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Abstract: The paper presents a computational study of three-dimensional flow past a cylinder forced
to oscillate in a uniform stream, following a figure-eight trajectory. Flow simulations were performed
for Re = 400, for different cases, defined in terms of the oscillation mode (‘counter-clockwise’ or
‘clockwise’), for values of the ratio, F, of the transverse oscillation frequency to the Strouhal frequency
close to 1.0. The results demonstrate that, for F ≤ 1.0, counter-clockwise cylinder motion is associated
with positive power transfer from the flow to the cylinder, corresponding to excitation; for the
clockwise motion, power transfer is negative at intermediate to high amplitudes, corresponding to
damping. For the clockwise mode, in the range F = 0.9–1.1, a transition to two-dimensional vortex
street is identified for transverse oscillation amplitude exceeding a critical value. This results from
the induced suction of vortices, which moves vortex formation and shedding closer to the cylinder
surface, thus resulting in a narrower wake, characterized by an effective lower Reynolds number.
Both oscillation modes are characterized by higher harmonics in the lift force spectrum, with the
third harmonic being very pronounced, while even harmonics are present for the case of clockwise
mode, resulting from a wake transition to a “S + P” mode.

Keywords: vortex-induced vibrations; oscillating cylinder; figure-eight motion; spectral element method

1. Introduction

Flows past oscillating bluff studies have been the subject of extensive research, mainly
motivated by the practical problem of flow-induced vibrations that cylindrical structures
undergo. These vibrations originate from the time-dependent forces associated with the
vortex street formation. Vortex-induced vibration (VIV), encountered in many marine,
mechanical and civil engineering applications, is a major issue in their design and operation,
as it can cause fatigue failure. The main reviews summarizing VIV research include [1–5].

Flow past a circular cylinder is the most representative problem for VIV research,
characterized by rich dynamics and associated flow transitions, depending on Reynolds
number. Corresponding studies address the problems of either forced or free cylinder
oscillation. Forced oscillation studies can yield the time-dependent forces on the cylinder
and the power transferred to the body. Several literature studies have emphasized the
significance of forced oscillation in understanding and predicting VIV, for example, [6,7].
The similarities in the wake structure and in the variation of forces between forced and
freely oscillating cylindrical structures have been extensively reported in other relevant
research works [8–11].

VIV of cylindrical structures is caused by the dynamic nature of lift and drag forces
exerted by the flow, and is characterized by higher amplitudes in the transverse direction
(perpendicular to the flow), and lower amplitudes in the in-line direction. The significant
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role of the in-line oscillation component on increasing power transfer and, thus, VIV oscilla-
tion amplitude, has been demonstrated, among others, in the VIV studies of Sarpkaya [12]
and Dahl et al. [13]. A number of studies has shown that VIV can occur in terms of a
trajectory resembling a figure-eight, which has thus been further investigated. In particular,
for forced cylinder oscillation, the effect of in-line vibration has been discussed in the
experimental study of Jeon and Gharib [14]. Their results indicate that the inline cylinder
motion substantially affects the transfer of energy to the body by controlling the phase
of vortex shedding and thereby the phase of instantaneous forces. The effect of forcing
frequency was investigated in the numerical study of two-dimensional flow by Baranyi [15].
Further work on the problem includes computational VIV studies of two-dimensional flow
by Mittal and Kumar [16,17]. Experimental studies verifying VIV in terms of figure-eight
orbits include [18,19].

In the context of figure-eight cylinder motions, for a flow stream from left to right,
one can distinguish between a ‘counter-clockwise’ and a ‘clockwise’ mode, if the cylinder
trajectory is counter-clockwise or clockwise, respectively, in the upper x-y plane. In general,
the counter-clockwise mode has been associated with higher levels of power transfer
from the flow to the body, and thus higher oscillation (and force) amplitudes on VIV. For
example, in the recent numerical study of Wang et al. [20], consisting in flow past an
elastically mounted cylinder free to vibrate in both the transverse and the in-line direction,
at a Reynolds number of 500, it was found that the cylinder oscillation trajectory is mostly
counter-clockwise within the lock-in range.

Motivated by the presence of figure-eight motions in VIV, the present computational
study considers the problem of three-dimensional flow past a cylinder undergoing forced
oscillation following a figure-eight trajectory. The present work follows initial compu-
tational studies of the authors, performed for a Reynolds number Re = 400, both for
two-dimensional [21] and three-dimensional flow [22], the latter for transverse-only or
counter-clockwise oscillation at the Strouhal frequency. These studies have shown that,
in comparison to transverse-only oscillation, the presence of in-line oscillation in gen-
eral increases the magnitude of forces acting on the cylinder, and can also increase the
power transfer from the flow to the structure. In particular, for two-dimensional flow,
Peppa et al. [21] have confirmed higher levels of power transfer for counter-clockwise
cylinder motion.

