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Abstract: In this article, we present the current status of the derivation of a viscous Serre–Green–
Naghdi system. For this goal, the flow domain is separated into two regions. The upper region
is governed by inviscid Euler equations, while the bottom region (the so-called boundary layer)
is described by Navier–Stokes equations. We consider a particular regime binding the Reynolds
number and the shallowness parameter. The computations presented in this article are performed in
the fully nonlinear regime. The boundary layer flow reduces to a Prandtl-like equation that we claim
to be irreducible. Further approximations are necessary to obtain a tractable model.

Keywords: Serre–Green–Naghdi; viscous fluid; asymptotic model; nonlinear regime
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1. Introduction

The water wave theory has been essentially developed in the framework of the inviscid
and, very often, irrotational Euler equations. However, various viscous effects are inevitably
present in laboratory experiments and even more in the real world. Thus, the conservative
conventional models have to be supplemented with dissipative effects to improve the
quality of their predictions. A straightforward energy balance asymptotic analysis shows
that the main dissipation occurs at the bottom boundary layer [1] [Section §2] (or at the
lateral walls if they are also present [2,3]). In this way, the corresponding long wave
and small amplitude Boussinesq-type systems have been derived taking into account the
boundary layer effects [4]. In [5], the author derived the viscous Boussinesq model without
the irrotationality assumption that is usually done for Euler equations. Other articles
already took the vorticity into account, even for fully nonlinear Boussinesq equations (here,
called Serre–Green–Naghdi or SGN) [6,7] but not yet viscosity.

Physics gives us rather general equations, such as Euler or Navier–Stokes for fluid
dynamics. Despite there being only model equations, physicists do believe they are very
close to reality, at least for a wide range of fluids and types of experiments (geometry
and boundary conditions). One always may solve these general equations for specific
conditions. However, if the geometry and scales permit it, solving a reduced model in
1 + 1D (one dimension in space and one in time) or even 2 + 1D is better than the full
equation (3 + 1D). One of the main motivations is to apply such simulations to coastal flow
where the coast is clearly 2D. Therefore, taking off one dimension is very valuable. Great
efforts are devoted to finding reduced models from these general equations for at least two
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reasons. The first one is numerical: if a model is proven to be right up to a certain time
and is simpler to simulate, then it may save computation time. Additionally, if the goal
is to predict the time at which a tsunami reaches the coasts, hours and even minutes are
relevant. The second one is that some reduced model trigger behaviors that cannot be easily
predicted from the full model. One of the best examples is the solitary wave phenomenon,
which was observed and reported by J.S. Russell (ca. 1845). It was explained independently
by J. Boussinesq (1877) and Korteweg–de Vries (1895) using the reduced Korteweg–de
Vries (KdV) model, as we call it nowadays. However, the first proof of the existence of
solitary waves in the full Euler equations is due to Lavrentyev (ca. 1945). Even later, this
solitonic behavior was rediscovered in a seminal work by Zabusky and Kruskal (1965),
which opened the whole research direction in infinite-dimensional integrable systems. It
is precisely a numerical simulation of this reduced equation that suggests that there exist
solutions that do not vanish and even remain invariant (solitary waves). However, to
reduce the numerical size of a system, one must find a small parameter and then find
the expansion of the system. Therefore, the asymptotic method is a major tool to reduce
the models.

Up until now, the inviscid free boundary flow with small fields (almost linear) in only
one direction is modeled by a KdV equation and is rather well-known. It uses one field
in 1 + 1D instead of eight fields (two velocity components, one pressure, and one surface
wave height) in 3 + 1D. When you take viscosity into account, the same equation holds
with a half derivative more ([5]). The propagation of a surface wave in any direction, for an
inviscid fluid, is proven to be modeled by the Boussinesq system [8] and requires two scalar
fields in 1 + 1D. Its viscous counterpart is also a system of 1 + 1D but with a half-derivative
and initial conditions in the whole boundary layer. Thus, indeed, it is only a 2 + 1D system.
In the inviscid case of a non-small surface wave, an SGN system was derived [9,10]. It was
proven to extend the Boussinesq system [8] and to be well-posed [11] and is numerically
more stable than the Boussinesq systems [7]. Here, we try to extend the SGN system to
take viscosity into account.

