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Abstract: We present theoretical and computational results in magnetohydrodynamic turbulence that
we feel are essential to understanding the geodynamo. These results are based on a mathematical
model that focuses on magnetohydrodynamic (MHD) turbulence, but ignores compressibility and
thermal effects, as well as imposing model-dependent boundary conditions. A principal finding
is that when a turbulent magnetofluid is in quasi-equilibrium, the magnetic energy in the internal
dipole component is equal to the magnetic helicity multiplied by the dipole wavenumber. In the
case of the Earth, measurement of the exterior magnetic field gives us, through boundary conditions,
the internal poloidal magnetic field. The connection between magnetic helicity and dipole field in
the liquid core then gives us the toroidal part of the internal dipole field and a model value of 3 mT
for the average core dipole magnetic field. Here, we present the theoretical analysis and numerical
simulations that lead to these conclusions. We also test an earlier assertion that differential oblateness
may be related to dipole alignment, and while there is an effect, rotation appears to be far more
important. In addition, the relationship between dipole quasi-stationarity, broken ergodicity and
broken symmetry is clarified. Lastly, we discuss how inertial waves in a rotating magnetofluid can
affect dipole alignment.

Keywords: dynamo; magnetohydrodynamics; statistical mechanics; turbulence

1. Introduction

Explaining the origin of planetary and stellar magnetic fields has been a scientific
quest since Larmor [1] hypothesized that magnetohydrodynamic (MHD) motions within
the Sun, and by extension, the Earth, were responsible for the creation and maintenance of
global magnetic fields. Numerical simulations of the geodynamo [2–4] have established
that MHD processes within the Earth are capable of creating magnetic fields similar to the
actual geomagnetic field, including reversals of the dominant dipole component.

However successful these numerical simulations were in proving the MHD nature
of the geodynamo, the fundamental origin of the dominant, quasi-steady geomagnetic
dipole field still remained a mystery [5]. In previous work, we showed that extending
the statistical mechanics of ideal MHD turbulence opened the door to understanding
the fundamental origin of the geodynamo [6,7] and then demonstrated that these ideal
results appeared to apply to real (i.e., forced and dissipative) MHD turbulence [8,9]. In
Reference [9], we put forward the hypothesis that differences in the oblateness of the outer
and inner boundaries of a spheroidal shell could cause dipole alignment. In the present
work, we studied the analogue of this with a Fourier model by using stretching-shrinking
factors qx, qy, and qz (qmin is the smallest and qmax the largest of these factors). These factors
change the relative lengths of the x-, y- and z-directions in both x-space and k-space, as will
be described in Section 3.3.

We use a Fourier model as a surrogate for a spherical model because the statistical me-
chanics of ideal, rotating MHD turbulence are equivalent in the two cases [7]. Both models
are based on the MHD equations transformed from physical, or x-space, to a dynamical
system of interacting modes in k-space. In either x- or k-space, there is no imposed magnetic
field; only overall rotation is imposed. Here, the magnetic field is dynamically generated
by MHD turbulence.
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We find, in both Fourier and spherical cases, that the largest-scale (smallest wavenum-
ber k) magnetic field modes are very energetic and quasi-steady, i.e., random variables with
large mean values subject to only very small fluctuations. The explanation of this is that
there is a broken ergodicity: we expected all modes to be fluctuating zero-mean random
variables and they mostly are—except for certain largest-scale modes, which will have a
very large mean and comparatively very small fluctuations [6]. (Not all of the smallest-k
modes need to have the same value—there is a dynamically broken symmetry.) The only
requirement for this to occur is that the system have a non-zero magnetic helicity HM.
In the case of ideal rotating MHD turbulence, HM is an integral invariant, along with the
energy E. In the forced, dissipative, quasi-equilibrium case, driven so that it has a large,
relatively constant HM, behavior is equivalent in that a largest-scale, quasi-steady ‘dipole’
component arises [8,9]. Although the Fourier and spherical models have equivalent ideal
statistical mechanics and dynamical evolution in k-space, they appear, of course, very
different and are not comparable in x-space, where the largest-scale mode in a periodic
box has a sinusoidal shape, while in the spherical case it is a spherical harmonic dipole.
(At times, we will refer to the largest-scale mode in the Fourier model as the ‘dipole’,
although this is meant figuratively and not meant to imply that the x-space structures are
similar, only that the corresponding modes in k-space are equivalent).

The smallest wavenumber k magnetic field quasi-steady mode (or modes) may be
thought of as a ‘mean field’, but it is not the mean field that is assumed to exist in ‘mean
field electrodynamics’ (MFE) [10]. The a priori MFE mean-field is introduced by altering
the magnetic field evolution equation, thereby changing the fundamental nature of the
MHD equations; the result is the MFE equations. Instead, basing our work on the MHD
equations, we see that a quasi-steady, largest-scale component of the magnetic field emerges
dynamically and has an explanation by a statistical mechanics with broken ergodicity and
broken symmetry, as will be discussed at length in this paper. Thus, a ‘mean field’ emerges
from MHD turbulence, per se, and there is no need to impose one a priori.

Let us add that the interesting question of geomagnetic reversals is not addressed here.
This presumably depends on the equilibrium of an existing geomagnetic dipole orientation
being destabilized by unseen processes in the Earth’s interior or by some natural bi-stability.
Here, we are only concerned with a system that is in a state of equilibrium or quasi-
equilibrium and important questions as to the cause of reversals are beyond the scope of
this paper.

Our principal result is that without magnetic helicity there is no dipole field. Thus,
if the Earth has a dipole field, we require that it have magnetic helicity. In fact, by mea-
suring the strength of the Earth’s external dipole magnetic field and by mapping this
mathematically onto the core-mantle boundary, we can estimate the value of the magnetic
helicity in the core.

This principal result and all of the related results, we believe, further enhance the
view that magnetic helicity and MHD turbulence play essential roles in understanding the
fundamental cause of the geodynamo (and perhaps other astrophysical dynamos [11,12]).
Next, we briefly review our numerical method, then summarize our new theoretical and
computational results, followed by detailed explanations of how they were found.

2. Numerical Procedure

A Fourier spectral transform method [13] on an N3 grid with N = 64 is used; the min-
imum wave number is k = qmin and the maximum wave number is k = 30.2qmax.
Time-integration is performed with a third-order Adams Bashforth–Adams Moulton
method [14] with a time-step of ∆t = 0.001; initial magnetic and kinetic energy spec-
tra are EM(k) ∼ EK(k) ∼ k4 exp(−k2/k2

o), where ko = 6. Viscosity and magnetic diffusivity
are set to zero so that the flow is ideal. (A grid size of 643 was used so that the ten runs of
Table 1 could be completed in a reasonable amount of time with the resources available,
an 8-core Linux computer, each core running at ∼ 8 s/∆t). The integral invariants of ideal
MHD turbulence are the volume-averaged energy E and magnetic helicity HM, as well as
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the cross helicity HC when there is no rotation. The ideal invariants changed less than 0.1%
during the runs of Table 1, while the kinetic helicity HK, though it is an ideal invariant for
hydrodynamic turbulence, fell to zero very quickly and had small fluctuations about that
value. Further details concerning mathematical modeling and numerical procedure may
be found in [6,8,9].

Table 1. Parameters for new ideal MHD turbulence runs, which all had the same constant energy E = 1, with less than
0.1% change during a run. The magnetic helicityHM andHC are given below and also changed less than 0.1%, except in
the runs with Ωo 6= 0, where HC fell quickly to ∼0 and fluctuated only slightly thereabout. The runs with cubical grids
(qx = qy = qz = 1) begin with the letter C and those with stretched grids with the letter S. Simulation times were t = 0 to
tend, with ∆t = 0.001. The angular rotation vector of each run is Ωo, while the stretching factors are qx, qy and qz for k-space
(and the inverse of these for x-space). R is the average of the ratios R = Ed

M/k|HM|, which are themselves averages over the
last 20% of each run.

Run: C0 CX CY CZ S10 S20 S30 S1X S1Y S1Z

tend: 500 400 400 400 500 500 500 400 400 400
qx: 1 1 1 1 0.95 1 1

0.95 0.95 0.95 0.95
qy: 1 1 1 1 1

0.95 0.95 1 1
0.95

1
0.95

1
0.95

qz: 1 1 1 1 1 1
0.95 0.95 1 1 1

Ωo: 0 10x̂ 10ŷ 10ẑ 0 0 0 10x̂ 10ŷ 10ẑ
HM 0.1270 0.1307 0.1307 0.1269 0.1271 0.1266 0.1271 0.1271 0.1271 0.1271
HC 0.0590 0 0 0 0.0589 0.0588 0.0592 0 0 0

R: 0.989 0.955 0.967 0.975 1.001 1.000 1.046 0.982 1.072 1.017

3. Summary of Results

Here, we present a brief summary of the major results to be detailed later in this
paper. In what follows, both a Fourier model (periodic box) [9] and a spherical harmonic
model (spherical shell) are employed, with the Fourier model serving numerically as a
surrogate for the spherical harmonic model. While the periodic box is a 3-torus with
no boundaries, the spherical shell model [7] has homogeneous boundary conditions, i.e.,
the normal components of all fields are zero on the spherical surfaces bounding the internal,
turbulent magnetofluid; these boundary conditions were introduced by [15]. Here, these
boundaries are not coincident with the Earth’s outer or inner core boundaries (whose
precise topography is not well known, anyhow), but are set conceptually inside of them a
short distance away at the top of each laminar boundary layer; at the core-mantle boundary
(CMB), this laminar layer is estimated to be ∼160 m thick [16] or about 0.07% of the
thickness of the outer core. It is within this laminar boundary layer that the magnetic field
gains a radial component, eventually becoming the external magnetic field. The external
field is connected to the internal, turbulent magnetic field by assuming tangential continuity
at the model’s upper boundary. This view of magnetic structure appears to be reflected in
Figure 1 of Reference [2]. The efficacy of this model is discussed in Section 3.2, below.

