Cu/H2O hybrid nanofluid with Lorentz force was
analyzed by Ghadikolaei et al. [6]. Hayat et al. [7] inspected the rotating flow problem of Ag-
CuO/Water hybrid nanofluids. The aqueous titania–copper hybrid nanofluid stagnation
point flow towards a stretching cylinder was investigated by Yousefi et al. [8]. Subhani
and Nadeem [9] studied the behavior of Cu-TiO2/H2O hybrid nanofluid over a stretching
surface. Coşkun [10] studied the analysis of convective straight and radial fins with
temperature-dependent thermal conductivity using variational iteration method with
comparison with respect to finite element analysis. The numbers of studies in the field
of nanofluids has increased rapidly over the past decade. Despite some inconsistency
in the reported result and insufficient understanding of the mechanism of heat transfer
in nanofluids, it has emerged as a promising heat transfer fluid. In the continuation of
nanofluids research, recently researchers have also tried to use hybrid nanofluids, which are
engineered by suspending dissimilar nanoparticles either in a mixture or composite form.
The idea of using hybrid nanofluids is to further improve the heat transfer and pressure
drop characteristics by a trade-off between advantages and disadvantages of individual
suspension attributed to good aspect ratios, better thermal networks and synergistic effects
of the nanomaterial. There is a growth in the use of hybrid nanofluids in the biomedical
industry for sensing and imaging purposes. This is directly related to the ability to design
novel materials at the nanoscale level alongside recent innovations in analytical and
imaging technologies for measuring and manipulating nanomaterials. This has led to the
fast development of commercial applications, which use a wide variety of manufactured
nanoparticles. The production, use and disposal of manufactured nanoparticles will lead
to discharges into the air, soils and water systems. Negative effects are likely and the
quantification and minimization of these effects on environmental health is necessary.
True knowledge of the concentration and physicochemical properties of manufactured
nanoparticles under realistic conditions is important to predicting their fate, behavior and
toxicity in the natural aquatic environment. The aquatic colloid and atmospheric ultrafine
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particle literature both offer evidence as to the likely behavior and impacts of manufactured
nanoparticles. The heat transfer application of hybrid nanofluids is used for industrial
cooling that could result in great energy savings and resulting emissions reductions.

The phenomena of non-Newtonian liquid has a substantial impact on the innovation of
renewable and sustainable energy processes for the development of contemporary trends.
The Casson fluid model is an exceptional non-Newtonian liquid model that performs
shearing thinning characteristics and stress. From such exclusive features, Casson fluid
become an ideal rheological fluid model for human blood, as in the human body the
red blood cells form rouleaux that create stress. Parmar et al. [11] examined the Casson
model for blood flow with stenosed in blood vessel. Nadeem et al. [12] studied the
effect of radiation and chemical reaction for Casson nanofluid. Ullah et al. [13] worked
on non-Newtonian nanofluid flow through porous surface. The numerical results of
Casson nanofluid flow in presence of joule heating and slip effect was investigated by
Kamran et al. [14]. Additionally, the effect of radiation on energy expression over Casson
nanofluid flow was examined by Archana et al. [15]. Gireesha et al. [16] investigated
the Casson nanofluid flow and studied the impact of chemical reaction and radiation.
Other than that study, the succeeding recent articles can be referred to the additional
information associated to the Casson nanofluid flows, for example Souayeh et al. [17],
Ullah et al. [18], Aziz and Afify [19]. Raza [20] discussed the thermal radiation and slip
effects on magnetohydrodynamic (MHD) stagnation point flow of Casson fluid over a
convective stretching sheet. Alkasassbeh et al. [21] discussed the effects of Stefan blowing
and slip conditions on unsteady MHD Casson nanofluid flow over an unsteady shrinking
sheet. Lund et al. [22] discussed the MHD flow of Cu-Fe3O4/H2O hybrid nanofluid with
the effect of viscous dissipation according to the growing requirement of non-Newtonian
hybrid nanofluid in engineering and industry areas. To overcome the issue of heat transfer
rate enhancement and production cost reduction, the aim of the present work is the
non-Newtonian hybrid nanofluid model that is an update on non-Newtonian hybrid
nanofluid flow over a stretching surface. The analytical approximate method, the optimal
homotopy analysis method (OHAM), is used for the model problem, as described by
Liao et al. [23,24]. The impact of different parameters is interpreted through graphs. The
skin friction coefficient and Nusselt number is explained in table form. The present work is
found to be in very good agreement with those published earlier. The remaining paper
is planned as follows: the literature review is presented in Section 1, the mathematical
formulations of the important equation with the boundary conditions are derived in
Section 2, the analysis of OHAM is presented in Section 3, the results and discussion are in
Section 4, and the conclusion is presented in Section 5.