As VIV typically occurs at frequencies in the range of, but not equal to, the Strouhal
frequency, the present work presents a comprehensive computational investigation of flow
past a cylinder undergoing figure-eight oscillation at transverse frequencies close to the
Strouhal frequency. Following Peppa et al. [22], a value of Reynolds number equal to 400 is
maintained, for which the flow is three-dimensional, and DNS results can be considered
relevant for higher Reynolds numbers, nonetheless can be attained at a substantially lower
computational cost. A constant ratio of in-line to transverse oscillation amplitude of
0.2 is used, based on experimental observations [23]. The results are referred to those of
transverse-only oscillation.

In the present study, both the counter-clockwise and the clockwise cylinder motion
are investigated, in a range of frequency ratios around F = 1.0, i.e., frequency ratios relevant
for VIV. In particular frequency ratios of F = 0.8, F = 0.9 and F = 1.1 are studied, as well
as the case of clockwise cylinder motion at F = 1.0. Thus, the present study extends our
previous work [22], which only dealt with the F = 1.0 case.

Overall, the objectives of the present study are to present a complete set of computa-
tional results in a range of oscillation frequency and amplitude relevant for VIV, including
important global parameters as power transfer and force coefficients, and to relate them to
wake structure and flow transitions.

The paper is organized as follows: First, the physical problem is defined, and the
numerical approach is introduced. Next, the results of varying the oscillation frequency
and amplitude on the non-dimensional power transfer and force coefficients are presented,
and related to the wake structure. Finally, the main conclusions are summarized.
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2. Formulation and Numerical Method

We consider a cylinder of diameter D that is forced to oscillate with respect to a
uniform stream, following a figure-eight trajectory. The velocity of the fluid upstream the
cylinder is U∞, and the density and kinematic viscosity of the fluid are, ρ and ν, respectively.
The Reynolds number of the flow is defined as Re = U∞ · D/ν, and is equal to 400, which
is the same value as in [22], and close to the one in the experiment of Williamson and
Roshko [24]. We use a Cartesian system of coordinates in which the x-axis is parallel to
the flow direction, the y-axis is perpendicular to the flow, and the z-axis expands along
the span of the cylinder. The cylinder undergoes an oscillatory motion, characterized by
oscillation amplitudes Ay and Ax in the transverse and streamwise direction, respectively,
and corresponding oscillation frequencies fy and fx. The frequency of in-line direction is
twice the transverse frequency (fx = 2fy). The instantaneous displacement of the cylinder in
the y-direction and x-direction is defined as:

ηy = Ay sin(2π fyt) (1)

ηx = ±Axsin(2π fxt) = ±Axsin
(
4π fyt

)
(2)

For a flow from left to right, the plus (+) sign in Equation (2) corresponds to a mo-
tion which is counter-clockwise in the upper x-y plane, and the minus (−) sign to a
clockwise motion in the upper x-y plane. It is further noted that the in-line oscillation
can be characterized by a phase shift, θ, with respect to the transverse oscillation, i.e.,
ηx = Axsin

(
4π fyt + θ

)
, resulting in different trajectories and direction of the cylinder

motion. The figure-eight counter-clockwise and clockwise motion corresponds to values of
phase shift θ = 0 and θ = π, respectively. A different physical problem is defined for each
of the two motions. Considering, for example, the location with maximum distance from
the x-axis, the cylinder is moving against or in the direction of the incoming stream, for
counter-clockwise or clockwise motion, respectively (Figure 1a). Other values of θ, than
0 and π considered here, correspond to different orbits, and thus different flow dynamics
and associated forces. The present study only considers the cases of the two figure-eight
trajectories, which are encountered in VIV, and can be used as reference cases, against
which others can be compared.

Fluids 2021, 6, x FOR PEER REVIEW 3 of 24 
 

The paper is organized as follows: First, the physical problem is defined, and the 
numerical approach is introduced. Next, the results of varying the oscillation frequency 
and amplitude on the non-dimensional power transfer and force coefficients are pre-
sented, and related to the wake structure. Finally, the main conclusions are summarized. 