Please note that what is meant by the ‘dipole part’ of a Fourier expansion is comprised
of those coefficients that have the smallest wavenumbers. In addition, in regard to the
magnetic field, the Fourier coefficients that have positive magnetic helicity are b̃+(k) and
those with negative magnetic helicity are b̃−(k); similarly, the Fourier coefficients that
have positive kinetic helicity are ũ+(k) and those with negative kinetic helicity are ũ−(k).
The set of coefficients with the same wavevector k will be called a ‘Fourier mode’ and the
mode k and the mode −k are not independent because, for example, b̃+(k) = b̃∗+(−k);
coefficients can have the same wavenumber k = |k| and there are no coefficients with k = 0.
The number of independent modes for k ≤ k ≤ k isM; in our simulations, N = 64 and
M = 57,656. In what follows, for definiteness, we choose the global magnetic helicityHM
to be positive. The integral invariants of ideal MHD turbulence are, again, the energy E
and magnetic helicity HM, as well as the cross helicity HC when there is no rotation; these
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are all volume-averaged quantities as described in Section 5, as are the magnetic energy
EM, kinetic energy EK and related quantities.

3.1. Magnetic Dipole Energy and Magnetic Helicity

The energy in the dipole part of the magnetic field generated by MHD turbulence is
equal to the absolute value of the magnetic helicity multiplied by the smallest wavenumber.
This result was implicit in our previous formulations [6,7], but further analysis, discussed
in more detail in Section 9, reveals that

E d
M = k|HM|. (1)

Here, E d
M is the expectation value

〈
Ed

M

〉
of the dipole magnetic energy and the ex-

pectation value of the magnetic helicity is 〈HM〉 = HM, whereHM is a constant for ideal
MHD turbulence; expectation values are defined in Section 6. As discussed in Section 4.2,
the smallest possible wavenumber is k and is associated with the dipole, while the corre-
sponding wavevector is k (in the symmetric case, there are three of them).

The result (1) has been tested on ten new ideal MHD turbulence Fourier method
simulations of Table 1, as well as ten real (forced, dissipative) simulations, drawn from [9]
that are given in Table 2. Let us denote the ratio of the right and left sides of (1) as
R = E d

M/k|HM|. Averaging R over the last 20% of each run gives a value R for each run,
and then averaging the averages R gives us a mean Ravg and standard deviation Rstd for
each of Tables 1 and 2. Using the notation R = Ravg ± Rstd, for the ten runs in Table 1,
R = 1.000± 0.036 and for the ten runs in Table 2,R = 0.998± 0.041. The significance of
Table 2 (real MHD turbulence) is that the values of R are commensurate with those found
in Table 1 (ideal MHD turbulence), i.e., real and ideal MHD turbulence behave similarly
with regard to the theoretical prediction (1).

Table 2. Forced, dissipative MHD turbulence runs of [9]. Time step was ∆t = 0.001 and simulation times were t = 0 to 2500
for the first seven, and t = 2500 to 3500 for the last three. The angular rotation vector of each run is Ωo, while the stretching
factors were all qx = qy = qz = 1. R is the average of R = Ed

M/k|HM|, which are themselves averages over the last 20% of
each run.

Run: NM01 NM02 NM03 NM04 NM05 NM06 NM07 NM02c NM06c NM08c

Eavg: 1.0151 1.0644 1.0486 1.0782 1.0404 1.0183 0.9982 1.0427 1.0462 0.9992
Havg

M : 0.6251 0.6947 0.8049 0.7119 0.6513 0.6179 0.7118 0.8461 0.8491 0.7079
Havg

C : 0.0163 0.0011 −0.0068 −0.0020 −0.0000 −0.0055 −0.0001 −0.0202 0.0059 0.0133
Ωo: 0 0 0 0 10ẑ 10ẑ 10ẑ 0 10ẑ 10ẑ

R: 1.020 0.997 0.977 0.950 0.918 1.059 0.988 1.000 1.015 1.038

The prediction (1) can be visually verified, as seen in Figures 1 and 2, where the
lowest-wavenumber positive magnetic helicity coefficients b̃+(k) are normalized by N3/2

(since the expectation value of any coefficient’s energy is
〈
|b̃±(k)|2

〉
/N3 or

〈
|ũ±(k)|2

〉
/N3,

where N3 is the grid size) and by HM in accordance with (1); if all dipole coefficients
had equal energies, their doubly normalized magnitudes would be 1/

√
3 and if one of

these coefficients had all the energy predicted by (1), its magnitude would be unity. Thus,
the theoretical prediction (1) appears to be well confirmed through the Fourier method
(periodic box) numerical simulations of both ideal and real MHD turbulence.
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k = 1.0ŷ
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Figure 1. Wavenumber k ≈ 1, positive helicity magnetic variables, normalized: b̂+(k) = b̃+(k)/
√

N3|HM|, for runs (a) C0,
(b) S10, (c) S20, (d) S30 of Table 1. These trajectories all began close to the origin. The behavior of the b̃+(k), k = kzẑ in these
graphs illustrates the influence of initial conditions and the presence of broken symmetry, e.g., in (a), where all the qj = 1,
the expectation that all of the b̃+(k) have the same magnitudes, which is represented by the dashed circular arc, is not met.
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k = 1
0.95ŷ

Figure 2. Wavenumber k ≈ 1, positive helicity magnetic variables, normalized: b̂+(k) = b̃+(k)/
√

N3|HM|, for runs (a) S10,
(b) S1X, (c) S1Y, (d) S1Z of Table 1. Comparing these figures with those in Figure 1, it is clear that rotation is more important
than oblation (at least for the large value Ωo = 10).

In addition to the energy E d
M contained in the dipole modes of the magnetic field, given

by (1), the rest of the magnetic field has an energy E h
M (‘h’ stands for higher-wavenumber,

non-dipole positive magnetic helicity components, as well as all negative magnetic helicity
ones), while the velocity field has kinetic energy EK; the total energy is E = E d

M + E h
M + EK.

In addition to (1), we find
E h

M = EK = 1
2 (E − k|HM|). (2)

The essential result (2), along with (1), is discussed in Section 9. Using (1) and (2), we
clearly have E = E d

M + E h
M + EK.

Next, we discuss the application of the principal result (1) to the Earth’s outer core. We
use the spherical shell model of [7] and assume that ideal results are qualitatively applicable
to the low-wavenumber (large length-scale) behavior of a real turbulent magnetofluid.
This assumption was tested previously numerically on a Fourier model and seen to be a
fairly good one at low wavenumber [9]. Forced, dissipative MHD turbulence behaves very
similarly to ideal MHD turbulence at the largest wavelengths and important measures
of MHD turbulence are commensurate, as application of the ideal result (1) to forced,
dissipative numerical data shows us in Table 2.

3.2. Knowledge of the Internal Toroidal Field

The Fourier model examines MHD turbulence in a periodic box, for which there is no
‘outside’ but only an ‘inside’. Thus, the results above are pertinent to the flow interior to
the Earth’s fluid (outer) core. We have considered MHD turbulence in the outer core by
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developing a spherical shell model that uses spherical Bessel function-spherical harmonic
expansions and have found that the statistical theory of ideal MHD turbulence developed
for the Fourier model system also applies to this case [7]. In this spherical shell model,
there are poloidal almn and toroidal blmn magnetic field coefficients, and it is the poloidal
coefficients almn that can be matched to the Gauss coefficients gm

l and hm
l at the outer

boundary of the numerical model. The toroidal coefficients blmn are internal to the outer
core and it had long been assumed that these were unknowable. However, consider the
following results.

A turbulent magnetofluid in the rotating spherical shell model of [7] has the ideal
invariants energy E , where E = EM + EK, and magnetic helicity HM. In that model,
the magnetic energy EM and helicityHM are given by

EM = 1
2 ∑

l,m,n

(
|blmn|2 + k2

ln|almn|2
)

, (3)

HM = ∑
l,m,n

a∗lmnblmn. (4)

The indices l and m are the degree and order of a spherical harmonic Ym
l (θ, φ), and n

denotes the nth zero kln of ĝl(klnr) at r = 1, where ĝl(klnr) is a linear combination of
spherical Bessel and Neumann functions. Please see [7] for more details; in that paper,
the smallest spherical shell dimensionless wavenumber for an Earth-like model is k =
k11
∼= 1.8638 (the next smallest wavenumber is k21

∼= 2.1497). The spherical shell version of
(1) is

E d
M = k11|HM|. (5)

The geomagnetic field is measured at the surface out to spherical harmonic degree
l = 13 [17], where about 93% of the magnetic energy at the Earth’s surface is in the dipole,
l = 1. However, at the CMB, only about 38% of its magnetic energy is locked up in the
dipole l = 1 components; this percentage is probably high, as there is presumably more
energy that is unaccounted for in the l > 13 components. The dipole’s Gauss coefficients
gm

1 and hm
1 given by [17] indicate that 97% of the dipole’s energy is held by g0

1, so the dipole
moment is closely aligned with the rotation axis.