2. Mathematical Formulation

Consider the unsteady boundary layer stagnation point flow of non-Newtonian hybrid
nanofluid TiO2 + blood and TiO2 + Ag + blood over a stretching surface located at
y = 0 and the flow being confined in y > 0, with stretching parameter λ = b

c and

magnetic field M =
σB2

0
ρn f

. The geometry of the flow problem is represented in Figure 1.
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Under the above condition the boundary layer equation for the unsteady flow towards
the stretching surface can be written as follows:

∂u
∂x

+
∂v
∂y

= 0 (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= Us
dUs

dx
+ k∗

∂2u
∂y2 −

σB2
0

ρn f
. (2)

The temperature distribution in the flow field is as follows:

∂T
∂t

+ u
∂T
∂t

+ v
∂T
∂t

=
k

ρCp

∂2T
∂y2 . (3)

The temperature is denoted by T, the thermal conductivity is denoted by k, the fluid
density is denoted by ρ, and the specific heat is denoted by Cp. The velocity component
along x and y is u and v, respectively. The distance along the sheet is denoted by x and the
distance perpendicular to the sheet is denoted by y, the velocity of the stagnation point
is denoted by Us = ax with a > 0, the kinematic viscosity of the fluid is denoted by k∗,

the magnetic field is denoted by M and is defined as M =
σB2

0
ρn f

, the unsteady parameter is

denoted by χ and is defined as χ = γ
b , the Eckert number is defined as Ec = U2

v
Cp(Tv − T0)

,

λ = b
c is the stretching parameter.

The boundary condition for velocity component is given as follows:

u = Uw, v = 0 at y = 0; u → Us as y → ∞. (4)

The stretching velocity of the sheet is denoted by Uw = cx where c is the stretching
constant. The boundary conditions for the temperature distribution were as follows:

T = Tw at y = 0; T → T∞ as y → ∞. (5)

The temperature at the sheet is denoted by Tw and the free stream temperature is
denoted by T∞ which assume to be constant. The stream function is defined as follows:

u =
∂ψ

∂y
and v = −∂ψ

∂x
. (6)

The similarity transformation is defined as follows:

ψ =

√
aν f

1− αt
x f (η), η = y

√
a

ν f (1 − αy)
, and θ(η) =

T − T∞

Tw − T∞
. (7)

The similarity transformation from Equation (7) is used in Equations (1)–(3). The simi-
larity transformation satisfied Equation (1) identically and converts Equations (2) and (3)
from nonlinear partial differential equations to nonlinear ordinary differential equations,
as follows:

1

(1−φ1)
2.5(1−φ2)

2.5
[
(1−φ2)

(
1−φ1+φ1

ρs1
ρ f

)
+φ2

ρs2
ρ f

] f ′′′ − (1− φ)2.5
(
(1− φ) + φ

ρs
ρhn f

)
f ′′ f − f ′2

−χ(1− φ)2.5M
( η

2 f ′′ + f ′
)
= 0

(8)

with boundary condition f (η) = 0, f ′(η) = c
a at η = 0,
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kn f

k f
θ′′ −

[
(1− φ2)

