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Abstract: The decomposition of the local motion of a fluid into straining, shearing, and rigid-
body rotation is examined in this work for a compressible isotropic turbulence by means of direct
numerical simulations. The triple decomposition is closely associated with a basic reference frame
(BRF), in which the extraction of the biasing effect of shear is maximized. In this study, a new
computational and inexpensive procedure is proposed to identify the BRF for a three-dimensional
flow field. In addition, the influence of compressibility effects on some statistical properties of the
turbulent structures is addressed. The direct numerical simulations are carried out with a Reynolds
number that is based on the Taylor micro-scale of Reλ = 100 for various turbulent Mach numbers
that range from Mat = 0.12 to Mat = 0.89. The DNS database is generated with an improved
seventh-order accurate weighted essentially non-oscillatory scheme to discretize the non-linear
advective terms, and an eighth-order accurate centered finite difference scheme is retained for the
diffusive terms. One of the major findings of this analysis is that regions featuring strong rigid-body
rotations or straining motions are highly spatially intermittent, while most of the flow regions exhibit
moderately strong shearing motions in the absence of rigid-body rotations and straining motions.
The majority of compressibility effects can be estimated if the scaling laws in the case of compressible
turbulence are rescaled by only considering the solenoidal contributions.

Keywords: triple decomposition; compressible turbulence; velocity gradient tensor; homogeneous
isotropic turbulence; basic reference frame

1. Introduction

Turbulence in the context of fluid dynamics often refers to the chaotic nature of fluid
motion in terms of velocity and pressure. This kind of definition suggests determinis-
tic chaotic and turbulent characteristics [1], which must be distinguished from random
behaviour. However, also for deterministic turbulent flows, some statistical laws apply
in the same manner as for linear systems [2], whereas their statistics may widely differ;
they usually are of Lévy-type and show long tail distributions that are produced by rare
large-scale fluctuations and clustering phenomena of anomalous eddy diffusion. However,
different than for random systems in phase space, for example, turbulent ones may exhibit
highly ordered structures, called strange attractors [1], which relate to nonlinear, nonloca,l
and fractional features of turbulence [3]. Additionally, nonequilibrium [4], nonextensive [5],
and universal behaviour [6] characterize turbulent flows. In this article, we focus on uni-
versality, and, by this, we mean the independence of statistical properties of small-scale
eddies from the overall nature of the fluid (forcing of the fluid, geometry, and size of the
basin, etc.). One of the first illustrations of this universal character dates back to 1941, when
the Kolmogorov theory emerged. The latter states that, regardless of a fluid’s properties,
the turbulent flow exhibits a scale-invariant structure at the inertial region. Based on this
finding, Kolmogorov was able to characterize this zone as a power law of the energy
spectrum with an exponent that is equal to −5/3 [7], which for flows of Reynolds numbers
smaller than infinity, is modified by an intermittency correction [8,9].
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Subsequently, many areas of turbulence research were driven by the fundamental
challenge of identifying generalizable turbulence properties and turbulent flow similarities
with the aim of investigating and defining turbulent flow universal patterns [10]. In partic-
ular, because fluid mixing is mainly driven by the smallest diffusive scales, many studies
have been devoted to the assessment of the fundamental and intrinsic topological aspects
of these flow scales. In this regard, the pure kinematic approach provides a general and
useful tool to describe the small scales of fluid motions. One of these quantities, which is
often of significant interest, is the velocity gradient tensor (VGT), ∇U ≡ A, which can be
split into the sum of the strain-rate tensor, S , and the rotation-rate, W tensor, i.e., (see also
Ref. [11])

A = S +W . (1)

For many decades, this decomposition has been an essential tool for the turbulence
community [12] due to the simplicity of its formulation and the physical insight that it
provides. It has also led to the construction of various subgrid-scale models [13,14] and
the development of flow visualization tools that are based on simulation realizations [15].
However, recent studies have shown the importance of considering the contribution of
shear in both the identification of vortex structure regions and strain rate [15]. Indeed,
vorticity cannot distinguish between pure shearing motion and vortical motion, and the
strain rate cannot distinguish between straining motion and shearing motion. By consid-
ering two-dimensional DNS of a subsonic mixing layer behind a flat plate, [16] showed
the importance of shear regions in the identification of vortex structures. Most of the
discussions on the structural aspects of turbulence adopt Eulerian vortex detection meth-
ods, like the Q-criterion, the ∆-criterion, and its closely related swirling strength criterion
(λci-criterion [17]), or the λ2-criterion [18]. In all of these criteria, a scalar field, which is
derived from the decomposition (1) and/or eigenvalues of the VGT, is used as a “marker”
to indicate whether a given point in the flow field belongs to a vortex or not [19]. Therefore,
vortices are identified as the connected regions that are mapped by such scalar fields.
Recently, [20] formulated a Liutex-based VGT (previously called Rortex) decomposition for
locally fluid-rotational points (the VGT has complex eigenvalues) in a turbulent flow field.
This method [20] of separating the rigid-body-rotation “Liutex” from shear in vorticity is
more computationally viable and it has been employed in some studies [17] for the investi-
gation of coherent vortex structures in turbulent flows. In another study, [21] presented a
decomposition of the VGT into normal and non-normal tensors, such that the non-normal
counterpart represents the local effects of shear. Aside from these methods, [15] originally
introduced a robust triple decomposition method, from which a residual vorticity could be
found to represent the pure rigid-body rotation of a fluid element. The cornerstone of this
method is to decompose A as

A = N +H+R, (2)

where N , H and R denote normal-straining, pure-shearing, and rigid-body-rotation com-
ponents of the VGT, respectively. According to [15], the three components in Equation (2)
can be determined while using a suitable reference frame, called the basic reference frame
(BRF). The BRF refers to a special local coordinate system in which the effect of shear is
maximal, so that the decomposition is unique.

