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Abstract: Heat and mass transfer due to a magneto micropolar fluid flow along a semi-infinite
vertical plate bounded by a porous medium are investigated in presence of induced magnetic
field. In case of cooling flow, heat and mass fluxes from the plate are subjected to be constant
under the action of a constant heat sink. Mathematical model related to the problem is developed
from the basis of studying magnetohydrodynamics (MHD) for both lighter and heavier particles.
Dimensionless model of momentum, microrotation, induction, energy and concentration equations
are solved simultaneously by the explicit scheme of finite difference technique. According to the
obtained stability and convergence criteria of this transient flow, very negligible time step (∆t = 0.002)
compared to the existing works has been taken to perform the numerical computation. Quantities
of chief physical interest of the flow as shear stress, couple stress, current density, Nusselt number
and Sherwood number are also studied here. The numerically computed results are compared with
published results of available research works. Interestingly an excellent agreement is found with
finite difference solutions in both explicit and implicit schemes. In order to discuss the physical
aspects of the problem, the flow variables for different values of associated parameters are illustrated
in graphs. Finally, important findings of the study are listed as concluding remarks.

Keywords: MHD; heat and mass transfer; micropolar fluid; induced magnetic field; finite difference
method; heat absorption

1. Introduction

The behaviors of fluid that contain suspended, metal or dust particles in many practical
situations are first observed by the micropolar fluid theory of Eringen [1] with internal
structures in which coupling between the spin of each particle and the macroscopic velocity
field is taken into account. Physically, the micropolar fluids contain dilute suspension of
small, rigid, cylindrical macromolecules with individual motion and are influenced by spin
inertia. The theory is used to investigate the flow character of polymeric fluids, colloidal
suspension, human and animal blood, liquid crystal, exotic lubricants etc. Micropolar
fluid dynamic has attracted the attention of a large number of scientists due to its diverse
applications at the present time. The thermo-micropolar fluid theory of Eringen [2] is
developed by extending the theory of micropolar fluid.

The free convective micropolar fluid flow induced by the simultaneous action of
buoyancy forces is of great interest in nature and in many industrial applications as
drying processes, solidification of binary alloy as well as in astrophysics, geophysics and
oceanography. Jena and Mathur [3] have obtained a similarity solution for laminar free
convective flow of thermo-micropolar fluid from a non-isothermal vertical flat plate. A
numerical boundary layer solution for a steady free convective micropolar fluid flow from
a vertical isothermal plate is computed by Gorla et al. [4].

Many engineering applications such as condensation, extraction, drying of solid
materials, evaporation, rectification, distillation and absorption of fluids are affected by the
combined heat and mass transfer processes. A free convection with mass transfer flow for
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a micropolar fluid bounded by a vertical surface under the action of a transverse magnetic
field is analyzed by El-Amin [5]. The unsteady free convective heat and mass transfer
micropolar fluid flow through a vertical infinite porous medium under the action of a
transverse magnetic field taking into account a constant heat source with constant heat and
mass fluxes has been studied numerically by Haque et al. [6]. Effects of thermal radiation
on micropolar fluid flow was observed by Bhattacharyya et al. [7]. Safaei et al. [8] analyzed
a boundary layer heat transfer flow of water/FMWCNT (functionalized multi-walled
carbon nanotube) nanofluids along a flat plate. Convective flows of different types of fluid
due to stretching sheet/surface have been analyzed by the authors in the references [9–15].
Gaffar et al. [16] have developed a mathematical model to investigate the free convective
flow in a third-grade viscoelastic micropolar fluid from a vertical isothermal inverted cone.
Scholars in the references [17–21] have studied convective flows along plate embedded in a
porous medium. Recently, Karvelas et al. [22] have used a micropolar fluid model to study
the auto rotation effect of human blood′s microstructure on its flow.

