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Abstract: The nonlinear dynamics of the interface between two immiscible dielectric liquids at the
regime of suppressed Kelvin-Helmholtz instability by external horizontal electric field is studied
theoretically. The initial equations of the fluids motion are reduced to a single weakly nonlinear
integro-differential equation that describes the interaction of solitary waves (rational solitons) propa-
gating along the interface. The dynamics of two interacting solitons is regular and integrable; they
can combine into a stable wave packet (breather). It is shown that the interaction of three solitons
becomes complex and, for a wide rang of initial conditions, chaotic. The numerically obtained
Poincaré sections demonstrate the destruction of toroidal trajectories in the phase space during the
transition of the system to a chaotic regime of fluid motion. Such a behaviour is consistent with
the Kolmogorov-Arnold-Moser theory describing quasi-periodic chaotic motion in Hamiltonian
systems. At the developed chaotic state, the system fast loses the information on its initial state; the
corresponding estimate for Lyapunov exponent is obtained. From the physical point of view, the
chaotic behavior of the system is related with structural instability of the soliton triplet. The triplet
can decay into a solitary wave and stable breather consisting of two interacting solitons.

Keywords: Kelvin-Helmholtz instability; rational solitons; electric field; liquid interface; nonlinear
waves; liquid dielectrics

1. Introduction

One of the most widespread types of hydrodynamic instabilities is the Kelvin-
Helmholtz (KH) instability occurring at the interface between two fluids moving with
different velocities [1,2]. It also known that an external electric or magnetic field directed
tangentially to the unperturbed interface has a stabilizing effect [3,4]. Thus, the interest
to study the interfacial dynamics under the action of external electric field is caused by
the possibility of suppressing and controlling hydrodynamic instabilities [5–13]. In this
work, we investigate the dynamics of interface between dielectric liquids at the regime
of stabilized KH instability by tangential electric field. In our previous work [5], a family
of exact solutions describing the weakly nonlinear dynamics of the interface between
non-conducting liquids in the regime of complete stabilization of the KH instability was
obtained. The solutions describe propagation and interaction of nonlinear interfacial local-
ized waves (the so-called rational solitons). In the current work, we will focus on the study
of complicated and chaotic interaction between solitons propagating along the interface.

Note that the search for soliton solutions in various nonlinear equations of mathemati-
cal physics is an important and challenging problem, see the reviews [14,15] and references
therein. The nonlinear Schrödinger (NLS) and Korteweg de Vries (KdV) equations are
the classic examples of equations that admits solitary wave solutions [16,17]. The NLS
equation originally arises in describing the propagation of narrow spectral wave packets on
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the fluid boundary in a gravitational field [16] (the soliton dynamics is studied in the recent
works [18–20]). The KdV equation describes nonlinear waves in the long-wave region of
the spectrum, that is, where the length of surface perturbations is significantly greater than
the depth of the fluid [17]. Various modifications of the NLS and KdV equations were used
to describe the surface electrohydrodynamic waves, for example, see the works [21–26].

An advantage of both models is the possibility of reducing the original complex
problem of describing the motion of a fluid to solving relatively simple nonlinear partial
differential equations. An important feature of the solutions described in [5] is that they
are obtained without restrictions on the spectrum width and depth of the liquid layer. In
other words, the solutions [5] are obtained on the basis of equations of motion that include
non-local integro-differential operators. The basic idea to find exact analytical solutions
is to consider a special regime of fluid motion where their flow occurs along the electric
field lines [27]. A similar approach was used in [28–31] to analytically describe nonlinear
dynamics of liquid boundaries in the framework of non-local integro-differential equations.

Let us specify the physical conditions under which the nonlinear dynamics of the
fluid boundary can be described analytically. The dispersion relation for linear waves at
the interface between dielectric liquids in the presence of tangential electric field and the
boundary velocity jump has the form [26]

(ω + Vckx)
2 = (c2

e − c2)k2
x, (1)

where ω is the frequency, kx is the x-component of the wave vector, Vc = (ρ1V1 +
ρ2V2)/(ρ1 + ρ2) is the velocity of the center of mass of the system, ρ1,2 and V1,2 are the
fluids densities and velocities, respectively. The indexes “1” and “2” correspond to the
lower and upper liquid, respectively. Here we do not take into account the effects of gravity
and capillarity which dominate in the long-wave and short-wave limits, respectively. We
consider the intermediate wavelength range, where electrostatic forces play a major role.
The quantities c and ce are determined by the expressions

c2 =
ρ1ρ2(V1 −V2)

2

(ρ1 + ρ2)2 , c2
e =

ε0(ε1 − ε2)
2E2

(ρ1 + ρ2)(ε1 + ε2)
,

where ε0 is the electric constant, ε1,2 are the dielectric constants of liquids, and E is the
absolute value of the external horizontal electric field.