Theoretically, we expect that the components a1m1 and b1m1 that have the smallest
wave number k = k11 contribute most toHM in (4) [7]. Truncating the summations (3) and
(4) to the l = 1 and n = 1 terms and setting |HM| = +HM, forHM > 0, we have

1

∑
m=−1

(b1m1 − k11a1m1)
2 = 0. (6)

Therefore, if we know the major part of the poloidal dipole magnetic field, then we
also know the major part of the toroidal dipole field:

b1m1 = k11a1m1. (7)

Note that, if we had set |HM| = −HM, the result would be b1m1 = −k11a1m1.
The important point here is that because we can relate the coefficients a1m1 to the

Gauss coefficients gm
1 and hm

1 through the boundary conditions, we know both the poloidal
coefficients a1m1 and, through (7), the toroidal coefficients b1m1 in the outer core. Using the
results in References [7,17], we find, withHM > 0,

b101 = k11a101 = 2Cg0
1, b111 = k11a111 = −C(g1

1 − ih1
1). (8)

Formulas in Reference [7] tell us that the conversion factor is C ∼= 19.5 for degree l = 1,
leading to an estimated mean value of the dipole magnetic field in the outer core of 3.02 mT,
or 11.7 times that of average geomagnetic dipole field at the CMB, which is 0.259 mT,
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based on the 2015 International Geomagnetic Reference Field (IGRF) coefficients [17].
Although the value of 3.02 mT comes from a model with homogeneous boundary con-
ditions [7], the model appears to have some robustness because 3.02 mT is compatible
with the value of 2.5 mT estimated by [18] as the mean strength of the total magnetic field
in the Earth’s outer core. In addition, the IGRF data tells us that E d

M = 45.7 J/m3 and
HM = 24.5 J/m2.

In the case of the dipole, l = 1, using k11 is appropriate because it is the minimum
wavenumber k of the spherical shell model. However, for estimating higher multipole
(l ≥ 2) field strengths, it is unclear which wavenumber kln, or even how many, to use
because the IGRF field components are indexed by degree l and order m, and, in the
spherical shell model of [7], there are many wavenumbers kln associated with each spherical
harmonic degree l, but, at present, no obvious procedure for picking out which ones
are important.

3.3. Differential Oblateness vs. Rotation in Dipole Alignment

In Reference [9], we put forward the idea that a greater oblateness of the inner core
boundary (ICB) with respect to the CMB in the z-direction might influence dipole alignment.
In the Fourier case, the analogy is that the periodic box would be stretched in the z-direction
compared to the x- and y-directions in x-space; in k-space, this would entail a shrinking in
the kz-direction compared to the kx and ky-directions (or some permutation of this). Thus,
k j → qjk j, j = x, y, z, while x → x/qx, y → y/qy and z → z/qz. A number of runs were
performed, using various values of qx, qy and qz, with qxqyqz = 1, as Table 1 shows. In a
numerical simulation with HM > 0, the effect of making one of the qj smaller than the
others is to give the positive magnetic helicity Fourier coefficient, say b̃+(qxx̂) with smallest
wave number k = qx = qmin, more energy than it would have if all the qj = 1; the reason
for this is discussed in Section 8.

Let us again compare the evolution of the b̃+(k, t), qmin ≤ k ≤ qmax, for the four
runs C0, S10, S20, and S30 of Table 1. This comparison is made using the trajectories
shown in Figure 1, where we plot the real vs. imaginary parts of the doubly normalized
b̃+(k, t). In Figure 1, we see that, when the smallest wavevector is in the (b) x-, (c) y-
or (d) z-directions, it induces an increase in the magnitude of the corresponding b̃+(k, t)
compared to (a), where all qj = 1. Although it was initially assumed that all coefficients
would be zero-mean random variables [19,20], we clearly see ‘broken ergodicity,’ a concept
defined by [21]. Broken ergodicity in MHD turbulence was first noted by [22]; in Figure 1,
the phenomenon of ‘broken symmetry’ [23] also appears, in that nonlinear evolution can
lead to a lack of equipartition even in the qx = qy = qz = 1 run C0.

Next, consider Figure 2 where (a) pertains to reference run S10 and Figure 2b–d, which
pertain to three runs whose parameters in Table 1 are the same as run S10, except that they
have an imposed rotation: in Figure 2b, S1X has Ωo = 10x̂, in (c), S1Y has Ωo = 10ŷ and
in (d), S1Z has Ωo = 10ẑ. Figure 2 shows that the effect of rotation overrides the effect of
differential oblateness. The low-wavenumber, positive magnetic helicity coefficients b̃+(k)
with k parallel to Ωo develop much greater magnitude than those with k perpendicular to
Ωo. We discuss a possible reason for this in Section 3.5 below.

3.4. Broken Ergodicity and Broken Symmetry

Figures 1 and 2 show that the dipole components b̃+(k) exhibit quasi-stationarity,
i.e., coherent structure due to broken ergodicity and broken symmetry. We discuss these
phenomena in greater detail in Section 10. We believe we have a clearer understanding of
their relationship and wish to summarize this here.

Assume qx = qy = qz = 1 and define a vector ṽd in a 3D complex space by

ṽT
d = N−3/2[b̃+(x̂) b̃+(ŷ) b̃+(ẑ)

]
(9)
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This has the dot product |ṽd|2 = ṽ†
d ṽd = |HM|. At least one of the components of

ṽd will have a large mean value of magnitude ∼
√
|HM| that is much larger than the

fluctuations it experiences, which are O
(
M−1/2

)
. The ‘dipole vector’ ṽd will thus evolve

to become quasi-stationary and, while the expectation value 〈ṽd〉 is zero, the time-average
of ṽd is almost constant and has a magnitude ∼M1/2 greater than its standard deviation,
as is seen in Figure 1. This is the origin of broken ergodicity.

The phase space of independent Fourier components can also be subject to an arbitrary
unitary transformation. While the choice of a particular set of initial conditions leads to a
specific direction for the quasi-stationary vector ṽd, a unitary transformation can be made
so as to point it in any direction we chose: The canonical ensemble represents all directions,
which average to zero, but the dynamical system can only evolve so that ṽd points in one
direction. This is the origin of broken symmetry.

Rotation, however, induces dipole alignment, though the reason why is not yet
completely clear.

3.5. Rotation and Dipole Alignment

As mentioned above and shown in Figure 1, differential oblateness can cause align-
ment, but, as shown in Figure 2, rotation appears to be the absolute controlling factor.
The rotation vector Ωo enters explicitly into the basic equations only in the velocity Equa-
tion (10) and not in the magnetic induction Equation (11). However, it does enter into the
magnetic induction equation implicitly through the electromotive field E = −u×b because
of the hydrodynamic inertial waves present in the velocity field u of a rotating system.
While our discussion here will be brief, inertial waves, both Alfvén and hydrodynamic,
are well known to be important in planetary cores, as discussed in detail by [24] and [25],
respectively.

Here, we examine the inertial wave effects in the context of our Fourier model system.
Since inertial waves may introduce a sinusoidal time variation into the electromotive field,
the evolution of some of the Fourier magnetic dipole modes can be influenced: if Ωo = Ωoẑ,
then b̃+(x̂) and b̃+(ŷ) are strongly affected, while b̃+(ẑ) is not affected at all, to leading
order inM1/2. A qualitative appraisal is given more detail in Section 11.

4. Mathematical Model
4.1. Basic Equations

The non-dimensional form of the 3D incompressible MHD equations in a rotating
frame of reference with constant angular velocity Ωo can be written as

∂ω

∂t
= ∇× [u× (ω + 2Ωo) + j× b] + ν∇2ω, (10)

∂b
∂t

= ∇× [u× b] + η∇2b. (11)

These are described, for example, by References [26,27]. Here, u(x, t) and b(x, t) are
the turbulent velocity and magnetic fields, respectively. The velocity and magnetic fields
are solenoidal: ∇ · u = ∇ · b = 0, as are the vorticity ω(x, t) and electric current density
j(x, t), defined by

ω = ∇× u, j = ∇× b. (12)

Non-dimensional density does not appear in (10) because it equals unity. The symbols
ν in (10) and η in (11) are shorthand for 1/RE and 1/RM, i.e., the inverses of the kinetic
and magnetic Reynolds numbers, respectively. In the dimensional form of the equations,
ν is the kinematic viscosity, while η is the magnetic diffusivity; ν = η = 0 for ideal
MHD turbulence.
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4.2. Fourier Representation

Discrete Fourier transforms for u and b, connecting x-space (with vectors x) to k-space
(with vectors k), are [

u(x, t)
b(x, t)

]
= ∑

k

[
ũ(k, t)
b̃(k, t)

]
exp(ix · k)

N3/2 , (13)

[
ũ(k, t)
b̃(k, t)

]
= ∑

x

[
u(x, t)
b(x, t)

]
exp(−ix · k)

N3/2 . (14)

Here, N is the number of grid points in each x-space dimension. Note that the reality
of u(x, t) and b(x, t) imply that ũ(k, t) = ũ∗(−k, t) and b̃(k, t) = b̃∗(−k, t).