(
1− φ1 + φ1

(
ρCp

)
s1(

ρCp
)

f

)
+ φ2

(
ρCp

)
s2(

ρCp
)

f

]
Pr
(
θ′ f
)
− χ

2
Ec
(
ηθ′
)
= 0 (9)

with boundary condition θ(η) = 1 at η = 0; θ(η)→ 0 as η → ∞ .
The skin friction coefficient Cn f is defined as Cn f =

2τv

ρU2
v

and the local Nusselt number

Nux = Nu = qv

k(Tv−T0)
x.

3. Analysis of OHAM

This approach is usually proposed by Liao [23,24] and applied to solve the boundary
value functional equation. Consider the following boundary value functional equation:

L( f (η)) + g(η) + N( f (η)) = 0
B
(

f , d f
dη

)
= 0

(10)

where L and N are linear and nonlinear operator, g(η) is known function, f (η) is unknown
function and B is the boundary operator. Consider the following deformation equations:

(1− p)[L( f (η, p)) + g(η)] = H(p)[L( f (η, p)) + g(η) + N( f (η, p))]
B
(

f (η, p), d f (η,p)
dη

) (11)

where p ∈ [0, 1] is an embedding parameter, H(p) for p 6= 0 is a nonzero auxiliary function
such that H(0) = 0 and H(1) = 1. We have f (η, 0) = f0(η) and f (η, 1) = f (η), respectively.
Thus as p increase from 0 to 1, the solution f (η, p) varies from f0(η) to f (η), where f0(η)
is an initial estimates that satisfies the linear operator which is obtained from Equation (11)
for p = 0:

L( f0(η)) + g(η) = 0,
B
(

f0, d f0
dη

)
.

(12)

The auxiliary function H(p) is consider as the following power series in p:

H(p) = C1 p + C2 p + · · · (13)

where C1 and C2 are constants that will be determined. The approximate analytical solution:

f (η, p, C1, . . . , Cm) (14)

is usually a power series about p as follows:

f (η, p, C1, . . . , Cm) = f0(η) + ∑
k≥1

fk(η, p, C1, . . . , Cm)pk. (15)

Substituting Equation (12) from Equation (15) and equating the coefficients of the
terms with the identical power of p leads to the governing equation f0(η), f1(η) up to fk(η)
which starts from Equation (12) that is:

L( f1(η)) = C1N0( f0(η)),
B
(

f1, d f1
dη

)
= 0.

(16)

L( fk(η)− fk−1(η)) = Ck N0( f0(η)) +
k−1
∑

i=1
Ci[L( fk−1(η) + Nk−1( f0(η), f1(η), . . . , fk−1(η)))]

B
(

fk, d fk
dη

)
= 0, k = 2, 3, . . .

(17)
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where Nm( f0(η), f1(η), . . . , fm(η)) is the coefficients of pm obtained by expanding
N( f (η, p, C1, . . . , Cm)) in a power series with respect to the embedding parameter p

N( f (η, p, C1, . . . , Cm)) = N

(
f0(η) + ∑

k≥1
Nk( f0(η), f1(η), . . . , fk(η))pk

)
(18)

where N( f (η, p, C1, . . . , Cm)) is given from Equation (15). The convergence of Equation (18)
depends on the auxiliary constant Ci, i = 1, 2, 3, . . .. If the Equation (18) converges when
=1 , one has:

f (η, C1, C2, . . . , Cm) = f0(η) + ∑
k≥1

fk(η, C1, C2, . . .). (19)

The mth order approximation is given by:

f (η, C1, C2, . . . , Cm) = f0(η) +
m

∑
k≥1

fk(η, C1, C2, . . . , Cm). (20)

The result for the residual is defined as follows:

R(η, C1, C2, . . . , Cm) = L( f (η, C1, C2, . . . , Cm) + f (η) + N( f (η, C1, C2, . . . , Cm))). (21)

If R(η, C1, C2, . . . , Cm) = 0 then f (η, C1, C2, . . . , Cm) will be an exact solution and this
is in general does not happened, especially in nonlinear problem. In order to find the
optimal value of Ci, i = 1, 2, . . . , m we apply the method of least square.