The stability of the interface between the fluids depends on the sign of the right-hand
side of the dispersion relation (1): at c2

e < c2 the KH instability is developing, whereas
at c2

e > c2 the interface is stable and waves propagate along it in the direction of applied
electric field. The situation where the right-hand side of Equation (1) vanishes (c2

e = c2)
corresponds to the neutral equilibrium state—the destabilizing effect of the tangential
discontinuity of the velocity is compensated by the stabilizing action of the horizontal
electric field. Such regime of fluid motion is realised for the following value of the external
electric field:

E2
c =

ρ1ρ2(ε1 + ε2)(V1 −V2)
2

(ρ1 + ρ2)ε0(ε1 − ε2)2 .

The exact soliton solutions [5] were found precisely for the neutral stability regime,
that is, for E = Ec.

In this paper, we investigate the complex interaction of interfacial solitons. It will
be shown that the fluid boundary can demonstrate complex and chaotic behavior. In our
opinion, this fact is especially important for the problem of describing the wave turbulence
of a liquid surface in an external electric (magnetic) field [32–36].

2. The Model Equation

In this section, we briefly describe the derivation of the key nonlinear integro-differential
equation describing the dynamics of solitons at the interface between liquids. We consider
the dynamics of the interface between two immiscible dielectric fluids with the densities ρ1,2
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and relative permittivities ε1,2 in the external horizontal electric field. The liquid interface in
the unperturbed state is the z = 0 (the x axis coincides with the direction of the external
field E and the z axis is perpendicular to it). The fluids flow along the x axis at different
velocities V1,2; that is, the difference ∆V ≡ V1 −V2 is nonzero. The shape of the interface in
the perturbed state is specified by the equation z = η(x, y, t). We assume that the horizontal
length of the problem is infinitely long.

The potentials of the velocity Φ1,2 and the electric field ϕ1,2 satisfy the Laplace equations

∇2Φ1,2 = 0, ∇2 ϕ1,2 = 0.

The normal components of the velocities of the upper and lower fluids at the interface
should be equal to each other ∂nΦ1 − ∂nΦ2 = 0, where ∂n is the derivative in the direction
of the normal to the surface. The potentials of the electric field satisfy the boundary
conditions ϕ1 − ϕ2 = 0 and ε1∂n ϕ1 − ε2∂n ϕ2 = 0. These conditions mean the requirements
of the continuity of the tangential component of the electric field strength and the normal
component of the electric displacement field at the interface (we assume that interfacial free
charges are absent). The flow of the fluids at infinite distances from the interface (z→ ∓∞)
becomes steady and the electric field becomes uniform: Φ1,2 → V1,2x and ϕ1,2 → −Ex. The
Hamiltonian H of the system under study has the form [37]

H =
∫

z≤η

[ρ1

2
(∇Φ1)

2 − ε0ε1

2
(∇ϕ1)

2
]
d3r+

+
∫

z≥η

[ρ2

2
(∇Φ2)

2 − ε0ε2

2
(∇ϕ2)

2
]
d3r.

Here, capillary and gravitational forces are not taken into account. The interface
motion is described by the Hamiltonian equations:

∂η

∂t
=

δH
δψ

,
∂ψ

∂t
= − δH

δη
. (2)

The quantity ψ in (2) is defined as ψ(x, y, t) = ρ1Φ1 − ρ2Φ2, at z = η(x, y, t).
The next step in deducing the equations of the boundary motion in explicit form is to

apply the small slope approximation |∇⊥η| � 1. Let us also consider only plane waves
propagating along the x axis (any dependence on the y variable is absent). For definiteness,
let ∆V > 0 and c > 0 (these inequalities specify the direction of the discontinuity of
the velocity). In order to obtain the equations of the interface motion, the Hamiltonian
of the system H should be expressed in terms of the canonical variables η and ψ. This
Hamiltonian is represented as a surface integral by the Ostrogradsky–Gauss theorem.
Further, the integrand in the Hamiltonian is expanded in a power series η and ψ (the
method was described in detail in [4,29,30,38]). It is convenient to use the quantities
introduced as