A strong magnetic field due to a force of the field radiating from the poles of the
magnet induces a new magnetic field known as induced magnetic field which is applied in
many astrophysical and geophysical problems. From the point of natural and industrial
applications, several numbers of investigators have given a special attraction to observe
the induced magnetic field effect on the flow problems. Concerning this, investigators in
the references [23–25] analyzed the induced magnetic field effect on combined heat and
mass transfer one/two dimensional flows. The micropolar fluid behavior on magnetohy-
drodynamics (MHD) heat transfer unsteady flow through an infinite porous plate with
induced magnetic field has studied by Sultana et al. [26]. In a rotating system, a numerical
simulation with stability analysis on MHD natural convective heat and mass transfer
unsteady flow with induced magnetic field was finished by Haque et al. [27]. A MHD
stagnation point flow of nanofluid with induced magnetic field is observed by Ibrahim [28].
The influence of magnetic field on blood flow has studied numerically by Hossain and
Haque [29]. The micromagnetorotation (MMR) effect on a micropolar fluid flow is studied
by Aslani et al. [30]. In order to control the cooling rate and achieve the desired quality
of industrial products, researchers in the references [31–33] have investigated the flow
characteristics in the presence of induced magnetic field under different environments.

Recently, Baruah and Hazarika [34] have investigated a heat and mass transfer un-
steady flow of micripolar fluid over a stretching sheet under the action of a transverse
magnetic field. The magnetic Reynolds number in the study was taken as small enough to
neglect the induced magnetic field. The flow problem becomes more complicated when it
is affected by an induced magnetic field, heat absorbing source, constant heat and mass
fluxes as well as a vertical plate instead of stretching sheet. Hence the research efforts in
the present work are devoted to study the effects of induced magnetic field on the transient
heat and mass transfer magneto micropolar fluid flow past a semi-infinite vertical plate
surrounded by a porous medium in the presence of a constant heat sink. These types of
fluid flows have special importance in geophysical fluid dynamics and play a decisive role
in a number of industrial applications.

2. Flow Model of the Physical Problem

A natural convective heat and mass transfer unsteady flow of an electrically con-
ducting incompressible viscous micropolar fluid past an electrically non-conducting semi-
infinite vertical plate embedded in a porous medium is considered here. The fluid flow is
generated due to the gravitational acceleration and the pressure gradient along the normal
direction of the plate. A strong magnetic field has also been applied near to the plate so
that the plate becomes magnetized. An induced magnetism is produced by the force of the
field radiating from the poles of the magnet. In this case, heat and mass transfer due to the
micropolar fluid flow is affected by an induced magnetic field.

In geometrical concept, the Cartesian coordinate system is chosen in such way that
the x-axis is measured along the plate in upward direction and y-axis is normal to the plate.
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The appropriate physical configuration of the flow with coordinate system is displayed
in Figure 1.

Figure 1. Physical Configuration with Coordinate System.

At the beginning of this research work, the system with magneto micropolar fluid is
kept at uniform temperature (T∞) and species concentration (C∞). In addition, the analysis
is based on the following assumptions:

i. All the physical properties of fluid are considered to be constant but the influence
of density variation with temperature is assumed only in the body force term, in
accordance with the well-known Boussinesq’s approximation.

ii. Since the plate is of semi-infinite extent and the fluid motion is unsteady so all the
flow variables will depend upon the distance variable along the plate x, distance
variable normal to the plate y and the time variable τ.

iii. The microrotation vector of the form G =
(
0, 0, Γ

)
is considered here.

iv. The viscous dissipation and joule heating terms in the energy equation have been
assumed for high speed flow as well as a constant heat sink hs is used for heat
absorption [35].

v. The level of concentration of foreign mass has been taken very high for observ-
ing the thermal diffusion effect on flow. The mass diffusion effect has also been
studied here.

vi. The magnetic Reynolds number is taken to be large enough so that the induced magnetic
field vector of the form H =

(
Hx, Hy, 0

)
is applicable. The divergence equation of

Maxwell’s equation∇.H = 0 for the magnetic field gives Hy = constant = H0 (say).

Within the framework of the above stated assumptions, the equations relevant to the
heat generating free convective heat and mass transfer unsteady flow of micropolar fluid
with induced magnetic field are governed by the following system of coupled non-linear
partial differential equations under the boundary-layer approximations,