In the present article, we report the current status of the attempt to derive a viscous
counterpart of the well-known inviscid SGN equations. We chose an asymptotic regime
that binds the Reynolds number and the shallowness parameter from the special case of
the linear regime. We write the equations, then solve them in the bulk part and then in the
boundary layer, and try to match the two. A full derivation appears very unlikely since it
would require being able to reduce the Prandtl’s equation found in the boundary layer.

2. Primary Equations

Consider the flow of an incompressible viscous liquid in a physical two-dimensional
space over a flat bottom and with a free surface. We assume additionally that the fluid is
homogeneous (i.e., density ρ is constant) and that the gravity acceleration g is constant.
For the sake of simplicity, in this study, we neglect all other forces (such as the Coriolis
force and friction). Hence, we deal with pure viscous gravity waves. We introduce a
Cartesian coordinate system O x̃ ỹ . The horizontal line O x̃ coincides with the still water
level ỹ = 0, and the axis O ỹ points vertically upwards. The fluid layer is bounded below
by the horizontal solid bottom ỹ = −d and above by the free surface ỹ = η̃ (x̃, t̃) . The
sketch of the fluid domain is shown in Figure 1.

In order to make the equations dimensionless, we choose a characteristic horizontal
length ` (characteristic wavelength of the surface wave), vertical height of the free surface A
(departure from the mean position of the free boundary), and mean depth d. All this enables
us to define a characteristic velocity c0 =

√
gd. Then, one may define the dimensionless

independent variables:
x̃ = `x, ỹ = dy, t̃ = t`/c0.
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Figure 1. Sketch of the fluid domain.

This enables us to define the dimensionless fields:

ũ = c0u, ṽ =
dc0

`
v, p̃ = p̃atm − ρgd y + ρgd p, η̃(x̃, ỹ, t̃) = Aη(x, y, t).

We also define some dimensionless numbers, characteristic of the flow:

ε =
A
d

, µ2 =
d2

`2 , Re =
ρc0l

ν
.

The system of Navier–Stokes equations can then be written in 2D and in dimension-
less variables:

ut + uux + v uy −
(

uxx + uyy/µ2
)

/Re + px = 0

µ2(vt + uvx + vvy)−
(

µ2vxx + vyy

)
/Re + py = 0

ux + vy = 0[
−(p− εη)I +

2
µRe

(
µux (uy + µ2vx)/2

(uy + µ2vx)/2 µvy

)]∣∣∣∣∣
εη

n = 0 on y = εη

ηt + u(y = εη)ηx − v(y = εη)/ε = 0 on y = εη

u(y = −1) = v(y = −1) = 0,

(1)

where we denote u|εη = u(y = εη) = u(x, y = εη(x, t), t) and the normal n = (−εηx, 1)/√
1 + ε2η2

x.
One could assume the fields to be small around the hydrostatic flow (which is lifted by

the change in field from p̃ to p), so around (u, v, p, η) ' 0. However, such an assumption
would be too particular for our nonlinearity assumption, which reads ε = O(1). Since
the linear case ε = o(1) must be satisfied also, we are justified in making this assumption.
Then, we would be led to a linear system identical (up to changes of variables) to System (7)
of [5]. The study of this linear system is rather arduous and without interest to reproduce
here. In the end, even though linearity is not the regime assumed here, it must be included
in our study as a special case (if ε→ 0). It suggests then to assume:

Re ∼ µ−6 . (2)

Below, we solve the problem in the bulk part where Euler’s equations are justified to
apply (Section 2.1) and, then, we try to solve the velocity in the boundary layer (Section 2.2).
In this last section, we are led to Prandtl’s equation that prohibits any further advance to
the best of our knowledge. The sketch of the boundary layer fluid domain is depicted in
Figure 2.
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Figure 2. The sketch of the boundary layer domain.