ψ→ ψcλ(ρ1 + ρ2), η → ηλ, t→ tλ/c,

x → xλ, E→ eEc, Vc → vcc,

where λ is the characteristic wavelength. As a result, the Hamiltonian with allowance of
terms up to cubic in the integrand has the form

H =
1
2

∫
ψk̂ψ dx +

1
2

∫
η
[
(e2 − 1)k̂η − 2vcψx + A

(
ψ2

x − (k̂ψ)2
)

+(Aee2 + A)
(

η2
x − (k̂η)2

)
− 2

√
1− A2

(
ηx k̂ψ + ψx k̂η

)]
dx,
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where A = (ρ1 − ρ2)/(ρ1 + ρ2) is the Atwood number, Ae = (ε1 − ε2)/(ε1 + ε2) is its
analog for dielectric constants, and k̂ = −Ĥ∂x, where Ĥ is the Hilbert operator. Equation (2)
with this Hamiltonian have the form:

ηt − k̂ψ− vcηx = −
√

1− A2
(

k̂(ηηx)− (ηk̂η)x

)
− A

(
(ηψx)x + k̂(ηψ̂)

)
, (3)

ψt + (e2 − 1)k̂η − vcψx =
A
2

(
(k̂ψ)2 − ψ2

x

)
−
√

1− A2
(

ηk̂ψx − ψx k̂η − k̂(ηψx)
)

+
Aee2 + A

2

(
(k̂η)2 − η2

x + 2(ηηx)x + 2k̂(ηk̂η)
)

. (4)

Thus, the evolution of the interface is described by a quite complicated system of
nonlinear integro-differential equations. In the absence of electric field, the Equations (3)
and (4) were analyzed in [38].

The realization of the neutral stability regime discussed above corresponds to the
condition, e2 = 1. The Equations (3) and (4) can be greater simplified under the additional
condition: A = −Ae or ε1ρ1 = ε2ρ2 (the examples of liquids with such properties are
presented in [30]). When the both conditions are satisfied, the Equation (4) becomes
compatible with the expression: ψ = 0. The equality, ψ = 0, physically means that the
fluids flow along the electric field lines (see [5]). Finally, the system (3) and (4) can be
reduced to the only nonlinear equation:

ηt − vcηx =
√

1− A2
[
Ĥ(ηηx)x − (ηĤηx)x

]
. (5)

Our further attention will be paid to the analysis of this key equation.

3. Soliton Dynamics

It turns out that in complex variables, the Equation (5) can be reduced to an even more
compact form. Let represent the surface elevation as η = η+ + η−, where η± = P̂±η are
the analytical continuations of the function η in the upper and lower half-planes of the
complex variable x, respectively, and P̂± = (1∓ iĤ)/2 are the projectors. Let us also pass
to the system of the center of mass of liquids: x → x + vct. Such substitution eliminates the
second term on the left-hand side of the equation. The resulting compact complex equation
has the form

τη+
t = 2iP̂+(η+η−x )x, (6)

where τ = (1− A2)−1/2 is the characteristic nonlinear time in the problem.
The specific feature of the Equation (6) is that it allows reduction to the system

of ordinary differential equations describing the interaction of an arbitrary number of
structurally stable solitary waves. We seek solution (6) in the form

η+(x, t) =
N

∑
n=1

iSn/2
x− pn(t)

, (7)

where the complex functions pn(t) determine the positions of singular points (poles) in the
lower half-plane of the complex variable x (Impn < 0) and Sn are real constants. Each pole
corresponds to an individual localized perturbation of the interface:

η =
N

∑
n=1

ηn, ηn =
Sn|Impn(t)|

(x− Repn(t))2 + (Impn(t))2 .

It can be seen that quantities Sn specify the areas of solitary perturbations (πSn =∫
ηndx), quantities Repn determine the positions of waves on the x axis, |Impn| are the char-

acteristic widths of perturbations, and Sn/|Impn| are their amplitudes. The substitution of
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Equation (7) into Equation (6) gives the following system of equations for the motion of
poles

τ
dpn

dt
=

N

∑
j=1

Sj

(pn − p̄j)2 , n = 1, 2, . . . N. (8)

We will show below that this system can describe both regular and chaotic regimes of
the soliton motion.