Although the periodic box of the model system is usually taken to be a cube, here we
will allow for the possibility that it might be elongated or compressed differently in the
x-, y-, and z-directions; this simulates the difference in oblateness that may occur in the
Earth’s inner and outer cores and might have dynamical importance [9]. To accomplish
this elongation or compression, we define x and k by

x = xx̂ + yŷ + zẑ =
2π

N

(
nx

qx
x̂ +

ny

qy
ŷ +

nz

qz
ẑ
)

, (15)

k = kxx̂ + kyŷ + kzẑ = qxmxx̂ + qymyŷ + qzmzẑ. (16)

The components nj and mj, j = x, y, z, are integers. The nj satisfy 0 ≤ nj < N, while
the integers mj lie in the range −N/2 + 1 and +N/2; thus, there are N3 points in both
spaces. No matter what the parameters qj > 0 are, the dot product k · x in Equations (13)
and (14) is then always

k · x =
2π

N
(
nxmx + nymy + nzmz

)
. (17)

The Fourier transforms (13) and (14) are thus unaffected by the parameters qj, j = x, y, z.
Here, we will choose qxqyqz = 1 so that the volume of the periodic box does not change
even when any of the qj 6= 1.

For computational purposes, we define the following vectors with integer components
defined above:

n = nxx̂ + nyŷ + nzẑ, m = mxx̂ + myŷ + mzẑ. (18)

The Fourier coefficients ũ(k, t) and b̃(k, t) are nonzero only for 1 ≤ |m| ≤ M < N/2.
The exact value of M is set by a de-aliasing requirement of [28]: M2 is the largest integer
such that M2 ≤ 2N2/9. (Note: Although we will use k as the magnitude of k, we will not
use n as the magnitude of n, nor m as the magnitude of m because we will use n and m as
general indices that appear in various mathematical terms).

Let qmin equal the smallest of qx, qy, and qz, and let qmax be the largest; then, the largest
length-scale corresponds to smallest wavenumber k = qmin, associated with k = k, and the
smallest length-scale to then largest wavenumber k = qmax M, associated with k = k.
Dynamically interacting coefficients fit within a sphere in m-space (ellipsoid in k-space);
all coefficients outside this m-sphere, as well as at m = 0, are initially zero and remain
so during any numerical simulation. Since ũ(k, t) = ũ∗(−k, t) and b̃(k, t) = b̃∗(−k, t),
only half of the m that satisfy 1 ≤ |m| ≤ M identify independent coefficients. Therefore,
the number of independent modes k isM ∼= 2πM3/3; here, for N = 64, M ∼= 57,515,
while the actual numerical count isM = 57,656.

In k-space, the requirements ∇ · u = ∇ · b = 0 become ik · ũ(k, t) = ik · b̃(k, t) = 0.
Thus, ũ(k, t) and b̃(k, t) have two independent complex vector coefficients each, which
can be defined as follows: First, determine a coordinate system for each k by starting with
a unit vector ê3(k) = k/k = k̂; then choosing a unit vector ê1(k) orthogonal to ê3(k),
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and then the remaining unit vector ê2(k) is a vector product of the first two, forming a
right-handed orthonormal basis for each k:

ê1(k) · ê3(k) = 0, ê2(k) = ê3(k)× ê1(k),

êi(k) · êj(k) = δij, ê1(k) · ê2(k)× ê3(k) = 1.

(This is similar to a Craya–Herring decomposition [29]). Explicit choices [30] for any of the
êj(k) will be mentioned as needed.

In terms of the êj(k) defined above, the Fourier vector coefficients ũ(k) and b̃(k) are

ũ(k, t) = ũ1(k, t)ê1(k) + ũ2(k, t)ê2(k), (19)

b̃(k, t) = b̃1(k, t)ê1(k) + b̃2(k, t)ê2(k). (20)

However, an equivalent, but more efficacious helical representation can be used:

ũ(k, t) = ũ+(k, t)ê+(k) + ũ−(k, t)ê−(k), (21)

b̃(k, t) = b̃+(k, t)ê+(k) + b̃−(k, t)ê−(k). (22)

Here, the positive and negative helicity unit vectors and components are

ê±(k) =
1√
2
[ê1(k)± iê2(k)], (23)

ũ±(k, t) =
1√
2
[ũ1(k, t)∓ iũ2(k, t)], (24)

b̃±(k, t) =
1√
2

[
b̃1(k, t)∓ ib̃2(k, t)

]
. (25)

Note that ê∗±(k) = ê∓(k). The orthonormality properties of the ê±(k) are

ê±(k) · ê∗±(k) = 1, ê±(k) · ê±(k) = 0 = ê3(k) · ê±(k). (26)

An important property of the helical unit vectors concerns the curl operation:

ik× ê±(k) = ±kê±(k), (27)

The vorticity and current in helical form are then

ω̃(k, t) = k[ũ+(k, t)ê+(k)− ũ−(k, t)ê−(k)], (28)

j̃(k, t) = k[b̃+(k, t)ê+(k)− b̃−(k, t)ê−(k)]. (29)

Thus, the helical ± components of vorticity ω̃±(k, t) = ±kũ±(k, t) and current
j̃±(k, t) = ±kb̃±(k, t) are directly connected to velocity and magnetic field ± helical
components. The helical representation is very useful for theoretical analysis and graphical
presentation of numerical data, though numerical simulation is done using the non-helical
representation (19) and (20).
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4.3. A Dynamical System

The Fourier-transformed 3D MHD equations are found by placing expansions for
ω(x, t) and b(x, t) of the form (13) into (10) and (11). The result is a set of coupled, nonlinear
ordinary differential equations, i.e., the dynamical system

d ω̃(k, t)
dt

= S̃(u, ω; k, t) + S̃(j, b; k, t)

+2i(k ·Ωo) ũ(k, t)− νk2ω̃(k, t), (30)

d b̃(k, t)
dt

= S̃(u, b; k, t)− ηk2b̃(k, t). (31)

The nonlinear terms denoted by S̃ are vector convolutions:

S̃(u, b; k, t) =
i

N3/2 k× ∑
p+q=k

[
ũ(p, t)× b̃(q, t)

]
. (32)

The double summation in (32) is over all wavevectors p and q inside the truncation
volume in k-space that satisfy p + q = k. In our 3D numerical simulations, it is the Equa-
tions (30) and (31) that are integrated forward in time, with nonlinear terms such as (32)
being evaluated by fast Fourier transform (FFT) methods, as needed.

In what follows, we will, again, set ν = η = 0. The motivation for this comes from [9],
where it was seen to a good approximation that quasi-stationary, forced, dissipative MHD
turbulence behaves ideally at low-k where large-scale, coherent structure is manifested;
the ideal case allows us to avoid any idiosyncrasies due to the particular choice of forcing
procedure. When ν = η = 0, the dynamical systems (30) and (31) conserve energy and
magnetic helicity, and, if Ωo = 0, also cross helicity; these invariants will be discussed
in Section 5. However, Ωo 6= 0 for the Earth and most other planets, so that energy and
magnetic helicity are of primary interest.

If Equation (30) is linearized (with ν = 0), and remembering that ω̃±(k, t) = ±kũ±(k, t),
we have

d ũ±(k, t)
dt

= ±iΩkũ±(k, t), Ωk =
2
k

k ·Ωo. (33)

These linearized modes represent inertial waves with frequencies Ωk, so that ũ±(k, t) ∼
exp(±iΩkt). The corresponding periods are Tk = 2π/|Ωk| ≤ πk/Ωo; typically, these pe-
riods will be much less than total time over which the dynamical system (30) and (31)
evolves and is studied.

In a Fourier representation, x-space is modeled as a periodic box, i.e., a 3-torus.
However, a representation in terms of spherical Bessel functions and spherical harmonics
can also be formulated, if x-space is modeled as either a sphere [31] or as a more Earth-like
spherical shell [7]. This spherical shell representation provides a dynamical system similar
to (30) and (31), one with the same invariants as the Fourier case and the same statistical
mechanics. Thus, the Fourier model can serve as a surrogate for a spherical shell model,
enabling us to study the physics of the MHD turbulence, at least qualitatively, that exists in
the Earth’s outer core. At present, this is a necessity, since a transform method numerical
simulation based on such a spherical shell model is not available, although a non-transform
code intrinsically limited to an N ∼ 9 grid has been developed and used to study MHD
flows in a sphere [31,32]. However, this grid size is too small for our purposes, so we await
the development of a transform method code.
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5. Global Quantities

There are various important global quantities that can be expressed as averages over
either x-space or, equivalently, k-space. We define the volume average of a quantity Φ(x, t)
multiplied by a quantity Ψ(x, t) in a periodic box of side length 2π as {ΦΨ}, where

{ΦΨ} ≡ (2π)−3
∫

Φ(x, t)Ψ(x, t)d3x =
1

N3 ∑
k

Φ̃∗(k, t)Ψ̃(k, t). (34)

Then, the volume-averaged energy E, enstrophy Ω, mean-squared current J, cross
helicity HC, magnetic helicity HM and mean-squared vector potential A (the last two
defined in terms of the magnetic vector potential a, where ∇× a = b) are

EK = 1
2

{
u2
}

, EM = 1
2

{
b2
}

, Ω = 1
2

{
ω2
}

, J = 1
2

{
j2
}

, (35)

E = EK + EM, HC = 1
2{u · b}, HM = 1

2{a · b}, A = 1
2

{
a2
}

. (36)

Since all functions are periodic in x-space, we can use Equations (10) and (11), along
with integration by parts to derive the following relations [33]:

dE
dt

= −2(νΩ + η J), (37)

dHC
dt

= Ωo · {b× u} − 1
2 (ν + η){j ·ω}, (38)

dHM
dt

= −η{j · b}. (39)

When ν = η = 0 and Ωo = 0, the quantities E, HC, and HM are the traditional ideal
invariants of MHD turbulence [20,34,35]. If Ωo 6= 0, then (38) indicates that HC is no longer
an ideal invariant. If an external mean magnetic field Bo was imposed, then HM would
also no longer be an ideal invariant [33]; here, we will always have Bo ≡ 0. We note that
‘generalized helicities’ GC and GM related to HC and HM can be defined [36] and are ideal
invariants even in the presence of nonzero Bo and Ωo. However, we will only need to refer
to HC and HM in this paper.