What is the size of the boundary layer where the no-slip condition forces the fluid to
have a large gradient of velocity? In the same way as in [5], one may assume it is of size µ2.
Inside the boundary layer, we make a change in the vertical variable (justified below):

y = −1 + µ2 γ. (3)

Then, we assume γ to be nonnegative and up to “large” values. One may use two
strategies. The first sets an upper bound. Then, one writes the matching condition at that
given height. However, one might wonder whether the artificial choice of this upper bound
does restrict the result. The second method sets an artificial upper bound γ∞. Then, the
matching condition is written at that height and one must check that the resulting condition
does not depend on this γ∞. Below, we use the latter method and thus γ ∈ [0, γ∞). Our
γ∞ is large but not so large so as to let µ2γ∞ � 1. However, let us start with the bulk
movement in the upper part.

2.1. Resolution in the Upper Part (Euler)

In the upper part, y � −1 + µ2 and µ4 are small. Therefore, one may drop the
Laplacian and keep the following from (1):

ut + uux + vuy + px = O
(

uyy

µ2Re

)
+ O(µ6)

µ2(vt + uvx + vvy) + py = O(µ6)

ux + vy = 0

−p + εη = O
(

uy|εη

µRe

)
+ O

(
1

Re

)
on y = εη

(p− εη)εηx + 2(−uxεηx + (uy/µ + µvx))/Re = 0 on y = εη

ε
(
ηt + u|εηηx

)
= v|εη on y = εη.

(4)

Here and below, for f = u or v, we denote f |εη = f (x, y = εη(x, t), t). First, one may
notice that the viscosity terms are no more present inside this part of the domain. It is
argued in [5] that one may (and even must) drop the fifth equation from this system due to
the fact that the fluid is indeed no more viscous in this part of the domain.

It is classical to use (4)3 to get

v = v|εη −
∫ y

εη
ux dy′, (5)

where v|y=εη is given by (4)6. One may use this vertical velocity in (4)2 to compute py .
Thanks to (4)4, one has
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p = εη − µ2
[
(y− εη)

(
(v|εη)t + ux|εηεηt

)
+

(∫ y

εη
u
)(

(v|εη)x + ux|εηεηx
)

−
(∫ y

εη
ux

)
v|εη −

∫ y

εη

∫ y′

εη
uxt −

∫ y

εη

(
u
∫ y′

εη
uxx

)
+
∫ y

εη

(
ux

∫ y′

εη
ux

)]
+ O

(
uy|εη

µRe

)
+ O

(
1

Re

)
+ O(µ6). (6)

Thus, we have both v (thanks to (5)) and p (thanks to (6)) and may rewrite (4)1 with
the only fields u and η:

ut + uux + uy

(
v|εη −

∫ y

εη
ux

)
+ εηx − µ2

[
(y− εη)

(
(v|εη)t + ux|εηεηt

)
+

(∫ y

εη
u
)(

(v|εη)x + ux|εηεηx
)
−
(∫ y

εη
ux

)
v|εη −

∫ y

εη

∫ y′

εη
uxt

−
∫ y

εη

(
u
∫ y′

εη
uxx

)
+
∫ y

εη

(
ux

∫ y′

εη
ux

)]
x

= O
(
(uy|εη)x

µRe

)
+ O

(
µ6
)
+ O

(
uyy

µ2Re

)
. (7)

To take off the dependence on y of this equation, we integrate between the bottom
of our upper part (y = −1 + µ2γ∞) and its upper free boundary (y = εη(x, t)). We define
the following:

Hµ,γ∞ = 1 + εη − µ2γ∞, and ū(x, t) =
1

Hµ,γ∞

∫ εη(x,t)

−1+µ2γ∞
u(x, y)dy. (8)

We also need a lemma that will enable us to commute the integration and the x
differentiation under an assumption:

Lemma 1. Let F be a C1 function defined in Ω = {(x, y)/x ∈ R,−1 + µ2γ∞ < y < εη(x)},
such that, if ∀x, F(x, y = εη) = 0, then∫ εη

−1+µ2γ∞

∂F
∂x

(x, y)dy =
∂

∂x

∫ εη

−1+µ2γ∞
F(x, y)dy . (9)

The proof is very simple and left to the interested reader. We apply it to (7) because
the x differentiation of functions inside the square brackets commutes with our integral.
Indeed, every function inside the brackets vanishes at y = εη .