2. Formulation and Numerical Method 
We consider a cylinder of diameter D that is forced to oscillate with respect to a uni-

form stream, following a figure-eight trajectory. The velocity of the fluid upstream the 
cylinder is 𝑈∞, and the density and kinematic viscosity of the fluid are, ρ and ν, respec-
tively. The Reynolds number of the flow is defined as 𝑅𝑒 = 𝑈∞ ⋅ 𝐷/𝜈, and is equal to 400, 
which is the same value as in [22], and close to the one in the experiment of Williamson 
and Roshko [24]. We use a Cartesian system of coordinates in which the x-axis is parallel 
to the flow direction, the y-axis is perpendicular to the flow, and the z-axis expands along 
the span of the cylinder. The cylinder undergoes an oscillatory motion, characterized by 
oscillation amplitudes Ay and Ax in the transverse and streamwise direction, respectively, 
and corresponding oscillation frequencies fy and fx. The frequency of in-line direction is 
twice the transverse frequency (fx = 2fy). The instantaneous displacement of the cylinder in 
the y-direction and x-direction is defined as: 𝜂 = 𝐴 𝑠𝑖𝑛( 2𝜋𝑓 𝑡) (1)𝜂 = 𝐴 𝑠𝑖𝑛(2𝜋𝑓 𝑡) = 𝐴 𝑠𝑖𝑛(4𝜋𝑓 𝑡) (2)

For a flow from left to right, the plus (+) sign in Equation (2) corresponds to a motion 
which is counter-clockwise in the upper x-y plane, and the minus (−) sign to a clockwise 
motion in the upper x-y plane. It is further noted that the in-line oscillation can be charac-
terized by a phase shift, θ, with respect to the transverse oscillation, i.e., 𝜂 =𝐴 𝑠𝑖𝑛(4𝜋𝑓 𝑡 + 𝜃), resulting in different trajectories and direction of the cylinder motion. 
The figure-eight counter-clockwise and clockwise motion corresponds to values of phase 
shift θ = 0 and θ = π, respectively. A different physical problem is defined for each of the 
two motions. Considering, for example, the location with maximum distance from the x-
axis, the cylinder is moving against or in the direction of the incoming stream, for counter-
clockwise or clockwise motion, respectively (Figure 1a). Other values of θ, than 0 and π 
considered here, correspond to different orbits, and thus different flow dynamics and as-
sociated forces. The present study only considers the cases of the two figure-eight trajec-
tories, which are encountered in VIV, and can be used as reference cases, against which 
others can be compared. 

 

(a) 

Figure 1. Cont.



Fluids 2021, 6, 107 4 of 22
Fluids 2021, 6, x FOR PEER REVIEW 4 of 24 
 

 
(b) 

Figure 1. (a) Sketch of cylinder oscillation with respect to a uniform stream: (a.a) counter-clockwise 
mode, (a.b) clockwise mode. (b) Spectral element grid for three-dimensional flow past a circular 
cylinder. The origin of axes is at the cylinder center. 

The lift and drag forces are acting on the cylinder, in the transverse and in-line direc-
tion, respectively. The total lift and drag force, per cylinder unit length, are scaled with 
the dynamic pressure, yielding the lift and drag coefficient, respectively: 

𝐹 = 12 𝜌𝑈∞𝐷𝐶  (3)

𝐹 = 12 𝜌𝑈∞𝐷𝐶  (4)

The instantaneous lift coefficient, 𝐶 , can be decomposed into the time-averaged 
value, 𝐶 , and the instantaneous fluctuations, 𝐶′ , i.e., 𝐶 = 𝐶 +𝐶′ , where 𝐶 = 1/𝑇 𝐶 𝑑𝑡, with T representing a large integration time, consisting of an integer 
number of oscillation periods. Correspondingly, the drag coefficient, 𝐶 , is decomposed 
as: 𝐶 = 𝐶 +𝐶′  where 𝐶 = 1/𝑇 𝐶 𝑑𝑡. 

From dimensional analysis, it follows that the non-dimensional force coefficients are 
functions of: the Reynolds number, the normalized y-amplitude (Ay/D), the amplitude 
ratio, ε = 𝐴 /𝐴 , and the frequency ratio F = 𝑓 /𝑓 , where fs is the non-dimensional vor-
tex shedding frequency in flow past a stationary cylinder (Strouhal frequency). For Re = 
400, fs = 0.204 ([22]). 

An important quantity for VIV is the net power transfer from the fluid to the struc-
ture, with positive values corresponding to excitation, and negative values corresponding 
to damping. Since a rigid oscillating cylinder is considered in the present study, the in-
stantaneous displacement is uniform along the cylinder span. The instantaneous power 
transfer per cylinder unit length is readily obtained from the product of instantaneous 
force components (per cylinder unit length) and the instantaneous cylinder velocity com-
ponents. The time-average power (per cylinder unit length) transferred from the flow to 
the cylinder can be normalized by 𝜌𝑈 𝐷, yielding the non-dimensional “power transfer 
parameter”. In the present case of both transverse and in-line cylinder oscillation, the total 
value of time-average power transfer parameter consists of the sum of the corresponding 
contributions of the y- and x-motion: 

𝑃 = 2𝜌𝑈 𝐷 1𝑇 𝐹 𝑑𝜂𝑑𝑡 𝑑𝑡 + 𝐹 𝑑𝜂𝑑𝑡 𝑑𝑡  (5)

Figure 1. (a) Sketch of cylinder oscillation with respect to a uniform stream: (a.a) counter-clockwise
mode, (a.b) clockwise mode. (b) Spectral element grid for three-dimensional flow past a circular
cylinder. The origin of axes is at the cylinder center.