3.1. Regular Dynamics

For the simplest case of one soliton N = 1, the solution of the system (8) gives the
trajectory of the pole

p1(t) = v(t− t0)− iS1/a, v = −a2/(4τS1),

where a is the amplitude of the wave and t0 is a constant. Thus, the solitary wave propagates
without distortions at a constant velocity v, which is proportional to the square of its
amplitude. The direction of wave motion depends on the sign of S1. Positive and negative
perturbations propagate against and along the x axis, respectively (the direction of motion
changes to opposite at a change in the sign of the jump of the velocity ∆V, which was
previously chosen positive).

In the case N > 1 , we define the position of the center of the system of poles as

p0 =
1
S

N

∑
n=1

Sn pn, S =
N

∑
n=1

Sn.

The quantity I = Imp0 is an integral of motion of the system (8), so that the center p0
moves in parallel to the real axis. Let |pn − p0| � |I| for any n, that is, the poles are close
to each other on the complex plane. In this situation, the center of the system of poles will
move at a constant velocity

p0 = v(t− t0) + iI, v = −S/(4τ I2),

which is similar to the behavior of one pole with S1 = S for the above case N = 1. In this
case, the poles rotate about the common center at the frequency Ω = v/I. Indeed, the
motion of the poles with respect to the center p0 is described by N independent equations

d(pn − p0)

dt
= iΩ(pn − p0), n = 1, 2, . . . N,

obtained from Equation (8) by expansion in the small parameters pn − p0. Thus, in the case
of strong interaction, solitary waves are joined in a wave packet (breather). The regular
dynamics of breathers evolution is described in details in [5]. Further, we will focus on
complex irregular dynamics of soliton interaction with N ≥ 3.

3.2. Chaotic Dynamics

In this section, we study the dynamics of soliton interaction based on the numerical
solution of the nonlinear differential Equation (8). For simplicity, we consider the dynamics
of interaction of three solitons, that is, N = 3. Without loss of generality, set the system
parameters as follows: τ = 1, and S1 = S2 = S3 = 1. The phase space of the system
is characterized by six variables—the pole coordinates depending on time. Due to the
presence of the integral of motion I, the system (8) has five independent degrees of freedom.
Let us show that in this case, the dynamics of three interacting solitons can demonstrate
the chaotic behaviour.

To numerically simulate the soliton dynamics we use the explicit fourth order Runge-
Kutta method with the time step dt = 2.5× 10−3 for the solution of the system (8). At
the initial moment of time, we combine the maxima of three solitons at the origin of the
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coordinate system, that is, Re(p1) = Re(p2) = Re(p3) = 0 at t = 0. We present first four
calculation series demonstrating that the interaction of three solitons has quite complicated
character. The initial conditions are shown in the table below.

To characterize the system dynamics we use Poincaré sections shown in Figure 1 for
the initial conditions presented in Table 1. Figure 1 shows the distances between poles
with the indexes “1” and “3” at the moment when the amplitudes of second and third
solitons are equal to each other, that is, Im(p2 − p3) = 0. Figure 1a corresponds to the
initially close position between poles. In this case, the dynamics of solitons is regular; their
positions oscillate around a common center of mass. When the initial position of the first
pole is shifted to the real numerical axis, the Poincaré section is deformed as shown in
Figure 1b. With a further shift of the pole to the real axis, the toroidal trajectories in phase
space begin to break down, see Figure 1c. This behavior is consistent with the Kolmogorov-
Arnold-Moser theory developed for description of chaotic motion in Hamiltonian systems.
Finally, Figure 1d shows the developed chaotic state of the system under study for the
initial condition presented in fourth line of Table 1.

Table 1. The initial poles positions for the numerical solution of the system (8).

# p1 p2 p3

1 −0.400i −0.6i −1.15i
2 −0.200i −0.6i −1.15i
3 −0.175i −0.6i −1.15i
4 −0.100i −0.6i −1.15i

Figure 1. Poincaré sections are shown for the different initial conditions presented in Table 1: (a–d)
correspond to 1, 2, 3, and 4 lines in Table 1, respectively.