Thanks to Lemma 1, one may commute the x differentiation of the square bracket
in Equation (7) with the integral since the terms in the square brackets vanish at y = εη .
An integration by parts of the integral

∫
uy

(
v|εη −

∫ y
εη ux

)
dy term, and the treatment of∫

(u2)x leads to the following (below, we writeH = Hµ,γ∞ ):

Hūt +

(∫ εη

−1+µ2γ∞

u2
)

x
+HHx + (ū− u|−1+µ2γ∞

)(Ht + (Hū)x)− ū(Hū)x

− µ2
[
−H

2

2
(
(∂t + ū∂x)

(
v|εη

)
+Ht(ux|εη − ūx) +Hx(ūux|εη − ūxu|εη)

)
+
∫ εη

−1+µ2γ∞

∫ y

εη
(u− ū)dy′dy×

(
(v|εη)x + ux|εηHx

)
−
∫ εη

−1+µ2γ∞

∫ y

εη
(u− ū)xdy′ dy v|εη

−
∫ εη

−1+µ2γ∞

∫ y

εη

[∫ y′

εη
uxt + u

∫ y′

εη
uxx − ux

∫ y′

εη
ux

]
dy′dy

]
x

= O
(
(uy|εη)x

µRe

)
+ O

(
uyy

µ2Re

)
. (10)
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We need now the following (two-fold) assumption for y ∈ (−1 + µ2 γ∞, ε η]:

u(x, y, t) = ū(x, t) + µ2ũ(x, y, t), and
∫ εη

−1+µ2γ∞
ũdy = 0. (11)

whereH = Hµ,γ∞ and ū is already defined in (8). Notice that the expansion of a function
around its mean value ū is not an assumption. A first way to see this assumption is that
the discrepancy with the mean ū is µ2ũ and is small (O(µ2)). Another way to formulate
this assumption is to look at an expansion in µ2, in which one assumes that the zeroth-
order term does not depend on y and that the next order term is a zero-mean value.
Therefore, ũ is perpendicular to ū. Whatever the interpretation, the consequence of this
assumption is that O(µ2) (cross) terms in

∫
u2 vanish. This gives two different ways to

see the real assumptions behind (8) and (11). Finally, this assumption is proven to be
true in Lemma 11 (Equation (77)) of [5] in the case of a Boussinesq flow (where ε is small)
without the assumption of irrotationality in the Euler part of the flow. The horizontal velocity’s
expansion is computed in the inviscid case:

u(x, y, t) =
∫ 1

0
u + µ2 ηxt(y2 − 1/3)/2 + O(µ4). (12)

Thus, the function is indeed the sum of its mean and an order 2 (in µ) function of mean
vanishing. We remind the reader that we still assume that we solve the Euler equations
and not yet the Navier–Stokes ones in this part. Therefore, the assumption is coherent with
the present derivation.

Upon this assumption, (10) simplifies to

Hūt +Hūūx +HHx + (ū− u|−1+µ2γ∞
)(Ht + (Hū)x)

− µ2
[
−H

2

2
(∂t + ū∂x)

(
v|εη

)
− H

3

6
(ūxt + ūūxx − (ūx)

2)

]
x

= O
(
(uy|εη)x

µRe

)
+ O

(
uyy

µ2Re

)
+ O(µ4). (13)

One must add (4)6:

v|εη = ε(ηt + u|εηηx) = Ht + u|εηHx = (∂t + ū∂x)H+ O(µ2) (14)

and look for an equation for u|−1+µ2γ∞
.