The lift and drag forces are acting on the cylinder, in the transverse and in-line
direction, respectively. The total lift and drag force, per cylinder unit length, are scaled
with the dynamic pressure, yielding the lift and drag coefficient, respectively:

Fy =
1
2

ρU2
∞DCL (3)

Fx =
1
2

ρU2
∞DCD (4)

The instantaneous lift coefficient, CL, can be decomposed into the time-averaged
value, < CL >, and the instantaneous fluctuations, C′L, i.e., CL = 〈CL〉 + C′L, where
〈CL〉 = 1/T

∫ T
0 CLdt, with T representing a large integration time, consisting of an integer

number of oscillation periods. Correspondingly, the drag coefficient, CD, is decomposed
as: CD = 〈CD〉+ C′D where 〈CD〉 = 1/T

∫ T
0 CDdt.

From dimensional analysis, it follows that the non-dimensional force coefficients are
functions of: the Reynolds number, the normalized y-amplitude (Ay/D), the amplitude
ratio, ε = Ax/Ay, and the frequency ratio F = fy/ fs, where fs is the non-dimensional
vortex shedding frequency in flow past a stationary cylinder (Strouhal frequency). For
Re = 400, fs = 0.204 [22].

An important quantity for VIV is the net power transfer from the fluid to the structure,
with positive values corresponding to excitation, and negative values corresponding to
damping. Since a rigid oscillating cylinder is considered in the present study, the instanta-
neous displacement is uniform along the cylinder span. The instantaneous power transfer
per cylinder unit length is readily obtained from the product of instantaneous force compo-
nents (per cylinder unit length) and the instantaneous cylinder velocity components. The
time-average power (per cylinder unit length) transferred from the flow to the cylinder can
be normalized by 1

2 ρU3
∞D, yielding the non-dimensional “power transfer parameter”. In

the present case of both transverse and in-line cylinder oscillation, the total value of time-
average power transfer parameter consists of the sum of the corresponding contributions
of the y- and x-motion:

P =
2

ρU3D
1
T
{
∫ T

o
Fy

dηy

dt
dt +

∫ T

0
Fx

dηx

dt
dt} (5)
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The equations governing the fluid motion are the continuity and Navier–Stokes
equations. We nondimensionalize all lenghts by D, all velocities by U∞, time by D/U∞,
and pressure by ρU2

∞, and write the incompressibility and Navier–Stokes equations as:

∇ ·→u = 0 (6)

∂
→
u

∂t
+
→
u · ∇→u = −∇p +

1
Re
∇2→u (7)

where
→
u is the vector of the absolute fluid velocity, and Re is the Reynolds number of the

flow.
On the cylinder surface, the fluid’s instantaneous velocity is equal to the cylinder

velocity, i.e.,
→
u = dηx

dt

→
i +

dηy
dt

→
j + 0

→
k , where (ηx, ηy, 0) is now the non-dimensional cylinder

displacement, and
→
i ,
→
j ,
→
k are the unit vectors in the three directions. To avoid recon-

structing the computational grid at each time step, we use a frame of reference fixed on
the cylinder. Let

→
u now express the relative velocity with respect to the moving cylin-

der. The incompressibility equation remains unchanged, while the momentum equation
(Equation (7)) becomes:

∂
→
u

∂t
+
→
u · ∇→u = −∇p +

1
Re
∇2→u − d2ηx

dt2

→
i −

d2ηy

dt2

→
j (8)

i.e., a d’Alembert acceleration appears on the right-hand side of Equation (8). This means
that, in order to find the actual force components acting on the cylinder, we need to subtract
from the computed force a “dynamic Archimedes” force, equal, per cylinder unit length,

to −(π/4)ρD2d2ηy/dt2
→
j and −(π/4)ρD2d2ηx/dt2

→
i , for its lift and drag component,

respectively.
For the above problem formulation, the flow boundary conditions referring to the

x-y cross-sections are implemented as follows: (i) at the inflow and side boundaries,
→
u y = − dηy

dt

→
j ,
→
u x = 1

→
i − dηx

dt

→
i ,
→
u z = 0

→
k , (ii) on the cylinder surface,

→
u = 0, (iii) at the

outflow, maintain Neumann-type boundary conditions, ∂
→
u

∂η = 0. Finally, periodic boundary
conditions are specified for the end planes in the spanwise direction.

The parallel code Nek5000 [25], based on the spectral element method [26,27] is used
to solve Equations (6) and (8) constrained by the above boundary conditions. The spectral
element method (SEM), used for spatial descritization, employs high-order weighted
residuals for the solution of partial differential equations, based on orthogonal polynomials
and highly accurate numerical quadrature. In SEM, each element involves a separate
discretization mesh with the same number of collocation points in each direction, and
the dependent variables are expanded in terms of Legendre polynomials. In each spatial
direction, the number of collocation points in each element is equal to the order of the
polynomials plus one.