The evolution of interacting solitons is shown in Figure 2. Figure 2a corresponds to the
regular behavior which phase portrait is shown in Figure 1b. We can see that dynamics of
the soliton interaction is indeed regular and periodic. Figure 2b shows completely different
situation; the soliton motions are chaotic and non-periodic. To plot Figure 2b we used the
initial conditions from fourth line in Table 1, that is, the Poincaré section for the soliton
dynamics is shown in Figure 1d.
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Figure 2. The evolution of the interface is shown for the different initial conditions: (a,b) correspond
to Figure 1b,d, respectively. Black dashed lines correspond to the pole positions at real x-axis.

A distinctive feature of chaotic behavior is the impossibility of accurate prediction
of the state of the system at long times. To demonstrate the chaotic nature of the soliton
dynamics, let us consider the evolution of a liquid surface for two initially close conditions.
For the first realization, we will keep the initial conditions given by the fourth line in
Table 1. For the second implementation, we will slightly change the initial condition for the
third soliton p3 = −1.15001i at t = 0. Figure 3 shows the time dependence of the quantity
characterizing the difference between two realizations:

∆p3(t) = |Im(p3(t)− p′3(t))|,

where p3(t) and p′3(t) are the third pole coordinates for two different initial conditions.
Figure 3 shows that initially close trajectories diverge exponentially with time with the
value of Lyapunov exponent about 0.1. Thus, in a fairly short time of the order of 100
dimensionless units, the system completely loses memory of its initial data. Note that
Figure 1d was obtained from the simulation of long-term dynamics of the system: the total
computational interval was equal to 105 of non-dimensional units of time.

0 50 100 150t

10
-5

10
0

Δp
3

Figure 3. The difference between two initially close positions of third pole is shown versus time, the
red dashed line corresponds to the exponential fit: 10−4 exp (0.1t).

In general, the obtained results demonstrate a tendency to transition from regular to
chaotic regime of the fluid motion. The key parameter in the simulations presented is the
amplitude of the first soliton. As the soliton amplitude increases, its velocity also increases.
For a some critical value of the initial pole position, the group motion of soliton triplet
can be unstable. Figure 4 shows that with a further slight increase in the amplitude of the
first soliton, the joint motion of the waves becomes impossible. It can be seen that the first
soliton leaves the region of joint motion. The triplet of solitons becomes unstable: it decays
into a solitary wave and a stable breather consisting of two solitons. Thus, the chaotic
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behavior of the system is observed near the instability threshold, when the interaction
between solitons becomes weak, but the triplet does not decay yet.

Figure 4. The evolution of the interface is shown for the initial conditions: p1 = −0.075i, p2 = −0.6i,
p3 = −1.15i. Black dashed lines correspond to the pole positions at real x-axis.

4. Conclusions

In the present work, the nonlinear dynamics of the interface between two immiscible
dielectric fluids is investigated in the regime of stabilization of the Kelvin-Helmholtz
instability by a horizontal electric field (capillary and gravity forces are not take into
account). In a situation where the instability is completely stabilized by the external field
(neutral equilibrium), the description of the weakly nonlinear evolution of the liquid surface
can be reduced to the analysis of ordinary differential equations describing the propagation
and interaction of structurally stable localized waves (rational solitons). The dynamics of
two interacting nonlinear waves is regular and integrable [5]. In this work, we show that
the motion of soliton triplet can be complex and chaotic. The Poincaré sections obtained
on the basis of numerical analysis demonstrate the destruction of toroidal trajectories in
the phase space during the transition of the system to a chaotic regime. Such a behaviour
is consistent with Kolmogorov-Arnold-Moser theory describing quasi-periodic chaotic
motion in Hamiltonian systems. In the work, we have estimated the Lyapunov exponent in
the regime of developed chaotic state. It is shown that the system fast loses the information
on its initial state in the chaotic regime. From the physical point of view, the chaotic motion
of soliton triplet is related with its structural instability. With a slight increase in the velocity
of one soliton, the triplet decays into a solitary wave and stable breather consisting of
two solitons. Thus, within the framework of one model Equation (5), one can observe
a rich picture of nonlinear types of motion including chaos, solitons and collapses [39].
We hope that our work will motivate researchers to investigate, both experimentally and
theoretically, a new type of fluid motion, where two immiscible fluids separated by an
interface flow along the electric (or magnetic) field lines.
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