Remark 1. The attention may be drawn to the fact that, thanks to (11),

Ht + (Hū)x = εηt +Hxū +Hūx = v|εη +Hūx + O(µ2) = v|−1+µ2γ∞
+ O(µ2),

where v|εη is given by (4)6. In the pure Euler case with no boundary layer (γ∞ = 0), v|−1+µ2γ∞
= 0

since the flow does not cross the boundary. Therefore, we would not need to compute u|−1+µ2γ∞
.

We would have derived the classical SGN equation. We need to go further to obtain a closure of
u|−1+µ2γ∞

.

2.2. Resolution in the Boundary Layer

We write the system that applies in the layer, extracted from (1):
ut + uux + vuy − uxx/Re− uyy/(µ2Re) + px = 0,

µ2(vt + u vx + v vy
)
− µ2vxx/Re− vyy/Re + py = 0,

ux + vy = 0,

u(y = −1) = v(y = −1) = 0.

(15)
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This system may be rewritten with the change in variables justified in (3) y = −1 + µ2 γ,
where γ is positive and up to a large (but not too large) γ∞. This change in variable is
elicited by the uyy/(µ2Re) = uyyµ4 term. The change in variable to an order two in µ raises
this term to order zero. We also use the assumption (2) on Re such that Re = R µ−6, where
R is a constant. We should have tilded the fields but would have dropped the tilde soon
after. Therefore, we omit them. When precision is needed, we denote uBL = u(x, γ, t) as
the horizontal velocity in the boundary layer. The system writes the following:

ut + u ux + v uγ/µ2 − uxxR−1µ6 − uγγ/R + px = 0,

µ2
(

vt + u vx + v vγ/µ2
)
− vxxR−1µ8 − vγγR−1µ2 + pγ/µ2 = 0,

ux + vγ/µ2 = 0,

u(x, γ = 0, t) = v(x, γ = 0, t) = 0.

(16)

As is classical, we first compute v (owing to (16)3 and (16)4:

v(x, γ, t) = 0− µ2
∫ γ

γ=0
ux dγ′. (17)

Then, we can compute the differentiated pressure from (16)2 that proves pγ = O(µ4).
As a consequence,

pBL(x, γ, t) = pBL(γ→ γ∞) + O(µ4),

where pBL(γ → γ∞) is determined thanks to a matching condition at the bottom of the
upper part (Euler part). From (6) and owing to the already stated assumption (11), the
pressure in the boundary layer is as follows, up to O(µ4):

pEuler|−1+µ2γ∞
= εη − µ2[−H(∂t + ū∂x)(v|εη)−H2/2(ūxt + ūūxx − ūxūx)

]
+ O(µ4). (18)

Then, one has the pressure in the boundary layer:

pBL(x, γ, t) = εη(x, t) + µ2[H(∂t + ū∂x)(v|εη) +H2/2(ūxt + ūūxx − ūxūx)
]
+ O(µ4). (19)

Last, we may gather vBL (from (17)) and pBL (from (19)) and rewrite (16)1:

uBL
t + uBL uBL

x − uBL
γ

∫ γ

0
uBL

x (γ′)dγ′ −
uBL

γ γ

R
+ εηx

+ µ2
[
H(∂t + ū∂x)

2(H) +H2/2(ūxt + ūūxx − ūxūx)
]

x
= O(µ4). (20)

At this stage of the derivation, we recognize a Prandtl’s equation. It is then intuitive
to assume the continuity relation on the horizontal velocity:

(uBL ∞ =)uBL(x, γ∞, t) = uEuler(x, z = −1 + µ2γ∞, t)(= u|−1+µ2γ∞
).

In the Boussinesq regime, the author of [5] had a heat equation (instead of Prandtl’s
equation) on uBL. It was solved with this (upper) boundary condition and the condition
at z = 0. Once the horizontal velocity (in the boundary) was determined, the author
derived the vertical velocity. Then, the continuity condition on the vertical velocity gave
the supplementary equation that closed the viscous Boussinesq system.