The computational domain extends 60D downstream and 20D upstream from the
centre of the cylinder. In the vertical direction, the domain extends symmetrically from the
cylinder centerline to a maximum distance of 17D. The extent of the domain in the spanwise
direction (z-direction) is equal to 2πD. Based on experimental results for the spanwise
wavelentgh of streamwise vortices [28], as well as relevant computational studies [29], the
present spanwise domain length is deemed sufficient.

In the x-y plane, 2056 spectral elements are used for domain decomposition. In the
z-direction, 10 element layers are used. Thus, 20,560 three-dimensional spectral elements
are used in total, and the resolution of each element is 8 × 8 × 8. The spectral element grid
is shown in Figure 1b. For time discretization, a third order semi-implicit temporal scheme
has been adopted [30]; the time step is ∆t = 0.001. The accuracy of the resolution used in
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present study has been verified by thorough validation and resolution tests, also including
comparisons against experiments, as reported in [22].

3. Results

We conducted Direct Numerical Simulation (DNS) of three-dimensional flow past
a cylinder, for Re = 400. The present study considers both the counter-clockwise and
the clockwise oscillation mode, at frequency ratios in the range F = 0.8 to F = 1.1, for
a constant value of ε = 0.2, and makes proper reference to results of transverse-only
oscillation (ε = 0). For all values of F, transverse oscillation amplitudes of up to 0.6 cylinder
diameters are considered. For each case, the governing equations are integrated in time
until a “statistical steady state” is reached, characterized by time-independent mean flow
quantities. Subsequently, the equations are further integrated for several oscillation periods,
and flow statistics, as time-average force coefficients and power transfer parameter, are
calculated. For all cases, simulations are initialized from a lower amplitude simulation of
the same oscillation frequency.

3.1. Power Transfer and Hydrodynamic Forces

In this section, results of power transfer parameter and force coefficients versus the
problem independent parameters, F and Ay/D, are presented. Although power transfer
is essentially uniform along the cylinder span in the present problem of flow past a rigid
cylinder, variation along the span (corresponding to different oscillation patterns) has been
reported for the case of flow past a long flexible cylinder in shear flow [31].

We start by presenting results for the reference problem of transverse-only oscillation
(ε = 0). Figure 2a presents the variation of time-average power transfer parameter, P, with
oscillation amplitude, for the frequency values of the present study. These results indicate
that, for F ≤ 1, P initially increases with Ay/D, reaches a maximum, and decreases for non-
dimensional oscillation amplitude higher than about 0.4; negative values of P are obtained
for Ay/D values higher than about 0.5, in agreement with the results of Leontini et al. [9]
and Peppa et al. [32] for two-dimensional flow at lower Reynolds numbers. For the case of
above-resonant forcing (F = 1.1), among the amplitudes considered, a positive value of P
is only obtained for Ay/D = 0.5, accompanied by a drastic increase in time-average drag
coefficient, <CD> (Figure 2b). The drag coefficient is monotonically increasing for resonant
forcing (F = 1). For F < 1, increasing <CD> values are obtained after a threshold value of
oscillation amplitude, and this should be associated with lock-in of the vortex street to the
forcing frequency.
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Figure 3a presents the variation of time-average power transfer parameter, P, with
oscillation amplitude, for the counter-clockwise mode, for the different frequencies con-
sidered, while Figure 3b presents the corresponding variation for the clockwise mode.
A comparison with the results of transverse-only oscillation (Figure 2a) shows that the
values of P attained for counter-clockwise oscillation are higher, with positive values still
maintained for Ay/D = 0.6. Consequently, VIV in terms of a counter-clockwise should only
occur at higher oscillation amplitude. For the clockwise mode, for F ≤ 1, P is nearly zero
at low oscillation amplitude, and is negative and decreasing for Ay/D values higher than
about 0.3; negative values, characterized by a monotonic decrease with Ay/D, are attained
for F = 1.1. Thus, the appearance of a clockwise mode is less likely in VIV.
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Figure 3. Variation of the power transfer parameter, P, for ε = 0.2, versus the non-dimensional amplitude Ay/D, for
frequency ratio F = 0.8, 0.9, 1.0, 1.1: (a) counter-clockwise cylinder oscillation, (b) clockwise cylinder oscillation.