Most of the studies that targeted this triple decomposition method (TDM) were carried
out in two-dimensional configurations [22,23]. Under such flows, the identification of the
basic reference can be analytically obtained and the extraction of the three motions is
straightforward. Conversely, the analytical identification of the BRF is not possible in
the general case where turbulence is comprised of three-dimensional fluid motions, and
the extraction of vortices and internal shear layers are of considerable interest. In the
general case, one can identify the BRF from a finite set of discrete frame representations by
performing a series of discrete rotations of the reference frame [15]. In this context, [24]
proposed a numerical procedure and then successfully applied it to the framework of
three-dimensional incompressible homogeneous isotropic turbulence at Taylor Reynolds
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numbers, Reλ = 27 and 140. One of the major findings of [24] is that some of the strong
shear regions, identified using the TDM and visualized as sheet-like structures, could
not have been detected using the classical double decomposition. Indeed, TDM analysis
characterizes these regions as high intensity shearing components, whereas, from the
double decomposition, they appear as regions where the effects of the strain-rate tensor,
S , and the rotation-rate tensor, W , are comparable. With this in mind, and given that
only incompressible flows have been considered so far, we must question the accuracy of
the TDM for more complex flows that are characterized by high turbulent Mach numbers,
Mat. For instance, unlike the incompressible case, at high Mat, both the strong nonlinear
coupling between the velocity and thermal fields and the occurrence of localized shocklets
in the flow field lead to an additional and rapid conversion of the kinetic energy dissipation
mechanism. The analysis of the flow topology in compressible flows has been investigated
before; see, for example, the works of [25–28]. A general conclusion from these studies is
that the appearances of the intense events tend to increase with Mat. These studies also
indicate that, as Mat increases, strong compressions are more likely to occur than equally
strong expansions.

The present work aims at extending the previous studies to the compressible high
Mat regime. Furthermore, we suggest a new numerical approach to determine the BRF
with the aim of achieving high accuracy at a significantly reduced computational cost.
We then apply the TDM and the new numerical procedure in order to define the BRF to a
new DNS database of isotropic compressible turbulence with a turbulent Mach number
ranging from Mat = 0.12 (i.e., almost incompressible regime) to Mat = 0.89 (i.e., highly
compressible regime).

The remainder of this paper is organized, as follows. Section 2 gives a brief overview
of the governing equations with the methods and algorithms that were used in their
numerical resolution. Section 3 provides the general statistics of the generated DNS
database. The invariants of the VGT are briefly recalled in Section 4. Next, the methodology
of A triple decomposition, as well as the procedure of determining the basic reference
frame in Section 5, are presented. By exploring its dependency on the turbulent Mach
number, the VGT composition of a turbulent flow field is examined in detail in Section 6.
Finally, Section 7 draws the key findings and conclusion of this analysis.

2. Governing Equations and Numerical Methods

In this study, the nondimensional form of the three-dimensional compressible Navier–
Stokes equations, as described in Samtaney et al. [25], is considered

∂ρ

∂t
+

∂
(
ρUj
)

∂xj
= 0, (3)

∂(ρUi)

∂t
+

∂

∂xj

[
ρUiUj +

Pδij

γMa2

]
=

1
Re

∂σij

∂xj
, (4)

∂E
∂t

+
∂

∂xj

[(
E + P

γMa2

)
uj

]
=

1
α

∂

∂xj

(
κ

∂T
∂xj

)
+

1
Re

∂
(
σijUi

)
∂xj

, (5)

where Re, Ma, and Pr represent the Reynolds number, the Mach number, and the Prandtl
number, respectively. The parameter γ is the ratio of the specific heat at constant pressure
and the specific heat at constant volume. In the present simulations, the values of γ and
Pr are set to 1.4 and 0.7, respectively. Furthermore, α is defined as α ≡ Pr Re(γ− 1)Ma2.
The primary variables are the density, ρ, the velocity components, Ui, the temperature,
T , and the pressure, P . The viscous stress, σij, and the total energy per unit volume, E ,
are defined by

σij ≡ µ

(
∂Ui
∂xj

+
∂Uj

∂xi

)
− 2

3
µθδij, (6)
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E ≡ P
(γ− 1)γMa2 +

1
2

ρUjUj, (7)

where θ = ∂Uk/∂xk refers to the velocity divergence or dilatation. The variable θ quantifies
the local rate of rarefaction (θ > 0) or compression (θ < 0). Sutherland’s law is employed to
specify the temperature-dependent and dimensionless dynamical viscosity µ and thermal
conductivity κ, as follows:

µ =
c1T 3/2

T + Tc
, (8)

and

κ =
c1T 3/2

T + Tc
, (9)

where c1 = 1.4042 and Tc = 0.40417.