In our regime, we are led to a system (13) and (20) with boundary conditions depend-
ing on H, uBL, ū. However, the nonlinearity is Prandtl-like and it still depends on γ in a
hopeless way because of the Prandtl term. Indeed, it is well-known that Prandtl’s equation
still resists the best physicists and mathematicians. It was proven to be ill-posed in [12] and
partially well-posed later. At the current stage, we do not know how to derive a simpler
model without unrealistic assumption. At this level, we could not see any more than the
two following possible routes:
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1. One may use the assumption, classical in the boundary layer community, that the
profile is exponential of the type:

uBL(x, γ, t) = uBL∞(x, t)(1− exp(−γ)), (21)

which vanishes at γ = 0 (see (16)4). Such a dependence on x and γ is assumed to be
split, and this last assumption is very strong. Indeed, (20) may then be rewritten:

uBL∞
t (1− exp(−γ)) + uBL∞ uBL∞

x (1− exp(−γ))2

+ uBL∞ exp(−γ)uBL∞
x (γ + exp(−γ)− 1)− uBL∞

R
exp(−γ)

+ εηx + µ2
[
H(∂t + ū∂x)(v|εη) +H2/2(ūxt + ūūxx − ūxūx)

]
x
= O(µ4).

This equation simplifies to the following:

uBL∞
t + uBL∞ uBL∞

x + εηx + µ2
[
H(∂t + ū∂x)(v|εη) +H2/2(ūxt + ūūxx − ūx ūx)

]
x

= O(µ4) + O(γ e−γ). (22)

Therefore, this first idea gets rid of the second-order derivative that came from the
Laplacian. As a consequence, the viscosity is no longer taken into account and it is
a deadlock. The error is to assume that the two dependences (x and γ) are not tied
together. Therefore, we may not make such an assumption. The exact shape of the
(x, t) dependence in the Boussinesq approximation is given in [5] and recalled below.

2. One may assume the profile of the horizontal velocity in the boundary layer to be the
one proven in [5] that is a convolution in time mixing x and γ:

uBL(x, γ, t) =uEuler(x, z = εγ∞, t)− uEuler(x, εγ∞, .) ∗ L−1(e−
√

Rσγ)

+

√
R

2

∫ +∞

0
(uBL,0(x, γ′)− uEuler,0(x, z = εγ∞))

e−
R(γ′−γ)2

4t
√

πt
dγ′

−
√

R
2

∫ +∞

0
(uBL,0(x, γ′)− uEuler,0(x, z = εγ∞))

e
−R(γ′+γ)2

4t
√

πt
dγ′ + O(ε), (23)

where R is a constant, p is the dual variable of time t through Laplace transform L,
and σ is its only root with a nonnegative real part of p. However, the Boussinesq
assumptions are incompatible with the ones we would do here and such a function
would be untractable in Prandtl’s equation.

In the system (13) and (20), the v|εη term must be found from the Euler part. Owing
to Euler Equation (4)6, one knows v|εη = Ht + u|εηHx (see (14)). Finally, the system (in
H, ū, uBL) to which we are led is no better than

Hūt +Hūūx +HHx + (ū− uBL ∞)(Ht + (Hū)x)

+µ2
[
H2

2
(∂t + ū∂x)

2(H) +
H3

6
(ūxt + ūūxx − (ūx)

2)

]
x
= O

(
(uy|εη)x

µRe

)
+O

(
uyy/(µ2Re)

)
+ O(µ4)

uBL
t + uBL uBL

x − uBL
γ

∫ γ

0
uBL

x (γ′)dγ′ −
uBL

γ γ

R
+ εηx

+µ2
[
H(∂t + ū∂x)

2(H) +H2/2(ūxt + ūūxx − ūxūx)
]

x
= O(µ4)

uBL(γ = 0) = 0 and uBL →γ→+∞ uBL ∞.

(24)

It still depends on γ in addition to x, t and requires initial conditions in the whole
boundary layer (for all x and γ). We expected a one-dimensional in space and one dimen-
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sional in time two-field (ū and H) system as is classical for inviscid Boussinesq, viscous
Boussinesq [5], and inviscid Serre–Green–Naghdi [9,10,13]. Therefore, we could not reach
a reduced enough model.