Although kinetic helicity HK is not an ideal MHD invariant, it is an invariant of ideal
fluid turbulence [37]. Manipulating (10), we find that, for a periodic box, we have

dHK
dt

= {ω · j× b} − ν{∂iu · ∂iω}, HK = 1
2{u ·ω}. (40)

Note that HK and E are both conserved if b(x, t) ≡ 0 and ν = 0, i.e., in the case of
ideal hydrodynamic turbulence.

Since b = ∇× a, then b̃(k, t) = ik× ã(k, t). Using (19), (23) and (25), we see that

ã(k, t) =
i

k2 k× b̃(k, t) =
1
k
[
b̃+(k, t)ê+(k)− b̃−(k, t)ê−(k)

]
. (41)

Using this, energy E, cross helicity HC and magnetic helicity HM are represented in
k-space by the quadratic sums:
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E =
1

2N3 ∑
k

[
|ũ(k, t)|2 + |b̃(k, t)|2

]
, (42)

HC =
1

2N3 ∑
k

[
ũ+(k, t)b̃∗+(k, t) + ũ−(k, t)b̃∗−(k, t)

]
, (43)

HM =
1

2N3 ∑
k

1
k

[
|b̃+(k, t)|2 − |b̃−(k, t)|2

]
. (44)

In the ideal MHD case with either periodic or homogeneous b.c.s, E and HM are
invariants, as is HC when Ωo = 0, but other quantities, such as EK, EM, HK, Ω and J, as well
other functions of ũ(k, t) and b̃(k, t), will generally be time-dependent, particularly in
numerical simulations during the transition from initial conditions to an equilibrium state.

6. Statistical Mechanics

Here, we briefly discuss the statistical mechanics of ideal MHD turbulence. The
Equations (30) and (31) form a finite dynamical system with a phase space defined by the
independent real and imaginary components of ũ(k) and b̃(k), k ≤ k ≤ k; we denote that
these are coordinates in phase space and not dynamical variables by omitting t from the
arguments. If N = 64 and the number of independent k isM = 57,656, then the phase
space has 8M = 461,248 dimensions. As pointed out by [20], when ν = η = 0, the system
has a Liouville theorem and whose phase space Γ represents a canonical ensemble where
statistical properties depend on the constants of the motion. As just discussed, these
constants, also known as ideal invariants, are the energy E, the magnetic helicity HM and,
if Ωo = 0, the cross helicity HC.

The statistical mechanics of ideal MHD turbulence are based on a probability density
function of the form

D = Z−1 exp(−αE− βHC − γHM), (45)

Here, E, HC, and HM are given by (42), (43) and (44), respectively, and Z is the partition
function; in addition, β = 0 if Ωo 6= 0. [20] initiated this approach and explicitly considered
the dynamical system to be ergodic, an assumption that was unchallenged in the early work
on ideal MHD turbulence [19,38]. It was finally challenged by [22], when apparent non-
ergodicity was first noticed and reported, and confirmed later [39]. As already mentioned,
this non-ergodicity is actually ‘broken ergodicity’ [21]; again, a review of broken ergodicity
for ideal MHD turbulence is given by [6].

In the case of ideal MHD turbulence, expectation values of the various global quantities
in (35) and (36), as well as any other phase functions, can be determined with respect to
the probability density function (45). Expectation values are integrations over the phase
space Γ, i.e., for all possible values of the coordinates in Γ, which are the real and imaginary
parts of ũ±(k) and b̃±(k) (again, the t is omitted from the arguments because these are
coordinates and not dynamical variables). Given a quantity Q, the expectation value 〈Q〉 is
defined by

〈Q〉 ≡
∫

QDdΓ. (46)

As an example, the velocity and magnetic field coefficients are expected to have zero
mean values:

〈ũ(k)〉 =
〈
b̃(k)

〉
= 0. (47)

In the ideal case, the integral invariants E, HM, and possibly HC, should have time-
independent values E ,HM, andHC that are equal to their expectation values:

E = 〈E〉, HM = 〈HM〉, HC = 〈HC〉. (48)
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In fact, we require that (48) be true and use this to determine the ‘inverse temperatures’ α,
β and γ in (45). Whereas (47) is an ‘ergodic hypothesis,’ (48) is actually an a priori axiom
on which the theory of ideal MHD turbulence is based, though justified by a posteriori
numerical results. Ergodicity, or rather the lack of it, will be discussed in Section 10.

7. Eigenvariables and Entropy

Placing the k-space representation of E, HC and HM, as given in (42)–(44), into
the PDF (45) gives an expression that contains modal 4×4 Hermitian covariance matrices
in the argument of the exponential:

D = ∏
k′

D(k), D(k) =
exp

[
−ỹ†(k)Mkỹ(k)

]
Z(k)

. (49)

In ∏k′ , the notation k′ means that only independent modes k are included, i.e., if k is
included, then −k is not. Here, ỹ† = ỹ∗T is the Hermitian adjoint (T means transpose) of
the column vector ỹ, where

ỹ(k) = [ũ+(k) ũ−(k) b̃+(k) b̃−(k)]T (50)

The Hermitian (here, real, and symmetric) 4×4 covariance matrix Mk is

Mk =


α̂ 0 β̂/2 0
0 α̂ 0 β̂/2

β̂/2 0 α̂ + γ̂/k 0
0 β̂/2 0 α̂− γ̂/k

. (51)

The circumflex indicates division by N3: α̂ = α/N3, β̂ = β/N3 and γ̂ = γ/N3.
Although the Mk in (51) can also be expressed as 8 × 8 real symmetric matrices and

the ỹ(k) as 8 × 1 real arrays [19], finding eigenvalues and eigenvariables is facilitated by
using the 4 × 4 matrices Mk and 4 × 1 complex arrays ỹ, along with the properties of block
matrices given by [40].

The real, symmetric matrices Mk can be diagonalized (and more easily than the
Hermitian matrices used previously [6,30,41]) to yield the modal PDFs

D(k) =
4

∏
n=1

Dn(k), Dn(k) =
1

Zn(k)
exp

[
−λ̂

(n)
k |ṽn(k)|2

]
, Zn(k) =

π

λ̂
(n)
k

. (52)

The eigenvalues λ̂
(n)
k = λ

(n)
k /N3 are also written with a circumflex to indicate division

by N3, just as for α̂, β̂ and γ̂. Implicit in the form of Dn(k) given above is the transformation
ỹ(k) = Ukṽ(k), where Uk ∈ SU(4) is a unitary transformation matrix (see below). Explicitly,
ṽ(k) is

ṽ(k) = [ṽ1(k) ṽ2(k) ṽ3(k) ṽ4(k) ]T . (53)

The energy expectation values for the complex eigenvariables ṽn(k) is

En(k) = 〈ṽn(k)〉/N3 = 1/λ
(n)
k (54)

This energy contains equal contributions from the real and imaginary parts of ṽn(k).
The exact forms of the λ̂

(n)
k and ṽn(k) in terms of α̂, β̂ and γ̂ will be presented next.
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7.1. Eigenvariables

The eigenvariables ṽn(k) in (52) can be determined for ideal MHD turbulence through
a modal unitary transformation [6,7,30]. In the general case (nonrotating with zero mean
magnetic field), the form of the transformation U is

ṽ1(k) = +β̄ζ −k ũ−(k)− ζ +
k b̃−(k), (55)

ṽ2(k) = +β̄ζ −k ũ+(k) + ζ +
k b̃+(k), (56)

ṽ3(k) = +β̄ζ +
k ũ−(k) + ζ −k b̃−(k), (57)

ṽ4(k) = −β̄ζ +
k ũ+(k) + ζ −k b̃+(k). (58)

Above, β̄ = sgn β̂ with β̄ = 1 for β = 0; the functions ζ +
k (β̂, γ̂) and ζ −k (β̂, γ̂) are,

in terms of a third function η̂k(β̂, γ̂),

ζ ±k =
1√
2

√
1± γ̂

kη̂k
; η̂k =

√
β̂2 +

γ̂2

k2 . (59)