Numerical Methods

The numerical simulation of compressible flows requires the use of highly accurate
numerical schemes that are capable of precisely capturing shock waves. Consequently,
the viscous fluxes in Equations (3)–(5) are obtained through the application of an eighth-
order accurate centered finite difference scheme, while the inviscid fluxes are approximated
using a seventh-order accurate weighted essentially non-oscillatory (WENO-Z) scheme of
Don and Borges [29].

It is worth recognizing the difficulties in conducting DNS of compressible flows
featuring shock waves due to the conflicting requirements of: (i) resolving the broadband
turbulence and (ii) capturing shocks. This makes the obtained solution highly dependent
of the considered numerical procedures. In practice, the present numerical solver uses
the ses the optimal seventh-order accurate flux reconstruction, and the application of the
WENO-Z scheme is conditioned to a smoothness criterion that involves the local values of the
normalized spatial variations of both pressure and density [30]. This method is equivalent
to the superposition of the four candidate stencils of the WENO-Z scheme when each stencil
is evaluated with its optimal weight. As a result, the introduction of such a hybridization
makes the used method minimally dissipative, thanks to the use of a central scheme in
the majority of the domain, and it yields a reasonable predicted spectrum up to rather
high wavenumbers.

Regarding the temporal advancement, a semi-discrete system of ordinary differential
equations stems from the discretization of the spatial derivatives

dc
dt

= Res(c), (10)

where c = [ρ, ρU1, ρU2, ρU3, ρE ] is the vector of the conservative variables and Res the
vector of the residuals. The time advancement of Equation (10) is performed while us-
ing a third-order accurate total variation diminishing (TVD) low-storage Runge–Kutta
scheme [31].

c(`+1) = c(`) + α`∆tRes(`−1) + β`Res(`), ` = 0, 1, 2, (11)

with c(0) = cn and cn+1 = c(3) and the integration coefficients are α` = (0, 17/60,−5/12)
and β` = (8/15, 5/12, 3/4).

The aforementioned numerical procedures have been thoroughly described and vali-
dated in previous works [32,33].

3. Dns Database

The decaying isotropic turbulence is an important model that is used to investigate
the free compressible turbulence. In this context, ensuring that the turbulence is fully devel-
oped is important. Prior to the generation of the DNS database, the numerical procedure
is first validated by comparing its result against the DNS data of [34]. The validation test
case consists of a decaying isotropic turbulence evolving in a three-dimensional periodic
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box with side length 2π that is uniformly discretized on 128 points per each coordinate
direction. The velocity field is initialized by an isotropic state that is prescribed by the
energy spectrum

E(k) ∼ k4 exp
[
−2(k/k0)

2
]
, (12)

where k is the integer non-dimensional wave number and k0 is the most energetic wave
number. A finite density, temperature, and dilatation fluctuations are also generated,
as described by [35]. The calculation is performed at a Reynolds number based on the
longitudinal Taylor micro-scale Reλ = ρλU ′/µ = 50, where λ = 〈U ′21 〉1/2/〈(∂U1/∂x)2〉1/2

and U ′ = 〈UiUi/3〉1/2, and at a turbulent Mach number Mat = U
′
/a = 0.52, where a is the

speed of sound. The initial flow-field is allowed to decay temporally for four dimensionless
time units, 4τt, where the time unit, herein, is the eddy turnover time that is defined as
τt = λ/U ′ . This choice allows for the energy spectrum E(k) to develop an inertial range
that decays as k−5/3. In Figure 1, we depict the energy spectra in wave number space at
t/τt = 6.5. These results show a very good agreement with the data of [34]. Moreover, the
energy spectrum is marginally consistent with a −5/3 scaling law in a smaller frequency
range due to the limit of the spatial resolution in the present DNS (Note that a recently
developed approach, based on the extraction of the rigid rotation part from the fluid motion
(called Liutex-based vortex), allows following the −5/3 almost exactly over the whole
range of frequencies [10]).

10−1 100

10−8

10−6

10−4

10−2

10−0

kη

E
(k

)/
( ηU′

)

DNS of Martı́n and Candler
Present simulation

k−5/3

Figure 1. Energy spectrum at t/τt = 6.5. The dashed line represents the k−5/3 slope.

Following this validation, the DNS database featuring six direct numerical simulations
of temporal turbulence decay is conducted on a 5123 point grid. Table 1 summarizes the
one-point statistics of the six simulated flows, obtained by freezing the temporal turbulence
decay of periodic boxes, after approximately three eddy turnover times, which ensures that
the turbulence is deemed to be developed and realistic. The turbulent Mach number, Mat,
which is varied between 0.12 and 0.89, is the main parameter of interest in this parametric
study. The Taylor micro-scale Reynolds number, Reλ, is considered to be common to all the
cases and set almost to 100. The wave number k0 = 4 is selected to ensure that the fully
developed homogeneous isotropic turbulence field has a broad range of length scales [36].