An important feature of flow past a cylinder is the forces exerted on the body, ex-
pressed in terms of the lift and drag coefficient. The variation of fluctuation intensities of
lift coefficient, CL,RMS, with oscillation amplitude, for the different values of transverse
oscillation frequency, is presented in Figure 4a,b, for the counter-clockwise and the clock-
wise mode, respectively. Interestingly, for the counter-clockwise oscillation at F = 1.0, the
lift fluctuation curve remains flat for Ay/D ≥ 0.2. For F = 1.1, a significant variation is
found around Ay/D = 0.30, which is in correspondence with the sharp decrease in the
value of power transfer parameter (Figure 3a). For clockwise motion, a monotonic increase
of CL,RMS with oscillation amplitude is found (Figure 3b), with the values attained in the
high end of oscillation amplitude being higher than those for counter-clockwise motion by
a factor of two.
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The variation of time-average and RMS fluctuation of drag coefficient is presented
in Figures 5 and 6, respectively. In general, a monotonic increase of drag with oscillation
amplitude is found, for both oscillation modes. A less ordered variation is observed
for F = 1.1, especially for the counter-clockwise mode. Interestingly, in the high end of
amplitudes considered, lower levels of drag coefficient are computed for the clockwise
mode, suggesting a narrower wake, in comparison to the counter-clockwise mode.
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The flow structure and dynamics affects the frequency content of forces. Computed
lift coefficient spectra are presented for the two oscillation modes in Figure 7a,b (F = 0.9),
Figure 8a,b (F = 1.1) and Figure 9 (F = 1.0, clockwise mode), for representative values of
transverse oscillation amplitude, Ay/D ≥ 0.2. In all cases, the spectra demonstrate the
absence of Strouhal frequency, and the presence of the excitation frequency and its higher
harmonics (lock-in). For F = 0.9, the spectra of both modes exhibit a strong peak at the
third harmonic (Figure 7a,b), while they also show the next higher odd harmonic; even
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harmonics exhibit a strong presence in the case of the clockwise mode (Figure 7b), and
are absent from the counter-clockwise mode spectra (Figure 7a). The results presented
for F = 1.0 verify the presence of both odd and even harmonics (Figure 9), similarly to the
results obtained for F = 0.9. For F = 1.1, the lift spectra of the counter-clockwise mode
show the strong presence of the third harmonic, as well as the absence of even harmonics
(Figure 8a); for clockwise oscillation, the spectra are populated by only odd harmonics at
low and moderate oscillation amplitude, and by both odd and even harmonics at high
amplitude (Figure 8b).
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Thus, for all cases, a strong presence of odd harmonics of the first lift component
(corresponding to the transverse oscillation frequency) is found. This is in accordance with
the results of Peppa et al. [22] for flow past a cylinder forced at the Strouhal frequency,
oscillating in the transverse-only direction or following a counter-clockwise figure-eight
trajectory. In particular, the presence of the third harmonic is verified here as an important
flow characteristic of flow past an oscillating cylinder, in agreement with the findings of
previous investigations, as the VIV study of Dahl et al. [18]; the third harmonic is found to
become more pronounced at increasing oscillation amplitude. Moreover, for all frequencies
considered for the case of the clockwise mode, even harmonics are present in the lift
spectrum at sufficiently high values of transverse oscillation amplitude.
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3.2. Visualization of the Flow in the Wake

In this section, we present flow visualizations in terms of vorticity isocontours, in order
to characterize the flow structure and relate it to the results of power transfer and force
coeffecients, already presented. Flow past a stationary cylinder at Re = 400 has the structure
of Mode B [28], characterized by the presence of spanwise rolls (2S shedding), and counter-
rotating streamwise vortex pairs. Cylinder oscillation is thus expected to affect this wake
structure. Visualizations of computed flow fields are presented here in terms of isosurfaces
ofω = ±2, for all three vorticity components. All visualizations refer to the mean position
of the oscillating cylinder, i.e., ηy/D = ηx/D = 0. For resontant forcing, Peppa et al. [22]
have shown that, for the counter-clockwise mode, the flow three-dimensionality is reduced
at low oscillation amplitude, with the flow becoming increasingly more complex at higher
amplitudes, while always maintaining the 2S shedding mode.

First, results are presented for counter-clockwise cylinder oscillation at F = 0.9, in
terms of the vorticity isosurfaces shown in Figure 10. A moderate three-dimensionality
is present at the lower oscillation amplitudes of 0.20 and 0.30; the wake is strongly three-
dimensional at the high oscillation amplitude of 0.60. The 2S shedding mode is present at
all oscillation amplitudes, as also illustrated by the spanwise vorticity isocontours in a plane
of constant z in Figure 11. For the same oscillation frequency (F = 0.9), flow visualization
for clockwise cylinder oscillation is presented in Figures 12 and 13, for three values of
transverse oscillation amplitude (0.20, 0.30, 0.40). The results show a 2S mode at the low
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oscillation amplitude, and the presence of a more complex structure associated with vortex
splitting at higher amplitudes (Ay/D = 0.30–0.40), commonly referred to as the “S+P” wake
mode. Interestingly, a full return to two-dimensional flow is attained at the transverse
oscillation amplitude of 0.40. The shedding mode characterized by the presence of vortex
splitting has first been reported in [33], and characterized as “partial S+P” mode. These
flow visualizations demonstrate that the “S+P” mode is the cause of the even harmonic
frequency components identified in the lift spectrum (Figure 7b).
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F = 0.9 and (a) Ay/D = 0.20, (b) Ay/D = 0.30, (c) Ay/D = 0.60.
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and (a) Ay/D = 0.20, (b) Ay/D = 0.30, (c) Ay/D = 0.40.
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plane z = 3 for F = 0.9 and (a) Ay/D = 0.20, (b) Ay/D = 0.30, (c) Ay/D = 0.40.