In terms of η̂k, as defined above, the eigenvalues λ̂
(n)
k (n = 1, 2, 3, 4) are

λ̂
(1)
k = α̂− 1

2 (η̂k + γ̂/k), λ̂
(2)
k = α̂ + 1

2 (η̂k + γ̂/k), (60)

λ̂
(3)
k = α̂ + 1

2 (η̂k − γ̂/k), λ̂
(4)
k = α̂− 1

2 (η̂k − γ̂/k). (61)

Although it appears that the eigenvalues given above are functions of the undeter-
mined quantities α̂, β̂, and γ̂, there is only one unknown to be determined: ϕ ≡ 〈EM〉.
Theory [6,30] tells us that

α̂ =
2$ϕ

ϕ(E − ϕ)−H2
C

, β̂ = −2
HC
ϕ

α̂, γ̂ = −2ϕ− E
HM

α̂. (62)

Here, $ =M/N3 ≈ 0.2194 and, again, α̂ = α/N3, β̂ = β/N3 and γ̂ = γ/N3. Basic
results of ideal MHD turbulence theory [6] are that α̂ > 0 and ϕ ≥ E/2; thus, in the
expression for γ̂, we have 2ϕ− E ≥ 0. Noting thatHC andHM are pseudoscalars, we see
that β̂ and γ̂ are also pseudoscalars and that β̂HC ≤ 0 and γ̂HM ≤ 0.

7.2. Entropy

We use (52) to find the entropy functional σ(ϕ) = −〈ln D〉/N3:

σ(ϕ) = 4ρ(1 + ln π)− 1
N3 ∑

k′
ln
[(

α̂2 − β̂2/4
)2
− α̂2γ̂2/k2

]
(63)

Above, the sum over k′ means, again, that only independent modes k are included (if
k, then not −k). The fact that there is only one unknown quantity ϕ in (62) means that the
entropy functional of the system is a function of only one variable. As discussed by [42],
finding the (single) minimum of σ(ϕ) gives us the value ϕ = ϕo that sets the values of α̂, β̂
and γ̂, as well as the system entropy s = σ(ϕo).

Both the non-rotating (Ωo = 0) and rotating cases (Ωo 6= 0), have γ̂ 6= 0, and the first
derivative of the entropy functional (63) with respect to ϕ is

dσ(ϕ)

dϕ
= σ′(ϕ) =

2
N3 F(ϕ)

[
G+(ϕ) + G−(ϕ)

]
(64)
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F(ϕ) =
ϕ3 −H2

C(3ϕ− E)
ϕ2
[
ϕ(E − ϕ)−H2

C
] > 0 (65)

G±(ϕ) = ∑
k′

k|HM| ± ϕ

k|HM|
(
1−H2

C/ϕ2
)
± (2ϕ− E)

(66)

Theory tells us that the denominators for the terms in G±(ϕ) are positive and also that
ϕ/|HM| ≥ k. For the Fourier case we are discussing here, k = qmin, and for the spherical
shell model of the outer core developed by [7], k ∼= 1.8638. We define a wavenumber
kM = ϕ/|HM|, so that kM ≥ k. For purposes of discussion, let us draw from examples
found in [9]: for run NM06, Eavg = 1.0183, Havg

M = 0.6179 and ϕo = 0.8181, so that
kM = 1.324, while, for run NM06c, Eavg = 1.0462, Havg

M = 0.8491 and ϕo = 0.9476, so that
kM = 1.1160; either could be used as a representative value. (The difference between runs
NM06 and NM06c is that the former had steady forcing and the latter had cyclic forcing).

The important point here is that dissipative, driven magnetofluids tend to have
k < kM <

√
2k. Defining m as the number of independent Fourier modes with smallest

wavenumber k = k, the summation G−(ϕ) can be broken up into the following:

G−(ϕ) = − m|HM|(kM − k)
k|HM|

(
1−H2

C/ϕ2
)
− (2ϕ− E)

(67)

+ ∑
|k′ |6=k

|HM|(k− kM)

k|HM|
(
1−H2

C/ϕ2
)
− (2ϕ− E)

Above, the first term on the right is negative, while all the rest are positive because
k > kM = ϕ/|HM| for k ≥

√
2k. (Even if kM >

√
2k, so that there were a few more negative

terms, the following development would still be valid.) In addition, all the terms in G+(ϕ)
are positive. In the limit thatM→ ∞,

lim
M→∞

G+(ϕ) =
M(

1−H2
C/ϕ2

)
(68)

lim
M→∞

G−(ϕ) =
M(

1−H2
C/ϕ2

) − m(ϕ− k|HM|)
k|HM|

(
1−H2

C/ϕ2
)
− (2ϕ− E)

Requiring σ′(ϕ) = 0 is equivalent to requiring that G+(ϕ) + G−(ϕ) = 0; from the
relations given above, we see that a small number m of negative terms (the “dipole” part,
corresponding to the smallest wavenumber, k = |k| = k) must balance a very large number
2M−m of positive terms. For a cubical periodic box (or a spherically symmetric shell),
m = 3 since the independent modes with k = k are k = x̂, ŷ, ẑ.

Putting the expressions in (68) into G+(ϕ) + G−(ϕ) = 0 leads to

m(ϕ− k|HM|)
k|HM|

(
1−H2

C/ϕ2
)
− (2ϕ− E)

∼=
2M(

1−H2
C/ϕ2

) . (69)

Defining the small quantity ε = m/2M, we get the cubic equation

(2 + ε)ϕ3 − [(1 + ε)k|HM|+ E ]ϕ2 − εH2
C ϕ + (1 + ε)k|HM|H2

C
∼= 0. (70)

We always have ϕ ≥ E/2, but, in the non-rotating case (Ωo = 0), we also have
0 ≤ H2

C ≤ ϕ(E − ϕ), so that (approximately) E/2 ≤ ϕ ≤ 1
2 (E + k|HM|) if k|HM| < E/2;

or k|HM| ≤ ϕ ≤ 1
2 (E + k|HM|) if k|HM| ≥ E/2.
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However, the rotating case (Ωo 6= 0) case applies to essentially all planets (and stars)
and, in this case, we haveHC = 0. SettingHC = 0 in (70) leads, to first order in ε = m/2M,

ϕo ∼= 1
2 (E + k|HM|)− 1

4 ε(E − k|HM|). (71)

This approximation is needed for theoretical development, but, when exactness is
required, ϕo is determined by numerically finding the minimum of σ(ϕ) corresponding to
E andHM for a given run, as well asHC if Ωo = 0.

From the expression (71) for ϕo ≡ 〈EM〉, we can also determine the expectation
value of the kinetic energy, 〈EK〉 = 〈E− EM〉 = E − ϕo, as well as of the difference
〈EM − EK〉 = 〈2EM − E〉 = 2ϕo − E :

E − ϕo ∼= 1
2 (1 + 1

2 ε)(E − k|HM|). (72)

2ϕo − E ∼= k|HM| − 1
2 ε(E − k|HM|). (73)

We will now use these results, assuming HM > 0, to show how the k = k positive
magnetic helicity eigenvariable ṽ4(k) has an energy expectation value of

〈
|ṽ4(k)|2

〉
/N3 ∼=

k|HM|/m, while all of the other eigenvariables have expected energies
〈
|ṽn(k)|2

〉
/N3 ∼

M−1. This will allow us to explain the large-scale coherent magnet structures (i.e., quasi-
stationary dipole fields) that spontaneously arise within a turbulent magnetofluid such as
is found in the Earth’s outer core.

8. Energy Expectation Values

In a rotating frame of reference, again, HC = 0 so that β̂ = 0, for which β̄ ≡ 1.
Assuming HM > 0, so that γ̂ < 1 and thus ζ +

k = 0 and ζ −k = 1, (55)–(58) become:

ṽ1(k) = ũ−(k), ṽ2(k) = ũ+(k),

(74)

ṽ3(k) = b̃−(k), ṽ4(k) = b̃+(k).

Remember that the dynamical variables ũ−(k, t) and ũ+(k, t) carry negative and
positive kinetic helicity, respectively, while b̃−(k, t) and b̃+(k, t) carry negative and positive
magnetic helicity, respectively.