Table 1. Flow parameters used for the present DNS simulations.

Resolution Reλ Mat U ′ 〈ε/ρ〉 η/∆x Lt /η λ/η Sk3 F l3

5123 100 0.12 0.54 0.11 1.18 151 19.80 −0.43 5.50
5123 100 0.32 0.53 0.10 1.17 154 19.79 −0.45 5.64
5123 100 0.50 0.53 0.10 1.15 154 19.59 −0.50 5.53
5123 100 0.59 0.46 0.11 1.29 181 19.59 −0.51 5.94
5123 100 0.73 0.45 0.09 1.35 175 19.37 −0.71 6.10
5123 100 0.89 0.45 0.07 1.41 172 19.05 −1.18 8.81
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The Kolmogorov length scale, which is defined from the kinetic energy dissipation rate
per unit volume (η =

(
〈µ/Re〉3/〈ε/ρ〉

)1/4), is resolved on the retained grid discretization.
Indeed, the resolution parameter ∆x/η is in the range 1.15 ≤ η/∆x ≤ 1.81, where ∆x
is the uniform grid spacing in each coordinate direction. This can be also verified in
terms of the maximum resolved wave number in the grid (the half of the number of grid
points in each direction). In the present DNS database, kmaxη finds its values in the range
2.22 < kmaxη < 2.73. This range ensures that the small scales are well resolved in all of the
database cases [37]. In order to measure the onset of a realistic turbulence, the mean values
of the velocity derivative skewness Sk3 and flatness F l3 are used herein as criteria. These
are defined, respectively, as

Sk3 =

〈
(∂U1/∂x1)

3
〉

〈
(∂U1/∂x1)

2
〉3/2 , (13)

F l3 =

〈
(∂U1/∂x1)

4
〉

〈
(∂U1/∂x1)

2
〉2 . (14)

As it can be noticed from Table 1, the magnitudes of both Sk3 and F l3 increase with
increasing Mat. This is a well-known feature that is due to the onset of shocklets in
compressible turbulence [38]. It is noteworthy to point out that, despite the comparability
between the shock thickness and the grid length, as well as the fact that the shock thickness
is not directly resolved by the WENO-Z scheme, the total amount of dissipation across a
shock is independent of numerical viscosity [39]. Indeed, as shown by [40], as long as the
shocklet thickness is small, the total amount of dissipation across the shocks is independent
of viscosity, and it depends only on the jump conditions across the shocks, which are
preserved by the WENO-Z scheme.

4. The Velocity Gradient Tensor and the Invariants of Its Characteristic Equation

The velocity-gradient tensor, A, is a 3× 3 matrix that is given by Aij := ∂Ui/∂xj.
The characteristic equation for A is

p(α) := det(A− αI) = α3 + Pα2 + Qα + R, (15)

where I is the identity matrix and the first three invariants P, Q, and R in Equation (15)
can be calculated as

P = −Aii,
Q = 1

2
(

P2 − SijSij +WijWij
)
,

R = 1
3

(
−P3 + 3PQ− SijSjkSki − 3WijWjkSki

)
,

(16)

where S and W are, respectively, the strain- and rotation-rate tensor components of A,
defined as {

Sij = 1
2
(
Aij +Aji

)
,

Wij = 1
2
(
Aij −Aji

)
.

(17)

As shown by [41], the expression P, Q and R is of a topological significance, because
the P−Q− R space is divided into several regions, and each region represents a particular
flow topology. It is more convenient to analyze the flow topology in the Q− R plane due
to the spatial complexity of different zones present in the P−Q− R space. To proceed, we
reformulate the problem in terms of the anisotropic part of the deformation rate tensor,
i.e., A? = A− θI/3, where θ = ∂Ui/∂xi denotes the divergence of the velocity. Therefore,
we observe that, as in incompressible turbulence, by construction P? = 0. The use of the
anisotropic tensor aims at (i) comparing the statistical properties of compressible turbulent
structures and their dynamics with the incompressible case for which P ≡ 0 and (ii)
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facilitating the discussions of local topological flow structures, since it reduces the space of
comparison to the Q− R plane [26,27]. All of the quantities computed from the anisotropic
tensor are indicated with the superscript ?. In the new formulation, the second, Q?, and
third invariants, R?, are given byQ? = 1

2

(
−S?ijS?ij +W?

ijW?
ij

)
,

R? = − 1
3

(
S?ijS?jkS

?
ki + 3W?

ijW?
jkS

?
ki

)
.

(18)

These two invariants are of great importance from a topological point of view, because
the sign of the discriminant function, ∆A? , which characterizes a different streamline flow
pattern, depends on their magnitude

∆A? =
27
4
(R?)2 + (Q?)3. (19)

We can distinguish four non-degenerate topology types in the Q?–R? space (see Figure 2)

• ∆A? > 0, R? > 0: compressing towards an unstable focus region (UFC),
• ∆A? > 0, R? < 0: stretching away from a stable focus region (SFS),
• ∆A? < 0, R? > 0: two saddles with an unstable node (UNSS), and
• ∆A? < 0, R? < 0: two saddles with a stable node (SNSS).