Figures 14 and 15 present flow visualizations at resonant forcing (F = 1.0) for the clock-
wise mode. This case has been first discussed in the Conference papers of Peppa et al. [34,35],
and the results are included here for completeness. Figure 14 presents the flow structure
for three values of transverse oscillation amplitude (0.10, 0.20, 0.30); a clear convergence to
a two-dimensional 2S wake is demonstrated already at Ay/D = 0.20. For the same cases,
Figure 15 presents a visualization of the wake in a plane of constant z. The presence of a
two-dimensional wake is evident for Ay/D ≥ 0.20, as well as the presence of the “S+P”
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mode for Ay/D = 0.30. We note that these transitions do not have a marked effect on the
variation of power transfer and force coefficients (Figures 3–6). This should be associated
with the fact that in all cases shedding is initiated as a 2S pattern, which may by modified
into a “S+P” mode farther downstream. Finally, the “S+P” mode is also verified as the
cause for the existence of even harmonics in the lift spectrum, in the present case of F = 1.0
(Figure 9).
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Figure 15. Clockwise cylinder oscillation: Instantaneous isocontours of spanwise vorticity for the
plane z = 3 for F = 1.0 and (a) Ay/D = 0.10, (b) Ay/D = 0.20, (c) Ay/D = 0.30.
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For the case of F = 1.1 and counter-clockwise cylinder oscillation, flow visualizations
are presented in Figures 16 and 17, for transverse oscillation amplitudes of 0.20, 0.30 and
0.40. For the lower oscillation amplitude (Ay/D = 0.20) a nearly two-dimensional vortex
street is initiated, and modified farther downstream by vortex pairing, which gives rise
to a stronger flow three-dimensionality. For Ay/D = 0.30, the 2S structure persists farther
donwstream, giving a narrow wake, which is in accordance with the drop in the mean drag
coefficient value (Figure 5a). Finally, for Ay/D = 0.40, a vortex pairing process is identified,
leading to vortex dipoles.
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Figure 16. Counter-clockwise cylinder oscillation: Instantaneous vorticity isosurfaces (top view) for
F = 1.1 and (a) Ay/D = 0.20, (b), Ay/D = 0.30, (c) Ay/D = 0.40.
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Figures 18 and 19 present flow visualizations for F = 1.1, for the clockwise mode, for
representative values of transverse oscillation amplitude (0.10, 0.30, 0.60), demonstrating
the return to two-dimensional flow at Ay/D = 0.30, as well as the presence of a “S+P”
mode at Ay/D = 0.60, thus bearing some similarities with the case of resonant forcing.
However, for F = 1.1, vortex pairing and dipole formation is present several diameters
downstream the cylinder, upon return to two-dimensional flow (Ay/D = 0.30). Finally, the
“S+P” mode becomes rather complex farther downstream (Ay/D = 0.60). Again, the direct
relation between the “S+P” mode and the even harmonics in the lift spectrum is verified
(Figure 8b).
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Figure 18. Clockwise cylinder oscillation: Instantaneous vorticity isosurfaces (top view) for F = 1.1
and (a) Ay/D = 0.10, (b), Ay/D = 0.30, (c) Ay/D = 0.60.
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Finally, flow visualizations for F = 0.8, i.e., at a transverse frequency not close to
the natural frequency of the vortex street, illustrate that a complex wake structure is
attained, both for the counter-clockwise (Figures 20 and 21) and the clockwise mode
(Figures 22 and 23).

Fluids 2021, 6, x FOR PEER REVIEW 19 of 24 
 

   

   

   

   

(b) 

(c) 

(a) 

 
Figure 19. Clockwise cylinder oscillation: Instantaneous isocontours of spanwise vorticity for the plane z = 3 for F = 1.1 
and (a) Ay/D = 0.10, (b), Ay/D = 0.30, (c) Ay/D = 0.60. 

Finally, flow visualizations for F = 0.8, i.e., at a transverse frequency not close to the 
natural frequency of the vortex street, illustrate that a complex wake structure is attained, 
both for the counter-clockwise (Figures 20 and 21) and the clockwise mode (Figures 22 
and 23). 