In the limit that β̂→ 0, η̂k = |γ̂|/k and the eigenvariables are as given in (74), while
the eigenvalues (60)–(61) become

λ̂
(1)
k = λ̂

(2)
k = α̂, λ̂

(3)
k = α̂ + |γ̂|/k, λ̂

(4)
k = α̂− |γ̂|/k. (75)

In the rotating case, α̂ and γ̂ are determined by putting ϕ = ϕo from (71) into their
respective expression as given in (62) withHC = 0; the result is

α̂ =
2$

E − ϕo
, γ̂ = −2ϕo − E

HM
α̂. (76)

Using these expressions, along with (72), (73) and (75), gives us the unnormalized
eigenvalues λ

(n)
k , up to leading order:

λ
(1)
k = λ

(2)
k =

4M
E − k|HM|

, λ
(3)
k =

k + k
k

4M
E − k|HM|

, k ≥ 1; (77)

λ
(4)
1 =

m
k|HM|

, λ
(4)
k =

k− k
k

4M
E − k|HM|

, k > 1. (78)
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The eigenvariables have real (R) and imaginary (I) parts, i.e., ṽn(k) = ṽR
n (k) + iṽI

n(k),
n = 1, 2, 3, 4, each have the same eigenvalue λ

(n)
k . The associated energies of the real (R)

and imaginary (I) parts are〈
ER,I

n (k)
〉
=
〈
|ṽR,I

n (k)|2
〉

/N3 =
1

2λ
(n)
k

, (79)

〈En(k)〉 =
〈

ER
n (k) + EI

n(k)
〉
=

1

λ
(n)
k

. (80)

As defined in (74), the index n = 1 refers to negative and n = 2 to positive kinetic
helicity coefficients; similarly, the index n = 3 refers to negative and n = 4 to positive
magnetic helicity coefficients. The relations (77) and (78) tell us that the expected energies
with respect to helicity are

〈
E±K (k)

〉
= 〈E1,2(k)〉 =

E − k|HM|
4M , k ≥ k, (81)

〈
E−M(k)

〉
= 〈E3(k)〉 =

k
k + k

E − k|HM|
4M , k ≥ k, (82)

〈
E+

M(k)
〉

= 〈E4(k)〉 =
k

k− k
E − k|HM|

4M , k > k, (83)

〈
Ed

M(k)
〉

= 〈E4(k)〉 =
k|HM|

m
, k = k. (84)

The sum of these over independent modes k is E plus a term of O(M−1), as it should
be. Again, for cubical periodic boxes or symmetrical spherical shells, m = 3, since all
lowest-wavenumber modes are expected to have the same energy. However, for the
non-rotating case, and, especially for the rotating case, there is always some dynamical
symmetry breaking so that one of the lowest-wavenumber modes dominates dynamically,
as will be discussed further shortly.

We have already seen how well the prediction (84) works by considering
Figures 1 and 2, as well as Tables 1 and 2, as discussed in Section 3. To see the ef-
ficacy of (81), consider Figure 3, while, for (82) and (83), consider Figures 4 and 5,
respectively. Please note that Figure 3c represents the general behavior originally expected
of all coefficients [19,20], i.e., that of a zero-mean random variable. Figures 1 and 2
demonstrate that this expected ergodicity is clearly broken, while Figures 3–5 show that
expected behavior may be slow in occurring.
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S1Z: Ωo = 10ẑ

Figure 3. Wavenumber k2 ≈ 2, positive helicity kinetic variables, normalized: û+(k) = exp(iΩkt)ũ+(k)/
〈
|ũ+(k)|2

〉
,

for run S3Z of Table 1. The factor exp(iΩkt) removes the cyclic behavior of inertial waves; see Equation (33). The unit circles
indicate

〈
|û+(k)|2

〉
= 1, i.e., the expected variance of unity. Initial values (t = 0) of these trajectories are marked with a •.

These graphs indicate that the non-dipole variables behave as expected.
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Figure 4. Run S10: wavenumber k2 ≈ 2, negative helicity magnetic variables, normalized: b̂−(k) = b̃−(k)/
〈
|b̃−(k)|2

〉
.

Initial values (t = 0) of these trajectories are marked with a • and the darker part of the trajectory shows the last half of the

run. The unit circles indicate
〈
|b̂−(k)|2

〉
= 1, i.e., the expected variance of unity. These graphs indicate that the non-dipole

variables behave as expected. In fact, all coefficients were expected to be ergodic, well-behaved zero-mean variables;
however, consider Figures 1 and 2, which show that ergodicity is strongly broken for some of the lowest wavenumber
coefficients.
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Figure 5. Run S1X: wavenumber k2 ≈ 2, negative helicity magnetic variables, normalized: b̂−(k) = b̃−(k)/
〈
|b̃−(k)|2

〉
,

for run S1X of Table 1. Initial (t = 0) points are marked with a • and the darker part of the trajectory shows the last half of

the run. The unit circles indicate
〈
|b̂−(k)|2

〉
= 1, i.e., the expected variance of unity. These graphs show that the non-dipole

variables are tending to expected behavior, though rotation slows the process down, compared to Figure 4.

9. The Internal Dipole Magnetic Field
9.1. Periodic Box

Let us define the magnetic field associated with the n = 4 and k = k Fourier modes
as bd(x) (d for ‘dipole’) and the remainder as h(x), where

bd(x) = N−3/2 ∑
k

b̃+(k) exp(ik · x), h(x) = b(x)− bd(x). (85)

Note that jd(x) = ∇× bd(x) = bd(x).
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The expected energy contained in bd(x) is
〈

Ed
M

〉
and in the remainder h(x) is

〈
Eh

M

〉
=〈

EM − Ed
M

〉
, while (72) gives us 〈EK〉, to leading order:

〈
Ed

M

〉
=

1
N3 ∑

k′
|b̃+(k)|2 = k|〈HM〉|, (86)

〈
Eh

M

〉
= 〈EK〉 = 1

2 (E − k|HM|). (87)

(Again, the sum over k′means that only independent modes k are included). These may
be considered ‘thermodynamic relations’ for ideal, rotating MHD turbulence. Note
that (86) above, in conjunction with (44) implies that, again to leading order,

|〈HM〉| =
1

N3 ∑
k′

|b̃+(k)|2
k

. (88)

Thus, essentially all of the contribution to |HM| comes from the b̃+(k). In the periodic
box, which is a 3-torus, the magnetic field is completely internal, since there is no external
volume, topologically speaking.

9.2. Spherical Shell

In the spherical shell case, however, there is an external volume and the spherical
analogue of (88) allows us to relate the external dipole field to the internal poloidal field and
therefore finally to know something about the internal, toroidal part of the Earth’s magnetic
field. In the spherical shell model of [7], which uses homogeneous b.c.s, the statistical
mechanics of the ideal magneto-fluid is essentially identical to that of the Fourier periodic
box case. The only differences are superficial, in that indexing by the components of k is
replaced by indexing with degree l and order m of the spherical harmonic Ylm(θ, ϕ) and the
number n of the zero kln of the radial functions ĝl(klnr) at r = 1; in the non-dimensional
model, r = 1 corresponds to the inner core radius RIC = 1220 km. (In dealing with an
ellipsoidal shell, the order m of Ylm(θ, ϕ) is also needed as kln → klmn [9]. Here, we focus
only on a spherically symmetric shell.)

In a rotating spherical shell, MHD turbulence has energy E (where E = EK + EM) and
magnetic helicity HM as ideal invariants, just as in the rotating periodic box. Thus, 〈E〉 = E
and 〈HM〉 = HM, where E andHM are constants. In [7], the expressions for EM and HM
are given as

EM = 1
2 ∑

l,m,n

(
|blmn|2 + k2

ln|almn|2
)

, (89)

HM = ∑
l,m,n

a∗lmnblmn. (90)

Above, the coefficients almn are associated with the poloidal part of the internal
magnetic field and the coefficients blmn are associated with the toroidal part of the internal
magnetic field.

Traditional wisdom states that we cannot know the blmn. However, if we apply our
periodic box results to the spherical shell, we see this belief may need revision. First, we
recall that the smallest spherical shell dimensionless wavenumber for an Earth-like model
is k = k11 = 1.8638 . . . (the next smallest wavenumber is k21 = 2.1497 . . . ). The spherical
shell version of (86) is

E d
M = k11|HM|. (91)
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Following (88), we expect that essentially all of the magnetic helicity will come from
the dipole part of EM and truncate the summations (89) and (90) to the l = 1 and n = 1
terms. Setting |HM| = +HM, forHM > 0, we have

1

∑
m=−1

〈b1m1 − k11a1m1〉2 = 0. (92)

Thus, we know the dipole part of the toroidal magnetic field in terms of the poloidal
field: b1m1 = k11a1m1. This leads us to make the estimates discussed earlier in Section 3.2
and which may be reviewed there.

10. Broken Ergodicity and Broken Symmetry

Here, we discuss the differences between the k = k eigenvariables ṽ4(k) and all the
other eigenvariables ṽn(k) in regard to their dynamical behavior. It will be assumed that
qx = qy = qz = 1 as differential oblateness is obviated by rotation and most planets and
stars, do, in fact, rotate.

10.1. Broken Ergodicity

The expectation values (81)–(84) yield rms values |ṽn(k)|rms ≡
〈
|ṽn(k)|2

〉 1
2 , so that

(a)
|ṽ4(k)|rms

N3/2 =

(
k|HM|

3

)1/2

, n = 4, k = 1;

(93)

(b)
|ṽn(k)|rms

N3/2 ≈ (E − k|HM|)1/2

2M1/2 , all others.

Again, from (74), ṽ1,2(k) = ũ−,+(k) and ṽ3,4(k) = b̃−,+(k). In (b), the expected
magnitude is just the standard deviation because the associated mean of ṽn(k) may be
taken as zero. In (a), however, the expected magnitude may represent the magnitude of the
mean of b̃+(k), rather than its standard deviation, for the following reasons.

Consider the modal dynamic Equations (30) with ν = 0 and (31) with η = 0. Further-
more, in (30), because jd(x)× bd(x) = 0, we have S̃(jd, bd; k) = 0 and can then use (85)
to write

S̃(j, b; k) = S̃(jd, bh; k) + S̃(jh, bd; k) + S̃(jh, bh; k) (94)

Using (93a,b) as size estimates, we see that the rms values of the first two terms on the
right are ∼M1/2 larger than the third term S̃(jh, bh; k), which is the same size as S̃(u, ω; k)
in (30).