For a detailed description of each type, we refer the reader to Ooi et al. [42].

Q?

R?

SFS UFC

SNSS UNSS

A? = N?+H?

A? = N? +R? +H?

R? = ± 2
√

3
9 (−Q?)3/2

Figure 2. Classification of local three-dimensional streamlines into non-degenerate topologies in the
Q? − R? plane for the incompressible turbulence [41]. The curved solid lines are the discriminant,
∆A? , lines.

The presence of pure shearing motions and the actual swirling motion of a vortex
in both strain-rate and vorticity often limits our understanding of the local streamline
topology and the fundamental phenomena in turbulence in general. The velocity gradient
dynamics and small-scale behavior of turbulenc are conventionally based on the double
decomposition of the VGT in the S and W tensors. To further ease the interpretation of
the classical VGT dynamics, the next section suggests introducing (i) an originally additive
decomposition that decomposes an arbitrary instantaneous field of the motion into three
elementary types of motions A and (ii) a new numerical procedure to efficiently compute
the components of this decomposition.
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5. Triple Decomposition of Velocity Gradient Tensor

In this section, we present a new numerical procedure to compute the triple decompo-
sition of motion (TDM) that was introduced by [15]. The main idea behind this method
is to subtract the effective pure shearing tensor from the VGT, and then decompose the
residual vorticity (which directly and accurately measures the pure rigid-body rotation of a
given fluid element) into symmetric and anti-symmetric parts. Therefore, the 3× 3 velocity
gradient tensor, A, whose components are given by Aij := ∂Ui/∂xj, is decomposed into
three elementary motions: irrotational straining/elongation tensor, N , pure-shear tensor,
H, and rigid-body-rotation-rate tensor, R, see Equation (2). The pure-shear stress tensor,
H, is a purely asymmetric tensor that satisfies

Hij ×Hji = 0, for i, j = 1 · · · 3. (20)

The residual tensor, defined as Ares = A−H, is further decomposed into two components
that are associated with the irrotational straining motion (elongation) N and rigid-body
rotation R.

These transformations are illustrated with some elementary examples in Figure 3.
We note that the triple decomposition (2) entails a considerable level of effort and the
technique that is outlined here is presented in greater detail in [24].

(a) (b) (c)
x2 x2 x2

x1 x1 x1

∂U2
∂x2

dx2

-
∂U1
∂x1

dx1
∂U1
∂x2

dx2 -
∂U1
∂x2

dx2

∂U2
∂x1

dx1

Figure 3. Two-dimensional sketch of the fluid motion deformation due to (a) normal-strain-rate
tensor, (b) shear tensor, and (c) rigid-body-rotation tensor. Adapted from [43].

The main difficulty of the triple decomposition (2) lies in the calculation of the pure-
shear tensor, H, since the other two tensors are computed straightforwardly by subtracting
H from A. The decomposition (2) must be applied in an appropriate reference frame that
originates from a specific point in the flow field. This reference frame is called the “basic
reference frame” (BRF). In the BRF, an effective pure-shear motion is shown “in a clearly
visible manner” set by the condition (20), and the effect of extraction of a shear tensor is
maximized. In order to fulfill the latter condition, Kolář [15] introduced an interaction
scalar Is that is defined by

Is = |S12W12|+ |S23W23|+ |S31W31|. (21)

Then, the BRF is determined from the condition

IsBRF = max
Q∈O(3)

Ĩs(Q), (22)

where O(3) is the set of 3× 3 orthogonal matrices, and Ĩs(Q) is the interaction scalar
that is calculated from the velocity gradient tensor Ã, which is computed under a generic
unitary orthogonal transformation Q

Ã = QAQ>. (23)

A tilde quantity represents a quantity that was evaluated in the rotated reference frame.
The derivation of the orthogonal matrix (rotation matrix whose yaw, pitch, and roll angles
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are φ, θ, and θ, respectively) Q applied to a Cartesian coordinate x is provided in [15], and
it reads (where c and s denote the cos and sin functions, respectively)

Q =

 cφcθcψ− sφsψ sφcθcψ + cφsψ −sθcψ
−cφcθsψ− sφcψ −sφcθsψ + cφcψ sθsψ

cφsθ sφsθ cθ

, (24)

where φ ∈ [0, π], θ ∈ [0, π], and ψ ∈ [0, π/2] are the three rotation angles. In the procedure
that was proposed by Nagata et al. [24] to compute the BRF, these three rotation angles are
varied with a uniform step size ∆, yielding a finite number of reference frame rotations:
(l∆, m∆, n∆), where (l, m, n) are three integers satisfying 0 < l ≤ bπ/∆c, 0 < m ≤ bπ/∆c,
and 0 < n ≤ bπ/2∆c. Therefore, the determination of the accurate location of BRF requires
significant computational effort as a small step size ∆ must be used.