Continuity Equation,
∂u
∂x

+
∂u
∂y

= 0
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Momentum Equation,

∂u
∂τ

+ u
∂u
∂x

+ v
∂u
∂y

= gβ
(
T − T∞

)
+ gβ∗

(
C− C∞

)
+

(
υ +

χ

ρ

)
∂2u
∂y2 +

χ

ρ

∂Γ
∂y
− υ

K
u +

µe

ρ
H0

∂Hx

∂y

Microrotation Equation,

∂Γ
∂τ

+ u
∂Γ
∂x

+ v
∂Γ
∂y

=
γ

ρj
∂2Γ
∂y2 −

χ

ρj

(
2Γ +

∂u
∂y

)
Magnetic Induction Equation,

∂Hx

∂τ
+ u

∂Hx

∂x
+ v

∂Hx

∂y
= Hx

∂u
∂x

+ H0
∂u
∂y

+
1

σ µe

∂2Hx

∂y2

Energy Equation,

∂T
∂τ

+ u
∂T
∂x

+ v
∂T
∂y

=
κ

ρ cp

∂2T
∂y2 +

1
ρ cp σ

(
∂Hx

∂y

)2
+

1
cp

(
υ +

χ

ρ

)(
∂u
∂y

)2
+

DmκT
cs cp

∂2C
∂y2 −

hs

ρcp

(
T − T∞

)
Concentration Equation,

∂C
∂τ

+ u
∂C
∂x

+ v
∂C
∂y

= Dm
∂2C
∂y2 +

DmκT
Tm

∂2T
∂y2

Since the heat and mass fluxes from the plate to fluid through porous medium are
constant, hence the initial conditions becomes,

τ ≤ 0, u = 0, v = 0, Γ = 0, Hx = 0, T → T∞, C → C∞ everywhere

and the appropriate boundary conditions are as follows,

τ > 0, u = 0, v = 0, Γ = 0, Hx = 0, T → T∞, C → C∞ at x = 0

u = 0, v = 0, Γ =
−S∂u

∂y
, Hx = Hw,

∂T
∂y

=
−Q

κ
,

∂C
∂y

=
−m
Dm

at y = 0

u = 0, v = 0, Γ = 0, Hx = 0, T → T∞, C → C∞ as y→ ∞

3. Mathematical Formulation

Mathematical model of the magneto micropolar fluid flow is a system of coupled
non-linear partial differential equations. To solve this flow problem, the model must be
dimensionless. Hence the following non-dimensional quantities have been taken to make
the governing equations dimensionless;

X = xU0
υ , Y = yU0

υ , U = u
U0

, V = v
U0

, t = τ U2
0

υ , Γ = Γ υ
U2

0
, H =

√
µe
ρ

Hx
U0

, T =
κ U0(T−T∞)

Q υ and C =
Dm U0(C−C∞)

m υ .

After simplification the following nonlinear coupled partial differential equations in
terms of non-dimensional variables are obtained,

Dimensionless Continuity Equation,

∂U
∂X

+
∂V
∂Y

= 0

Dimensionless Momentum Equation,

∂U
∂t

+ U
∂U
∂X

+ V
∂U
∂Y

= GrT + GmC + (1 + ∆)
∂2U
∂Y2 + ∆

∂Γ
∂Y
− DaU + M

∂H
∂Y
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Dimensionless Microrotation Equation,