∂J
∂C1

= ∂J
∂C2

= . . . = ∂J
∂Cm

= 0
where

(22)

J(C1, C2, . . . , Cm) =
∫ b

a
R2(η, C1, C2, . . . , Cm)dη,

and the closed interval [a, b] is the support of the given problem. Knowing these constants,
the approximate solution of order m will be determined easily.

4. Result and Discussion

The main objective of this section is to study the effect of the various model factors like
k∗, M, λ, Pr, Ec, χ (kinematic viscosity, magnetic field, stretching parameter, Prandtl number,
Eckert number, and unsteady parameter) on the velocity and temperature distribution. In
Tables 1 and 2, the numeric results illustrate the impacts of different model factors on the
skin friction coefficients and Nusselt number of both TiO2 + blood and TiO2 + Ag + blood.
The skin friction coefficient decreases for the increasing value of the unsteady parameter
and the magnetic field. The Nusselt number coefficient decreases for the increasing value
of the Prandtl number and Eckert number.

Table 1. Comparison of the skin friction for the two nanofluids when Pr = 15.6, k∗ = 0.9, A = 0.1

χ M TiO2+Blood TiO2+Ag+Blood

0.7 1 0.929705 0.39471
0.8 0.92164 0.379547
0.9 0.91147 0.37264

2 0.9100877 0.36994
3 0.77608 0.33724

0.768432 0.3246
0.75818 0.31641
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Table 2. Comparison of the Nusselt number (Re−
1
2

x Nux) for the two nanofluids when k∗ = 0.5, M = 2,
λ = 0.7.

Pr Ec TiO2 + Blood TiO2 + Ag + Blood

21 1.5 0.51231 0.49077
21.1 2.5 0.49341 0.48237
21.2 3.5 0.47451 0.47397
21.3 4.5 0.45614 0.45647
21.4 5.5 0.43776 0.44897
21.5 6.5 0.42795 0.43121
21.6 7.5 0.35021 0.41346

The convergence for the approximate analytical solution has been obtained up to
the 25th iteration in Tables 3 and 4, one by one. The increasing the number of iterations
reduces the order of residual error and a strong convergence attained. Table 5 exhibits the
thermo-physical properties.

Table 3. Convergence of the method for TiO2 + Ag + Blood when Pr = 6, M = 10, Ec = 1,
k∗ = 1, λ = 1.

m ε
f
mTiO2 + Ag + Blood εθ

mTiO2 + Ag + Blood

5 1.36438× 10−1 2.86775× 10−1

10 7.14094× 10−3 1.48738× 10−2

15 5.209443× 10−7 1.07298× 10−4

20 4.37298× 10−9 8.54131× 10−5

25 3.95787× 10−11 7.94423× 10−6

Table 4. Convergence of the method for TiO2 + Blood when Pr = 6, M = 10, Ec = 1, k∗ = 1,
λ = 1.

m ε
f
mTiO2 + Blood εθ

mTiO2 + Blood

5 1.07991× 10−1 2.88574× 10−1

10 5.65266× 10−2 1.0759× 10−3

15 4.12383× 10−3 1.0759× 10−5

20 3.4616× 10−4 8.55721× 10−7

25 3.133× 10−5 8.006632× 10−9

Table 5. Exhibits the thermo-physical properties.