Our strategy instead consists in the formulation of the BRF determination as an
optimization problem of the three bounded variables φ ∈ [0, π], θ ∈ [0, π], and ψ ∈
[0, π/2], and a fixed velocity gradient tensor, A, associated with the point x = {x1, x2, x3}
of the mesh

IsBRF = max
φ∈[0,π], θ∈[0,π], ψ∈[0,π/2]

Ĩs(φ, θ, ψ;A). (25)

Here, to solve Equation (25), we use the gradient-based optimizer sequential least-
square quadratic programming (SLSQP), which is an SQP-like algorithm with a Broyden–
Fletcher–Goldfarb–Shanno (BFGS) update the formula for approximating the inverse of
the Hessian matrix of the objective function. In practice, a free modern FORTRAN SLSQP
optimizer version [44] is coupled with our solver to achieve this purpose. To highlight the
behavior of the proposed approach, we carry out a relatively small simulation while using
1283 grid points.

In Figure 4, we show the probability density function (PDF) of the number of iterations
and the number of evaluations of the Jacobian of the objective function performed by the
optimizer to locate the BRF. We observe a left-skewed tendency and peak at approximately
10 iterations, which allows for a fast and more accurate location of the BRF when compared
to the previous discrete approaches [24,45]. When comparing the difference between the
present method and the one of Nagata et al. [24], the difference gets smaller as the step size
∆ becomes smaller. Besides, the method (SLSQP) exhibits no sensitivity to the initial guess
of (φ, θ, ψ).

0 5 10 15 20 250.00

0.10

0.20

Number of iterations needed to convergence

PD
F

(a)

0 5 10 15 20 250.00

0.15

0.30

Number of evaluations of the Jacobian

PD
F

(b)

Figure 4. PDF of (a) the number of iterations and (b) evaluations of the Jacobian of the objective
function performed by the optimizer.

This step results in the velocity gradient tensor Ã in the BRF, and then can, therefore,
be decomposed into the following constituent tensors Ã = Ãres

+ H̃. Here, the residual
tensor Ãres

is expressed as

Ãres
ij = sgn

(
Ãij

)
min

{
|Ãij|, |Ãji|

}
, (26)
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where the sign function of a generic real number x gives -1 if x < 0, 0 if x = 0, and 1 if x > 0.
Finally, the tensor Ãres

can be further decomposed into symmetric and anti-symmetric
parts as Ãres

= Ñ + R̃, whereÑij = 1
2

(
Ãres

ij + Ãres
ji

)
,

R̃ij = 1
2

(
Ãres

ij − Ã
res
ji

)
.

(27)

The resulting decomposition is finally expressed in the laboratory reference frame as
Φ = Q>Φ̃Q for a generic tensor Φ. The pure-shear tensor is divided into its symmetric
HS and anti-symmetric HW counterparts, i.e.,{

HSij = 1
2
(
Hij +Hji

)
,

HWij = 1
2
(
Hij −Hji

)
.

(28)

The symmetric-shear tensor HS , along with normal-strain-rate tensor N , recovers the
strain-rate tensor S , while the anti-symmetric-shear tensor HWm along with rigid-body-
rotation tensor N constitutes the rotation-rate or vorticity tensor, i.e.,{

Sij = Nij +HSij ,
Wij = Rij +HWij .

(29)

From Equation (29), we notice that the pure-shear motions contribute to both vorticity and
strain-rate. Figure 2 illustrates the shape of the local streamline that is associated with the
tensors associated with the triple decomposition in the Q? − R? plane [43]:

• ∆A? < 0: Non-rotational geometries (A? = N ? +H?), the tensor A has only real
eigenvalues; and,

• ∆A? > 0: Rotational geometries (A = N ? +R? +H?), the tensor A has complex
eigenvalues, the flow is locally rotational, and the three tensors N ?, R?, and H? are
in general non-zero.

6. Results and Discussion

In Figure 5, we show the isocontour lines (of the logarithm) of the second, Q? and
third, R?, invariants for the values of the turbulent Mach number, Mat, considered in the
present database. As expected, all of the joint PDFs exhibit the classical tear-drop shape
as in the incompressible case, with a statistical preference in the SFS and UNSS quadrants.
Within these quadrants, the statistical points are mostly aligned with the right branch that
corresponds to ∆A? = 0. The compression motion tends to reveal a stronger alignment
with the right branch, as indicated by a rather sharp joint PDF with the curve ∆A? = 0 [27].

Table 2 provides a quantitative comparison between the conditional data of each
case in percentage, distributed over the possible local topologies (the row sum is 100%).
As expected, the most frequently occupied regions are the SFS and UNSS regions, which
are dominated by positive enstrophy and strain productions. Furthermore, the probability
of occurrence of each topology in the almost incompressible case with Mat = 0.12 is
very close to that found in the compressible turbulence. This fact proves that (i) the
dilatation has a negligible effect on the occurrence of each topology and (ii) compressibility
marginally affects the invariant statistics. The occupancy of the non-rotational region that
is characterized by R? ≈ 0 is close to the sum of the conditional data of the UNSS and
SNSS topologies.
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(a) Mat = 0.12 (b) Mat = 0.32 (c) Mat = 0.50

(d) Mat = 0.59 (e) Mat = 0.73 (f) Mat = 0.89

Figure 5. Joint PDF of the invariants Q? and R? as function of Mat.