∂Γ
∂t

+ U
∂Γ
∂X

+ V
∂Γ
∂Y

= Λ
∂2Γ
∂Y2 − λ

(
2Γ +

∂U
∂Y

)
Dimensionless Magnetic Induction Equation,

∂H
∂t

+ U
∂H
∂X

+ V
∂H
∂Y

= H
∂U
∂X

+ M
∂U
∂Y

+
1

Pm

∂2H
∂Y2

Dimensionless Energy Equation,

∂T
∂t

+ U
∂T
∂X

+ V
∂T
∂Y

=
1
Pr

∂2T
∂Y2 + (1 + ∆)Ec

(
∂U
∂Y

)2
+

Ec

Pm

(
∂H
∂Y

)2
+ D f

∂2C
∂Y2 −

α

Pr
T

Dimensionless Concentration Equation,

∂C
∂t

+ U
∂C
∂X

+ V
∂C
∂Y

=
1
Sc

∂2C
∂Y2 + So

∂2T
∂Y2

and the corresponding initial and boundary conditions become,

t ≤ 0, U = 0, V = 0, Γ = 0, H = 0, T = 0, C = 0 everywhere

t > 0, U = 0, V = 0, Γ = 0, H = 0, T = 0, C = 0 at X = 0

U = 0, V = 0, Γ = −S
∂U
∂Y

, H = h = 1(say),
∂T
∂Y

= −1,
∂C
∂Y

= −1 at Y = 0

U = 0, V = 0, Γ = 0, H = 0, T = 0, C = 0 as Y → ∞

where, h = Hw
U0

√
µe
ρ = 1(say), Gr = gβ Q υ2

κ U4
0

, Gm = gβ∗ m υ2

Dm U4
0

, ∆ = χ
υ ρ , Da = υ2

U2
0 K

, Λ = γ
υ j ρ ,

λ = χ υ

υ j U2
0

, M = H0
U0

√
µe
ρ , Pm = υ σ µe, Pr =

υ ρ cp
κ , Ec =

κ U3
0

Q υ cp
, α = hs υ2

κ U2
0

, Sc = υ
Dm

,

So =
Q D2

m κT
m κ υ Tm

and D f =
κ m κT

Q υ cs cp
.

The quantities of chief physical interest of the flow near at the plate such as the skin
friction coefficients, current density, heat transfer rate and mass transfer rate are also
studied here. In order to obtain the numerical values of those quantities, it is arbitrarily
chosen that the length of the semi-infinitely extended plate is Xmax(= 100) and the length
of the boundary layer thickness is Ymax(= 25) as corresponding to Y → ∞ which lies very
well outside the boundary layers. Hence the flow region within the boundary layer is
found as a rectangle with sides Xmax and Ymax.

One of the skin friction coefficients is shear stress so the local and average shear stress
at the plate (Y = 0) are proportional to

(
∂U
∂Y

)
Y=0

and
∫ 100

0

(
∂U
∂Y

)
Y=0

dX respectively. An-
other skin friction coefficients is couple stress whose local and average part are proportional
to
(

∂Γ
∂Y

)
Y=0

and
∫ 100

0

(
∂Γ
∂Y

)
Y=0

dX respectively. The local and average current density at the

plate are proportional to
(
− ∂H

∂Y

)
Y=0

and
∫ 100

0

(
− ∂H

∂Y

)
Y=0

dX respectively. The local and av-

erage Nusselt number are proportional to
(
− ∂T

∂Y

)
Y=0

and
∫ 100

0

(
− ∂T

∂Y

)
Y=0

dX respectively.

Last of all, the local and average Sherwood number are proportional to
(
− ∂C

∂Y

)
Y=0

and∫ 100
0

(
− ∂C

∂Y

)
Y=0

dX respectively.
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4. Numerical Computation

Due to the complexity of finding an analytical solution of the system of second order
nonlinear coupled partial differential equations, a numerical technique must be applied to
solve this problem. For simplicity, an explicit procedure of finite difference method is used
to obtain a numerical solution. In order to formulate a system of finite difference equations,
the rectangular region of flow within the boundary layer is divided into a grid or mesh of
lines parallel and normal to the plate. After carrying out the trial with a different number
of grid lines, 100 grid lines are fixed here. Hence the X-directional height of plate is divided
by m(= 100) horizontal grid lines and the Y-directional thickness of boundary layer is
divided by

n(= 100) vertical grid lines. Therefore, the appropriate mesh sizes for computation
become ∆X = 1.0 and ∆Y = 0.25 with a smaller time-step ∆t = 0.002. The finite difference
grid space is drawn in Figure 2.

Figure 2. Finite Difference Grid Space.

Let U′, V′, Γ′, H′, T′ and C′ denote the values of U, V, Γ,H, T and C at the end of
a time-step respectively. The following applicable set of finite difference equations is
obtained using the explicit finite difference approximations,

Finite Difference Continuity Equation,
U′ i, j−U′ i−1, j

∆X +
Vi, j−Vi, j−1

∆Y = 0 Finite Difference
Momentum Equation,

U′ i, j −Ui, j

∆t
+ Ui, j

Ui, j −Ui−1, j

∆X
+ Vi, j

Ui, j+1 −Ui, j

∆Y
= GrT′ i, j + GmC′ i, j − Da U′ i, j

+ (1 + ∆)
Ui, j+1 − 2Ui, j + Ui, j−1

(∆Y)2 + ∆
Γi, j+1 − Γi, j

∆Y
+ M

Hi, j+1 − Hi, j

∆Y

Finite Difference Microrotation Equation,

Γ′ i, j − Γi, j

∆t
+ Ui, j

Γi, j − Γi−1, j

∆X
+ Vi, j

Γi, j+1 − Γi, j

∆Y
= Λ

Γi, j+1 − 2Γi, j + Γi, j−1

(∆Y)2 − λ

(
2Γ′ i, j +

Ui, j+1 −Ui, j

∆Y

)
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Finite Difference Magnetic Induction Equation,