In (31), S̃(u, b; k) can be written as

S̃(u, b; k) = S̃(u, bd; k) + S̃(u, bh; k) (95)

Again using (93a,b), we also see that the rms value of the first term on the right is
∼M1/2 larger than the second term.

Using these estimates, estimate the rms sizes of the right sides of (30) and (31) as

|S̃(j, b; k)|rms

N3/2 ∼ |S̃(u, b; k)|rms

N3/2 ∼ 1
M1/2 . (96)

From these and (93), we get

d ln |ṽ4(k, t)|rms

dt
∼ 1
M1/2 , k = 1, n = 4, (97)

d ln |ṽn(k, t)|rms

dt
∼ 1, all others. (98)
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What this implies dynamically is that, in equilibrium, the ‘dipole’ eigenvariables
ṽ4(k, t) = b̃+(k, t), which may be large, have, on average, fluctuations in magnitude com-
parable in size to the other ṽn(k, t), which are all very small. In particular, the fluctuations
of these other ṽn(k, t) are of the same size as their rms magnitudes and so they behave like
zero-mean random variables, as expected. However, the rms values of one or more of the
b̃+(k, t) are so large compared to their fluctuations that they exhibit nonergodic behavior,
i.e., they have relatively large mean values over very long times, i.e., the exhibit ‘broken
ergodicity.’ This phenomenon will be made clearer in the next subsection, where we also
discuss ‘broken symmetry.’

10.2. Broken Symmetry

We have seen that, dynamically, the magnitudes of a ‘dipole’ eigenvariable ṽ4(k, t) =
b̃+(k, t), once large enough, can become effectively constant over a long time because
its fluctuation in magnitude are very small. Often, one of the b̃+(k, t), for k = x, y or z
does not become as large as predicted by (83). These predictions are just average values
over the ensemble and to see what is really going on we must consider the sum of the
expectation values (86). As in Section 10.1, we will use qx = qy = qz = 0 so that k = 1 and
k = x̂, ŷ or ẑ. What (83) implies is that the six components of the three b̃+(k, t) define a six
component vector in a 6D real space or a three component vector in a complex 3D space;
for compactness, we define a vector ṽd and dot product |ṽd|2 = ṽ†

d ṽd in a 3D complex space:

ṽd =
1

N3/2

 b̃+(x̂)
b̃+(ŷ)
b̃+(ẑ)

, |ṽd|2 = |HM|. (99)

The endpoint of ṽd is a quasi-stationary point on the surface of the hypersphere of
radius

√
|HM| in a 6D subspace of the 8M-D phase space Γ. The coordinates of the 6D

space can undergo an arbitrary orthogonal rotation (or a unitary transformation in the
complex 3D space) that puts the point of the vector on any desired point on the surface.
Thus, although (93a) predicts that all b̃+(k, t) will have the same magnitude, this does
not take into account that a suitable orthogonal transformation of initial conditions in the
whole phase space will lead to the evolution of ṽd pointing in any direction its 6D space
that we choose, at least for the non-rotating case.

The fact that ṽd will exhibit broken ergodicity (i.e., it becomes quasi-stationary while
undergoing only small fluctuations. However, initial conditions will also impose a particu-
lar direction on it, leading to a broken symmetry amongst the b̃+(k, t) with regard to the ex-
pectation values (83). The phenomenon of broken symmetry has been noted before [23,43],
as we have also noted many times the appearance of broken ergodicity [6,22,23,39]. Here,
we see how these aspects of MHD turbulence are connected.

In equilibrium, the magnitudes of the b̃+(k, t), for k = x, y, and z are often not that
different in the non-rotating ideal case but may vary appreciably, as Figure 1a shows.
However, when rotation is imposed in the ideal case, the eigenfunction b̃+(k, t) with k
parallel to Ωo has essentially all the dipole energy (regardless of the values of the qj),
as Figure 2b–d demonstrate. In the real case of forced, dissipative MHD turbulence, this
phenomenon is also usually observed numerically, although some forcing mechanism may
disrupt this process, as seen in Figure 7 of Reference [9].

However, alignment with the rotation axis seems fairly ubiquitous in numerical
simulations, as well as in planets and stars. We will now discuss possible reasons for this
‘dipole alignment’.

11. Dipole Alignment

One of the mysteries of magnetism is just how the dipole moment of the Earth and
other planets align themselves with their rotation axis. Ref. [44] proposed that magnetic
moment and angular momentum were directly proportional, though this conjecture has
not held up to scrutiny; here we have shown that the magnetic moment is essentially
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proportional to
√
|HM|. [9] suggested that a difference in the ellipticities of the Earth’s

inner and outer cores could lead to alignment if the smallest wavenumber was along the
rotation axis.

11.1. Differential Oblateness Effects

To test the hypothesis that differential oblateness was important with a Fourier method
code, wavevector components were adjusted, as detailed in Section 4.2, to k j → qjk j and
x-space position components to xj → xj/qj, j = x, y, z, with qxqyqz = 1. This adjustment
insured that k · x was invariant, so that the Fourier transforms (13) and (14), as well as
the numerical transform method, were unaffected. When the grids were stretched with
Ωo = 0, the coefficients with the smallest wavenumber noticeably increased in magnitude
compared to their unstretched values, as Figure 1 shows. However, the effect of differential
oblateness was completely overshadowed when rotation Ωo 6= 0 was introduced, as is
shown in Figure 2. The oblateness of the inner and outer cores is two orders of magnitude
smaller than that modeled in our runs, so, for purposes of understanding the cause of dipole
alignment, we need only use qx = qy = qz = 1 in the Fourier case, and keep the spherical
shell model of [7] spherical.

11.2. Dynamical Effects

We know that the vector ṽd, whose three complex components are the b̃+(k̂), where
k̂ = x̂, ŷ, ẑ, and is defined in (99), has almost constant magnitude

√
qmin|HM|. In the

Fourier model, qmin = 1 and in the spherical shell model, qmin = 1.8638. Here, we work
with the Fourier model. If we look at (31) and retain only those terms that contain one of
the b̃+(±k̂), we get

d b̃+(x̂)
dt

=
i

N3/2 x̂×
±ẑ

∑
k̂=±ŷ

[
ũ(x̂− k̂)× b̃+(k̂)

]
, (100)

d b̃+(ŷ)
dt

=
i

N3/2 ŷ×
±x̂

∑
k̂=±ẑ

[
ũ(ŷ− k̂)× b̃+(k̂)

]
, (101)

d b̃+(ẑ)
dt

=
i

N3/2 ẑ×
±ŷ

∑
k̂=±x̂

[
ũ(ẑ− k̂)× b̃+(k̂)

]
. (102)

Now, (21) and (33) tell us that

ũ(k, t) = ū+(k, t) exp(iΩkt)ê+(k) + ū−(k, t) exp(−iΩkt)ê−(k). (103)

Therefore, for Ωo = Ωoẑ, on the right sides of the equations given above, all of the
terms containing ũ(ẑ± x̂) or ũ(ẑ± ŷ) or their complex conjugates have oscillations with
angular frequencies ±Ωk = ±

√
2Ωo. If we watch the dynamical system over a time

T >>
√

2π/Ωo, then we may expect these terms to average out to zero. In that case,
(100)–(102) become

d b̃+(x̂)
dt

≈ i
N3/2 x̂× ∑

k̂=±ŷ

[
ũ(x̂− k̂)× b̃+(k̂)

]
, (104)

d b̃+(ŷ)
dt

≈ i
N3/2 ŷ× ∑

k̂=±x̂

[
ũ(ŷ− k̂)× b̃+(k̂)

]
, (105)

d b̃+(ẑ)
dt

≈ 0. (106)

The expression (106) is true once b̃+(ẑ) grows to be very large, while (104) and (105)
tell us that b̃+(x̂) and b̃+(ŷ) are still subject to fluctuations (again, we assume Ωo = Ωoẑ).
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Presumably, b̃+(x̂) and b̃+(ŷ) ‘regress to the mean,’ which is zero because they are subject
to relatively large fluctuations, while b̃+(ẑ) has relatively insignificant fluctuations to drive
it from dominance. Further analysis is beyond the scope of this paper and may require a
deeper mathematical analysis along the lines of [45].

12. Conclusions

Here, we have presented theoretical and computational results in magnetohydrody-
namic turbulence that we feel are essential to understanding the geodynamo. Again, these
results are based on a mathematical model that focuses on MHD turbulence, but ignores
compressibility and thermal effects, as well as imposing model-dependent boundary condi-
tions. Our conclusions are: (1) In the Earth’s outer core, the energy of the magnetic dipole is
equal to the magnetic helicity multiplied by the dipole wavenumber. (2) The connection be-
tween magnetic helicity and dipole field in the Earth’s liquid core gives us the toroidal part
of the internal dipole field. (3) Knowing this allows the estimate the mean internal dipole
field strength is 3 mT. (4) Differential oblateness can cause dipole alignment, but rotation
appears to be far more important. (5) Dipole alignment appears related to hydrodynamic
inertial waves, but exactly how is still an open question.
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