Table 2. Occupancy of different regions of Figure 2 for the velocity gradient tensor, A?, expressed as
a percentage of realizations. The last column indicates the non-rotational non-degenerate topology,
where ‖R?‖ is the Frobenius norm of R?.

Mat UFC SFS SNSS UNSS ‖R?‖ = 0

0.12 25.71 38.36 07.99 27.90 36.13
0.32 26.06 38.84 07.96 27.11 30.52
0.50 26.71 38.93 08.04 26.29 35.02
0.58 24.67 34.95 10.47 29.88 41.23
0.73 25.68 34.07 10.35 29.88 41.88
0.89 27.42 32.97 10.03 29.54 40.03

For the sake of clarity, from this point onward, we adopt the notations sΦ =
√

2ΦSij 2ΦSij

and ωΦ =
√

2ΦWij 2ΦWij to indicate the strain-rate magnitude and vorticity magnitude (or

enstrophy), respectively, of a generic tensor Φ with symmetric, ΦS , and anti-symmetric,
ΦW , parts. Note that ωH? = sH? from the construction of H?. Therefore, the strain-rate
magnitude, ωA? , and rotation-rate magnitude, sA? , (in the sense of Frobenius norm) are
expressed in terms of ωH? , ωR? , sH? , and sN ? .

To show the flow structures that are deduced from the triple decomposition of A?,
in Figure 6 we plot the isosurfaces for the four constituents of vorticity and strain-rate for
Mat = 0.5. A vortex filament is viewed as a vortex tube of variable cross-section for ωR? ,
as shown in Figure 6a. We note that the shearing motion contribution for the vorticity and
strain production corresponds to sheet-like structures, which is a marker of high energy
dissipation/strain rate regions [46], as shown in Figure 6b. In contrast, the instantaneous
snapshot of the sR? isosurface shows a highly intermittent turbulence in space.

A possible two-dimensional illustration of the decomposition of vorticity and strain
rate magnitudes is presented in Figure 7 for Mat = 0.12 (an almost incompressible case)
and Figure 8 for Mat = 0.50 (an example of a compressible case). All of the other cases
display similar patterns. In the following, the focus is, mainly, put on the qualitative
description of the decomposition for the compressible case.

Because the vorticity is a local characteristic of the flow and includes both the solid
body rotation and the shearing motion of a fluid element, we can isolate the two effects by
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comparing Figure 8a,b. Figure 8b indicates that the vortices are frequently located in high
shear zones.

(a) ωR? (b) ωH? (c) sR?

Figure 6. Three-dimensional visualization of isosurfaces of ωR? , ωH? , and sR? for Mat = 0.5.

(a) (b) (c)

(d) (e)

Figure 7. Color contour of the normalized (a) ωA? and (d) sA? and their components (b) ωH? ,
(c) ωR? , and (e) sN ? on the x1-x2 plane for Mat = 0.12.

This implies that the criteria of vortex detection (e.g., the Q-criterion), which simulta-
neously detects shear layers and vortex regions, sometimes yields results that are difficult
to interpret. Indeed, they exclusively locate a region that is to be either dominated by
strain or by rotation. Regions of high intermittency are associated with large values of
ωR? (vortex with a strong-body rotation) and sR? (strain with a strong-body rotation),
as depicted in Figure 8c–e.

To deepen our investigation of the statistical properties of the triple decomposition,
in Figure 9 we report the normalized ωA? and sA? and their components ωH? , ωR? , sH? ,
and sN ? . As in the incompressible case, all of the PDFs exhibit a two-stage evolution of
their shapes, where they first increase up to a peak, and then decrease slowly to lower
values. The effect of compressibility is slightly significant for Mat > 0.5. The PDFs of ωA?

and sA? become wider and extend slowly to much higher values. Moreover, the PDF of
the strain-rate magnitude has a less wide tail at higher values and it is more intermittent
in comparison to the rotation-rate magnitude at smaller and moderate values. This ob-
servation, which holds true independently from the compressibility intensity considered



Fluids 2021, 6, 98 13 of 18

within our investigation, is a well-known characteristic of spatial intermittency [47,48].
The same figure shows that the pure-shear magnitudes ωH? and sH? exhibit a wider
tail and a flatness, and they are more intermittent than the other components. As a re-
sult, one can conclude that the pure-shear motions have a greater contribution in the
heavy-tailed PDF of the VGT magnitude. In particular, the large probability values of
ωA?/〈ωA?〉 ≈ 0.5 are mostly associated with the shear, rather than the rigid-body rotation.
The rigid-body rotation strain magnitude, sN ? , first reaches a peak at sN ?/〈sA?〉 ≈ 0.25,
and it decreases while the pure-shear contribution increases to reach its maximum value at
sH?/〈sA?〉 ≈ sA?/〈sA?〉 ≈ 0.75, as the strain-rate magnitude. The compressibility seems
to slightly affect the fat tail of the PDFs for small values of ω and s.

(a) (b) (c)

(d) (e)

Figure 8. Color contour of the normalized (a) ωA? and (d) sA? and their components (b) ωH? ,
(c) ωR? , and (e) sN ? on the x1-x2 plane for Mat = 0.50.