H′ i, j − Hi, j

∆t
+ Ui, j

Hi, j − Hi−1, j

∆X
+ Vi, j

Hi, j+1 − Hi, j

∆Y
= Hi, j

Ui, j −Ui−1, j

∆X
+ M

Ui, j+1 −Ui, j

∆Y

+
1

Pm

Hi, j+1 − 2Hi, j + Hi, j−1

(∆Y)2

Finite Difference Energy Equation,

T′ i, j − Ti, j

∆t
+ Ui, j

Ti, j − Ti−1, j

∆X
+ Vi, j

Ti, j+1 − Ti, j

∆Y
=

1
Pr

Ti, j+1 − 2Ti, j + Ti, j−1

(∆Y)2 − α

Pr
T′ i, j +

Ec

Pm

(Hi, j+1 − Hi, j

∆Y

)2

+ (1 + ∆)Ec

(Ui, j+1 −Ui, j

∆Y

)2

+ D f
Ci, j+1 − 2Ci, j + Ci, j−1

(∆Y)2

Finite Difference Concentration Equation,

C′ i, j − Ci, j

∆t
+ Ui, j

Ci, j − Ci−1, j

∆X
+ Vi, j

Ci, j+1 − Ci, j

∆Y
=

1
Sc

Ci, j+1 − 2Ci, j + Ci, j−1

(∆Y)2 + So
Ti, j+1 − 2Ti, j + Ti, j−1

(∆Y)2 .

The initial and boundary conditions based on the finite difference scheme are as
follows,

U0
i,j = 0, V0

i,j = 0, Γ0
i, j = 0, H0

i, j = 0, T0
i,j = 0, C0

i,j = 0

Un
0,j = 0, Vn

0,j = 0, Γn
0, j = 0, Hn

0, j = 0, Tn
0,j = 0, Cn

0,j = 0

Un
i,0 = 0, Vn

i,0 = 0, Γn
i,0 = −S

Ui, 1 −Ui, 0

∆Y
, Hn

i,0 = 1, Tn
i,0 = Tn

i,1 + ∆Y, Cn
i,0 = Cn

i,1 + ∆Y

Un
i,L = 0, Vn

i,L = 0, Γn
i, L = 0, Hn

i, L = 0, Tn
i,L = 0, Cn

i,L = 0 where L→ ∞.

Here the subscripts i and j denote X and Y directional grid points respectively and
the superscript n represents a value of time, t = n∆t where n = 0, 1, 2, . . . From the initial
condition, the values of U, Γ, H, T and C are known at t = 0. At the end of any time-step
∆t, the new temperature T′, new concentration C′, new velocity U′, new microrotational
velocity Γ′, new induced magnetic field H′ and V′ at all interior nodal points may be
obtained by successive applications of finite difference energy, concentration, momentum,
microrotation, magnetic induction and continuity equations respectively. This process is
repeated in time and provided the time-step is sufficiently small, hence U, V, Γ, H, T and
C should eventually converge to values which approximate the steady-state solutions of
the model.

The numerical values of local shear stress, couple stress, current density, Nusselt
number and Sherwood number are evaluated by Five-point approximation formula [36,37]
for the derivative and then the average shear stress, couple stress, current density, Nusselt
number and Sherwood number are calculated by Simpson′s 1

3 integration formula [36,37].
Since an explicit procedure is used as a solving method, so the technique is required

to establish a stability and convergence criteria of the problem. After simplification by
using the general terms of Fourier expansion for the flow variables, we have obtained
U ∆t

∆X + |V| ∆t
∆Y + 2

Pr
∆t

(∆Y)2 +
α ∆t
2 Pr
≤ 1 and U ∆t

∆X + |V| ∆t
∆Y + 2

Sc
∆t

(∆Y)2 ≤ 1 as the stability criteria

of the explicit finite difference method. Using the constant mesh sizes ∆X = 1.0 and
∆Y = 0.25 with the smaller time step ∆t = 0.002, we have also found D f < 1, Ec << 1,
Pr ≥ 0.0641 and Sc ≥ 0.064 as the convergence conditions of the present problem.
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5. Discussion of the Results