           

          

          

                              

(b) 

(c) 

(a) 

 
Figure 20. Counter-clockwise cylinder oscillation: Instantaneous vorticity isosurfaces (top view) for
F = 0.8 and (a) Ay/D = 0.10, (b), Ay/D = 0.30, (c) Ay/D = 0.40.
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4. Discussion and Conclusions

DNS results for three-dimensional flow past an oscillating cylinder following a figure-
eight motion have been presented. Flow simulations were performed for Re = 400, for
which the unforced flow is three-dimensional, for different cases, defined by the direction



Fluids 2021, 6, 107 19 of 22

(counter-clockwise or clockwise) of the figure-eight motion and the ratio, F, of the transverse
oscillation frequency to the Strouhal frequency. The ratio of in-line to transverse oscillation
amplitude was equal to ε = 0.2, whereas the case of transverse-only cylinder oscillation
(ε = 0) was also considered. Simulations were performed for representative values of
frequency ratio (F = 0.8, 0.9, 1.0 and 1.1), for transverse oscillation amplitudes up to
0.60 cylinder diameters.

Our findings indicate that the mode of cylinder oscillation critically affects the three-
dimensionality and overall structure of the wake. Particularly, it was found that, for F ≤ 1.0,
the counter-clockwise cylinder motion is associated with positive power transfer, while,
for clockwise motion, power transfer is nearly zero for transverse oscillation amplitudes
up to 0.30, while it becomes negative and decreases monotonically at higher amplitudes.
This confirms recent experimental and numerical studies [20,31,36], demonstrating that
the occurrence of a clockwise cylinder motion is less probable in VIV, in comparison to
the counter-clockwise mode. Also, the values of power transfer are consistently higher
for counter-clockwise cylinder motion, in comparison to transverse-only oscillation. Thus,
in-line oscillation increases the level of power transfer to the cylinder, and consequently
a freely oscillating cylinder can reach higher amplitudes of oscillation. Positive power
transfer is not favored at above resonant forcing.

An important finding of the present study is that, in the range F = 0.9–1.1, clockwise
motion is characterized by a transition from three-dimensional to two-dimensional wake
flow, at a certain value of oscillation amplitude, depending on oscillation frequency. At
F = 1.0, the flow is already two-dimensional at the low amplitude of Ay/D = 0.20, while, for
F = 0.9 and F = 1.1, the flow has been found to be two-dimensional at Ay/D = 0.40 and 0.30,
respectively. No return to two-dimensionality has been found for the counter-clockwise os-
cillation mode; nonetheless, a weaker three-dimensionality of the wake has been identified
for moderate values of oscillation amplitude.

The direction in which the figure-eight is traversed thus greatly affects the wake
structure. With respect to transition to a two-dimensional wake, the differences can be
interpreted in terms of the interaction of the cylinder motion with the process of vortex
formation and shedding. In particular, the clockwise motion is associated with negative
streamwise velocity component in the wake (region between dotted lines in Figure 1a);
this induces vortex suction in the wake, moving the vortex formation and shedding
closer to the cylinder surface (Figure 24). Thus, the resulting wake flow is narrower,
characterized by lower drag, as shown in Figure 5. The narrower wake is associated with
a lower value of effective Reynolds number, explaining the return to two-dimensional
flow. This in turn generates a homogeneous distribution of instantaneous pressure on the
cylinder surface, resulting in higher levels of RMS lift coefficient values, in comparison to
counter-clockwise cylinder oscillation (Figure 4). On the other hand, for counter-clockwise
motion, the cylinder pushes the vortices in the wake, thus resulting in a displacement
of vortex formation and shedding with respect to its surface (Figure 24); this yields an
effective higher Reynolds number, in accordance with the present results of persistent
three-dimensional flow.

The existence of the third harmonic component in the lift spectrum reported in [22] for
the resonant forcing was also demonstrated for the non-resonant frequencies of the present
study, accompanied by weaker higher odd harmonics. This holds for both oscillation
modes considered (counter-clockwise and clockwise), with the third harmonic being quite
pronounced in most cases, especially at increasing oscillation amplitude. The presence of
even harmonics in the lift spectrum has been identified for clockwise cylinder oscillation at
sufficiently high amplitudes (Figures 7b, 8b and 9). In all cases, this is associated with the
presence of a “S + P” wake mode, resulting from the splitting of one of the two vortices
shed (Figures 13, 15 and 19).
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Figure 24. Instantaneous isocontours of spanwise vorticity for the plane z = 0, with the cylinder at its mean position
(ηy/D = ηx/D = 0): (a) F = 0.9, Ay/D = 0.40, (b) F = 1.1, Ay/D = 0.30. The left column corresponds to counter-clockwise
cylinder oscillation, and the right column to clockwise oscillation.
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