Figure 10 shows the PDFs of the ratio H?/ωH? , sH?/ωR? , sR?/ωH? , and sR?/ωR?

for various Mat. These distributions suggest that vortices are most probably located in
regions where the shear-strain rate is equal to, or larger than, the maximum vorticity of
the vortices. However, the most probable case is the one of low shear, which confirms
that the vorticity is not always a good indicator for measuring the strength of the local
swirling. Moreover, as the mode of the PDFs of the four quantities portrayed in Figure 10
is likely associated with the intensity of the compressibility effects. The overall mode of the
distribution increases by increasing Mat.

We further address the coupling between the vorticity and strain by looking at the
two-dimensional joint PDF of the vorticity magnitude (enstrophy) and its two components
against the total strain rate. Figure 11a,d indicate that strong vorticity coexists with strong
strain, even though the correlation between ωA? and sA? seems to be rather weak, and
even weaker for lower Mat [37]. The shearing-motion contribution in the production of
enstrophy is likely more correlated with the strain rate than the rigid-body rotation. In order
to quantitatively assess this feature, we compute the Pearson’s bi-variate coefficients of
correlation between each component. This coefficient detects any existence of linear
relations between pairs of variables and it reads

r(x, y) =
cov(x, y)√

var(x)var(y)
, (30)
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where cov(x, y) ≡ sxy stands for the covariance of the variables x, y, whereas var(x) ≡ sx
and var(y) ≡ sy are their respective standard deviations.

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
0.0

0.4

0.8

1.2

ωA?, ωR?, ωH?
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F

Mat = 0.12
Mat = 0.32
Mat = 0.50
Mat = 0.59
Mat = 0.73
Mat = 0.89

ωR?/
〈
ωA?
〉

ωA?/
〈
ωA?
〉
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〈
ωA?
〉

(a)

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
0.0

0.4

0.8

1.2

sA?, sR?, sH?
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Mat = 0.12
Mat = 0.32
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〉
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〈
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Figure 9. PDF of ωA? and sA? and their components (a) ωH? , ωR? , (b) sH? and sN ? for six different
Mat. The sampling of the data prior to the PDF computation has considered the clipping of the zero
values of ωR? .

We notice that the high correlation between ωA? and sA? is mostly due to the shearing-
motion of the vorticity, as depicted in Table 3, and the correlation between strain rate and
component of vorticity is almost constant, regardless of the intensity of the compressibility.

Table 3. Coefficients of correlation between ωA?/sA? , ωH?/sA? , and ωR?/sA? .

Mat r(ωA? /sA?) r(ωH? /sA?) r(ωR? /sA?)

0.12 0.605 0.769 −0.011
0.32 0.633 0.783 −0.025
0.50 0.661 0.787 −0.054
0.58 0.598 0.740 −0.036
0.73 0.619 0.737 −0.004
0.89 0.628 0.714 −0.040
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Figure 10. PDF of (a) sH?/ωH? , sH?/ωR? , and (b) sR?/ωH? , sR?/ωR? for six different Mat.

(a) Mat = 0.12 (b) Mat = 0.12 (c) Mat = 0.12

(d) Mat = 0.89 (e) Mat = 0.89 (f) Mat = 0.89

Figure 11. Joint PDF of vorticity with its components and strain rate for Mat = 0.12 and Mat = 0.89.
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7. Conclusions

The triple decomposition of the VGT appears to be a promising candidate for the
existing vortex-identification methods. It provides more insights into the normal-strain and
pure rotation on important small-scale features than those that were obtained by the more
simple decomposition of A into symmetric, S , and anti-symmetric, W , parts. However,
this decomposition suffers from the difficult task of identifying the basic reference frame
(BRF) because it is based on the natural decomposition of fluid motion into straining,
shearing, and rigid-body rotation. The BRF is determined by rotating the local reference
frame that is associated with a fluid element and finding the rotation angles maximizing
the interaction scalar coefficient Is. The numerical results show that the usual classification
of the local streamline topologies can enhance our understanding by analyzing the VGT
in terms of the normal strain, the rigid-body rotation, and the pure-shear tensors. The
rigid-body rotation negligibly contributes, on average, to both the vorticity and strain-
rate magnitudes for all of the tested turbulent Mach numbers of the database, while
shearing motion is the main cause of the strong intermittency that is exhibited by the
vorticity magnitude. Indeed, shear-magnitude increases steeply, while rigid-body-rotation
magnitude decreases at extreme vorticity magnitude values. Therefore, it is reasonable to
infer that shear dominates in regions of high intermittency. The left-skewed distribution
of the vorticity and strain rate magnitudes are most probably attributed to the rigid-body
rotation distribution, while the high values are most probably associated with the pure-
shear motions. The strain-rate magnitude is found to be more correlated with the shear
tensor than with the rigid-body rotation tensor. The study of the anisotropic tensor leads
to the conclusion that compressibility has a marginal effect on the statistical quantities
that were investigated in this work. More turbulence characteristics need to viewed
with this new physical intuition introduced by the triple decomposition of the velocity
gradient tensor.
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