To investigate the practical aspect of the problem, a finite difference solution is ob-
tained by the use of an explicit procedure. The numerical values of velocity, microrotational
velocity, induced magnetic field, temperature and concentration within the boundary layer
are computed by assigning the different values of associated parameters with the help
of a software development product Parallel Studio XE (American Multinational Corpora-
tion and Technology Company Intel Corporation, Santa Clara, CA, USA) as a computer
programming language FORTRAN. In order to get the steady-state solutions, the computa-
tions have been carried out up to t = 20. It is observed that the numerical values of flow
variables show little changes after the time t = 10. Hence the steady-state solutions have
been obtained at the maximum time t = 20. In this case the numerical data of all flow
variables are collected hare at the time t = 2, 4 and 20.

In this study, the Grashof number (Gr = 5.0, 6.0, 7.0) for heat transfer and the mod-
ified Grashof number (Gm = 2.0) for mass transfer are taken to be positive, the values
Gr > 0 with Gm > 0 correspond to cooling to the plate. Practically the cooling problem is
often encountered in engineering applications as the cooling of electronic components and
nuclear reactors. Since the most important fluids are known as atmospheric air, salt water
and water so the values of Prandtl number are preferred Pr = 0.71 (for air), Pr = 1.0 (for salt
water) and Pr = 7.0 (for water) with respect to the convergence conditions of the problem.
It is also considered that the investigation is performed for both lighter particles as helium
(Sc = 0.3), water vapour (Sc = 0.6) and heavier particle carbondioxide (Sc = 1.0). The
values of other associated parameters are also chosen arbitrarily.

To verify the accuracy of the present results, two graphical comparisons with existing
numerical solutions are presented in Figure 3. If we use viscous fluid instead of micropolar
fluid and neglect the effects of induced magnetic field, constant heat source, viscous
dissipation, joule heating, thermal diffusion, mass diffusion as well as the plate is not
subjected to constant heat and mass fluxes then the current fluid flow is transformed
into a simple boundary layer flow of Callahan and Marner [36]. If we apply a transverse
magnetic field on the transformed simple flow then we get the MHD flow of Palani and
Srikanth [37]. At the time t = 0.6, the velocity curve for the buoyancy ratio parameter
N = Gm

Gr
= 2.0, Pr = 1.0, Sc = 0.7, M = 0.0, ∆ = 0.0, Da = 0.0, Λ = 0.0, λ = 0.0, Pm = 0.0,

Ec = 0.0, α = 0.0, D f = 0.0, So = 0.0 is compared with the explicit finite difference solution
of Callahan and Marner [36], which are displayed in Figure 3a. Another comparison of
velocity profile at t = 0.26 for the values of non-zero parameters N = 2.0, Pr = 0.7, Sc = 0.5,
M = 1.0 with the implicit finite difference solution of Palani and Srikanth [37] is shown in
Figure 3b. It is found that the numerical results of present study are in excellent agreement
with the results of previously available works in both schemes of finite difference method.
Hence the accuracy of the current results may be described as very good in case of all the
flow variables.

In order to show the effects of various parameters on flow variables, the collected
numerical values have been plotted in figures by the help of data visualization software
TECPLOT (American Company Tecplot, Inc., Bellevue, WA, USA). The time dependent flow
variables related to the problem versus Y-directional length are illustrated in Figures 4–10.

The transient velocity distributions have been shown in Figures 4 and 5. It is found
that the fluid velocities increase dramatically with time until at t = 20 when a steady-state
value is reached. We observe from Figure 4a, for extremely cooled plate (Gr > 0), the fluid
velocity increases with the increase of Grashof number. The effect of the Darcy number on
velocity field is presented in Figure 4b. It is observed that the velocity rapidly decreases in
case of strong Darcy number. The Figure 4c shows that the fluid velocity decreases near
the plate but increases far away from the plate with the increase of magnetic force number.
The effect of the heat absorption parameter on velocity field is presented in Figure 5a. It
is declared that the velocity decreases in case of strong heat absorption parameter. In
Figure 5b, we see that the velocity decreases in case of strong Prandtl number i.e., the
velocity is higher for air than water. A same effect on velocity field is noted from Figure 5c
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for increasing the value of Schmidt number. In particular, the velocity is larger for helium
than carbon dioxide. Hence, it is concluded that the maximum velocity occurs in the
vicinity of the plate.