Properties Nanofluid Hybrid Nanofluid

Density ρn f = (1− φ)ρ f + φρs ρhn f = (1− φ2)(1− φ1) + φ1s1 + φ2ρ2

Heat capacity

(
ρCp

)
n f = (1− φ)

(
ρCp

)
f + φ

(
ρCp

)
s

(
ρCp

)
hn f = (1− φ2)(1− φ1)

(
ρCp

)
f + φ1

(
ρCp

)
s1

+φ2ρ
(
ρCp

)
s2

Viscosity
µn f =

µ f

(1−φ)2.5 µhn f =
µ f

(1−φ1)
2.5(1−φ2)

2.5

Thermal conductivity
kn f
k f

=
ks+(n−1)k f−(n−1)φ(k f−ks)

ks+(n−1)k f +φ(k f−ks)
khn f
kb f

=
ks2+(n−1)kb f−(n−1)φ2(kb f−ks2 )

ks2+(n−1)kb f +φ2(kb f−ks2 )

Figure 2 shows the influence of the magnetic field against the velocity field. The
relation between f ′(η) and M is inversely related. For the growing magnitude of M
decreases the f ′(η).
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Figure 2. Effect of magnetic field on velocity profile.

Physically, by increasing the magnetic field M, resistance forces are produced so that
it decreases the velocity profile. Figure 3 shows the effect of the unsteady parameter χ on
the velocity profile. For increasing the value of the unsteady parameter χ the velocity field
f ′(η) is decreasing in both the base nanofluid and hybrid nanofluid.
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Figure 3. Effect of unsteady parameter on velocity profile.

Figure 4 shows the effect of the stretching parameter λ against the velocity equation.
The velocity profile is the increasing function of the stretching surface. The increasing values
of the stretching parameter λ increase the f ′(η) velocity field. Physically, by increasing
the stretching parameter λ, the position of the fluid particle changes, so as a result the
movement of the particle increases, so the velocity field is increasing by increasing of the
stretching parameter λ.

Figure 5 presents the effect of the kinematic viscosity on the velocity field. The
increasing values of the kinematic viscosity k∗ decrease the f ′(η) velocity field.

Physically, by increasing the kinematic viscosity, it produces resistant forces due to
which fluid particles do not move easily, so as a result the velocity field is decreasing with
the increasing of the kinematic viscosity.

Figure 6 shows the effect of the magnetic field against the temperature profile. We
see that by increasing the value of the magnetic field, the temperature profile decreases.
Figure 7 shows the effect of the Pr against the θ(η) temperature field:
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Figure 7. Effect of Prandtl number on temperature profile.

By enhancing the Pr, it decreases the temperature profile. In fact, the thickness of
the momentum boundary layer is bound to be larger than that of the thermal boundary
layer, or the viscous diffusion is larger than the thermal diffusion and therefore, the larger
amount of the Pr reduces the thermal boundary layer. Figure 8 shows the impact of the
Eckert number versus the temperature field.
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Figure 8. Effect of Eckert number on temperature profile.

We notice that the relation between the temperature field and Ec is directly related,
that is, the increasing of Ec increases the temperature profile as displayed in Figure 8. In
fact, the thickness of the momentum boundary layer is smaller than that of the thermal
boundary layer, or the viscous diffusion is less than the thermal diffusion and therefore,
the larger value of the Ec increases the thermal boundary layer.

5. Conclusions

This paper reports on the approximate analytical solution of the nonlinear differen-
tial equation. The fundamental partial differential equations are transformed to a set of
nonlinear ordinary differential equations with a guide of some appropriate similarity trans-
formation. The approximate analytical method, namely the OHAM is used for the model
problem. The impact of the different parameters are interpreted through graphs. The skin
friction coefficient and Nusselt number are explained in table form. The present work is
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found to be in very good agreement with those published earlier. The main outcomes of
the present analysis were as follows:

• By increasing the unsteady parameter S, it decreases the velocity field.
• By increasing the stretching parameter λ, it increases the velocity profile.
• By increasing the Prandtl number Pr, it decreases the temperature profile.
• By increasing the Eckert number, it increases the temperature field.
• By increasing the magnetic field M, it decreases the velocity field.
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