The first equation of (24) is not surprising. It contains ūt and a third-order space
derivative ofH as in the inviscid SGN system [9,10]. All the terms are the same as in the
classical SGN system, apart from a coupling term depending on uBL∞. uBL∞ is the upper
boundary of the horizontal velocity in the boundary layer uBL which must satisfy a Prandtl
equation. When one takes viscosity into account from the Boussinesq system, one obtains
only two additional terms. One is a half derivative (in time), and the other depends on the
initial conditions in the boundary layer. In the nonlinear case we are currently studying,
we would have appreciated not having more complex terms. In (24)2, the coupling is
performed through uBL∞ and the resolution of a Prandtl equation. Thus, we do need the
initial condition in the boundary layer and the resolution of the Prandtl equation in that
layer. This is not the goal of the reduced model.

As was said above, in the closest case (the linear viscid case), (24)2 is a parabolic
heat-like equation on uBL. It may be solved explicitly, and it provides the uBL(x, γ, t)
given in (23) (see [5]). This uBL enables us to compute the vertical velocity vBL thanks to
(17). Then, writing its matching condition at the frontier of the boundary layer with the
vertical velocity computed in the Euler (inviscid) part provides a new condition. After
some computations, this last condition writes ηt + ūx + ū ūx . . . ! Therefore, the nonlinear
viscous case lags behind the linear viscous case and the derivation is currently blocked at
the Prandtl’s step. Would it be possible to further simplify such a coupled Prandtl system
similarly to the classical one? This is the main question left by the current study.

3. Conclusions

Our goal was to take viscosity and nonlinearity into account for a reduced model of
surface gravity waves. As is the case in inviscid fluids, we expected a model depending
on the reduced number of dimensions (1 + 1) so that it might be extended easily to the
2D case for numerical simulation purposes. We are stopped in our derivation, in the fully
nonlinear regime, at system (24) with initial conditions and 2+ 1 dimension. We would like
to stress that Equations (13) and (20) are still Galilean-invariant despite the presence of the
boundary layer. The proposed model enjoys this property because we did not introduce
any drastic simplifications yet at this level. To make further progress, the Prandtl-type
equation should be further simplified but it seems highly speculative. One strategy could
consist in assuming a particular profile of the velocity uBL in the coordinate γ similar to the
one computed in [5] in the Boussinesq regime, but it is incoherent in our present regime.
Further research is needed to reach an effective 1D model if possible.

Perspectives

First, one has to resolve the issues mentioned in the present manuscript. The present
work opens even more directions. For instance, a referee suggested that the no-slip bound-
ary condition could be relaxed to a slip condition. As the next step, we shall test this
relaxation in the Boussinesq regime first, before trying to transpose it to the fully nonlinear
models.
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Nomenclature

O The origin of the chosen Cartesian coordinate system.
x Horizontal Cartesian coordinate.
∂x The partial derivative with respect to x.
y Vertical Cartesian coordinate.
γ Scaled vertical variable.
γ∞ Upper limit of the boundary layer.
t Time variable.
∂t The partial derivative with respect to t.
d Undisturbed water depth.
ρ Constant fluid density.
g Gravity acceleration.
ν The fluid kinematic viscosity.
n The outer unit normal to the free surface.
` Characteristic horizontal length.
A Typical wave amplitude.
η Free surface elevation above the undisturbed water level.
H The total water depth.
Ω The inviscid fluid domain.
c0 Line velocity of infinitely long gravity waves.
u Fluid particle horizontal velocity.
uEuler The same as above.
ū The depth-averaged horizontal velocity.
ũ The deviation of the horizontal velocity from its depth-averaged profile.
uBL The horizontal velocity in the boundary layer.
vBL The vertical velocity in the boundary layer.
uBL∞ The horizontal velocity limit when we approach the boundary layer boundary from the bottom.
v The fluid particle vertical velocity.
p The fluid pressure.
pBL The fluid pressure in the boundary layer.
Re The dimensionless Reynolds number.
ε The dimensionless nonlinearity parameter.
µ2 The dimensionless dispersion parameter.
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