Figure 3. Graphical Comparison of fluid velocity with existing (a) explicit finite difference solution ([36], Figure 1, page 169)
and (b) implicit finite difference solution ([37], Figure 3, page 352).

The time dependent microrotational velocity profiles are displayed in Figures 6 and 7.
It is noted that the microrotational velocities decrease significantly to a steady-state value
at the time t = 20. We observe from Figure 6a, the microrotational velocity falls with the
increase of Grashof number. The effects of Darcy number on microrotational velocity are
shown in Figure 6b. We see that the microrotational velocity increases with the rise of
Darcy number. A decreasing effect far away from the plate on microrotational velocity is
observed from Figure 6c for increasing the spin gradient viscosity. Figure 7a declares that
the microrotational velocity is decreasingly affected by Soret number. In Figure 7b, we
find that the microrotational velocity slowly raises in case of strong Prandtl number. The
velocity distributions in Figure 7c represent that the microrotational velocity increases with
the increase of Schmidt number.

The induced magnetic field for cooling plate is displayed in Figure 8 and we see that
they fall sharply with time until at t = 20. It is observed from Figure 8a that the induced
magnetic field increases near the plate but decreases far away from plate with the increase
of magnetic diffusivity number. Figure 8b shows that the induced magnetic field increases
with the rise of Darcy number. A decreasing effect of magnetic force number on induced
magnetic field is observed from Figure 8c.

The transient temperature distributions are shown in Figure 9. It is declared that
the fluid temperature rises considerably with time until a steady-state value is obtained.
The transient temperature profiles for different values of Eckert number are presented
in Figure 9a and it is noticed that the increase of Eckert number leads to a rise in fluid
temperature. An important effect on temperature is found from Figure 9b and we observe
that temperature rapidly decreases with the increase of Prandtl number. This is due to the
fact that there would be a decrease of thermal boundary layer thickness for the increase
of Prandtl number. An increasing effect on temperature is observed in Figure 9c with the
increase of Dufour Number.
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The species concentration profiles are presented in Figure 10. It is observed that the
concentration increases substantially with time until at t = 20. Figure 10a shows that the
concentration increases in case of strong heat absorption parameter. The thermal diffusion
effect is shown in Figure 10b and it is noticed that concentration gradually increases with the
increase of Soret number. For different gases like helium, water vapor and carbon dioxide,
concentration profiles are displayed in Figure 10c. The figure shows that a decreasing effect
on concentration in case of strong Schmidt number. Physically, the increase of Schmidt
number means decrease of molecular diffusivity. Hence, the concentration of species is
higher for small values of the Schmidt number and lower for large values of Schmidt
number. It is concluded that the maximum of concentration occurs on the plate and the
thinning effect is noted for heavier particles.
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Figure 5. Velocity profiles for different values of (a) heat absorption parameter (b) Prandtl number
(c) Schmidt number.
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Figure 6. Microrotational velocity profiles for different values of (a) Grashof number (b) Darcy
number (c) spin gradient viscosity.
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Figure 7. Microrotational velocity profiles for different values of (a) Soret number (b) Prandtl number
(c) Schmidt number.
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Figure 8. Induced Magnetic field profiles for different values of (a) magnetic diffusivity number (b)
Darcy number (c) magnetic force number.
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Figure 9. Temperature profiles for different values of (a) Eckert number (b) Prandtl number (c)
Dufour number.
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Figure 10. Concentration profiles for different values of (a) heat absorption parameter (b) Soret
number (c) Schmidt number.
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Now we attempt to discuss about the behavior of the quantities of chief physical inter-
est of the flow. For this purpose, the solutions of shear stress, couple stress, current density,
Nusselt number and Sherwood number for different values of associated parameters are
computed and the obtained local and average numerical values versus X-directional length
and time respectively are plotted in Figures 11–15.

For the different values of Grashof number, Prandtl number and Schmidt number, the
curves of shear stress are drawn in Figure 11. We see that both local and average shear
stress increases in case of strong Grashof number while it decreases with the increase of
Prandtl number or Schmidt number. Figure 12 shows that the couple stress decreases for
the increase of spin gradient viscosity, Darcy number or Schmidt number. It is observed
from Figure 13 that the current density rises in case of strong Darcy number but falls with
the increase of magnetic diffusivity number or magnetic force number. A decreasing effect
on Nusselt number for increasing values of Dufour Number, Prandtl or Eckert number is
noted from Figure 14. From the last Figure 15, we see that both local and average Sherwood
number is decreasingly affected by Schmidt number or heat absorption parameter while
increasingly affected by Soret number.
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Figure 11. Effect of flow variables on local and average shear stress.
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Figure 12. Effect of flow variables on local and average couple stress.
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6. Conclusions

The induced magnetic field effect on an unsteady MHD free convective heat and
mass transfer flow of a micropolar fluid past a semi-infinite vertical plate bounded by a
porous medium which is subjected to constant heat and mass fluxes under the action of a
strong magnetic field taking into account a constant heat sink is investigated in this work.
The resulting governing system of dimensionless coupled non-linear partial differential
equations are numerically solved by an explicit finite difference method. A graphical
comparison between the current results and existing results of previous works is also made
here. The agreement with finite difference solutions in both explicit and implicit schemes
is found to be very good. Finally, the results are discussed for different values of flow
parameters and the important findings that obtained from the graphical representation of
the results are listed below.

i. All of the flow variables except microrotational velocity and induced magnetic field
increase significantly until the steady-state value with time.

ii. Only the Grashof number enhances the fluid velocity near at the plate. It is con-
cluded that the Grashof number plays an important role on fluid velocity in case of
cooling problem.

iii. The microrotational velocity of fluid particles is positively influenced by Darcy
number but negatively influenced by spin gradient viscosity.

iv. The induced magnetic field strength is stronger for the lowest magnetic force or
diffusivity numbers.

v. The fluid temperature is found to be high in case of strong mass diffusion. Particu-
larly, the fluid temperature is grater for air than water.

vi. The species concentration is increasingly affected by the both heat sink and thermal
diffusion. It is also confirmed that the concentration level of fluid is greater for
lighter particles than heavier particles.

It is expected that the recent study of the combined heat and mass transfer flow of mi-
cropolar fluid can be utilized in many scientific research related to the flow under induced
magnetic field. The key findings may be effective in the movement of underground natural
assets, in separation processes as well as in the research of geophysical fluid dynamics.
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Nomenclature

C species concentration
C dimensionless species concentration
cs concentration susceptibility
cp specific heat at constant pressure
C∞ species concentration of uniform flow
Da Darcy number
Dm coefficient of mass diffusivity
D f Dufour number
Ec Eckert number
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g local acceleration due to gravity
G microrotation vector
Gr Grashof number
Gm modified Grashof number
hs constant heat sink
H induced magnetic field vector
H dimensionless induced magnetic field component
H0 induced magnetic field strength
Hw induced magnetic field at the wall
Hx, Hy induced magnetic field components
j microinertia per unit mass
K permeability of the medium
m constant mass flux per unit area
M magnetic force number
Pm magnetic diffusivity number
Pr Prandtl number
Q constant heat flux per unit area
S microrotational constant
Sc Schmidt number
So Soret number
t dimensionless time
T fluid temperature
T dimensionless fluid temperature
Tm mean fluid temperature
T∞ fluid temperature of uniform flow
u, v velocity components
U, V dimensionless velocity components
U0 dimensionless constant velocity
x spatial coordinate along to the plate
X dimensionless spatial coordinate along to the plate
y spatial coordinate normal to the plate
Y dimensionless spatial coordinate normal to the plate
Greek Symbols
∇ divergence vector
∆ microrotational number
∆t dimensionless time-step
∆X dimensionless mesh sizes along X direction
∆Y dimensionless mesh sizes along Y direction
Λ spin gradient viscosity
α heat absorption parameter
β thermal expansion coefficient
β∗ concentration expansion coefficient
χ vortex viscosity
γ spin-gradient viscosity
κ thermal conductivity
κT thermal diffusion ratio
λ vortex viscosity
µe magnetic permeability
ρ density of the fluid
σ electrical conductivity
τ time
Γ dimensionless microrotational component
Γ microrotational component
υ kinematic viscosity
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Subscripts
W at the wall of the plate
∞ free stream conditions
i, j grid points along X and Y axis respectively
Subscripts
n number of time-steps
′ at the end of a time-step
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