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Abstract: In this paper, we are concerned with a time-dependent transmission problem for a thermo-
piezoelectric elastic body that is immersed in a compressible fluid. It is shown that the problem
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may obtain properties of corresponding solutions in the time-domain without having to perform the
inversion of the Laplace-domain solutions.
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1. Introduction

The mathematical description of the interaction between an acoustic wave and an elas-
tic body is of central importance in applied mathematics and engineering, as attested, for
instance, by its usage for the detection and identification of submerged objects. The prob-
lem is mathematically formulated as a transmission problem between elastic and acoustic
fields communicating through an interface and it is referred to in the literature either as
“fluid-structure interaction problem” or “wave-structure interation problem”. The former
terminology (wave-structure interaction) is also used to describe a similar problem that
involves the coupling between fluid equations (either Stokes or Navier–Stokes) and the
equations of elasticity. Here, we will be interested in the coupling between the acoustic and
elastic wave equations, and we will use the term “wave-structure interaction” exclusively
to avoid any confusion.

In the early days of the field, most of the mathematical formulations of these kinds
of problems were based on time-harmonic formulations. Being motivated by the paper
of Mamdi and Jean [1], Hsiao, Kleinman, and Schuetz ’s paper from 1988 [2] gave the
first mathematical justification of a variational formulation for wave-structure interaction
problems. This set out the field for many further efforts that expanded the understanding
of time-harmonic scattering (see, e.g., [3–7]). Over the years, time-harmonic wave-structure
interaction problems have been studied in various different areas, such as inverse prob-
lems [8,9], interaction of fluid and thin structures [10], and interaction of electromagnetic
fields and elastic bodies [11,12], just to name a few.

One of the main reasons behind the use of the boundary-field equation method for
treating time-harmonic wave-structure problems is to reduce the transmission problem,
posed originally in an unbounded domain, to one set in the bounded domain Ω that
was determined by the elastic scatterer (see Figure 1). However, the conversion from an
unbounded to a bounded domain comes at the price of turning the problem into a non-local
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one, which brings along some mathematical disadvantages. Because the sesquilinear form
arising from the nonlocal boundary problem can only satisfy a Gårding inequality, in order
to apply the standard Fredholm alternative for the existence theory, the uniqueness of the
solution becomes a requirement. However, the straightforward boundary-field method
can not circumvent the drawbacks, because the problem is not uniquely solvable when
the frequency of the incident wave coincides with what is known as a "Jones frequency".
At such a frequencies, the corresponding homogeneous problem may have traction free
solutions (a recent discussion on this can be found in [13]). Moreover, the uniqueness of
the solutions to the boundary integral equations may not be guaranteed when the exterior
wavenumber coincides with an eigenvalue of the corresponding interior Dirichlet problem
(see [14]). The issue of non-uniqueness has motivated lots of research, and attempts to
overcome these difficulties have been made with the help of methods, such as Schenck’s
Combined Helmholtz Integral Equation Formulation [15] (commonly known as the CHIEF
method) and the celebrated formulation by Burton and Miller [16].

Figure 1. Schematic of the wave scattering problem. The interface between the solid and the fluid is
denoted by Γ, while the outward-pointing normal vector (that is defined for almost every point in
the boundary) is denoted by n.

In the present paper, being inspired by the work of Estorff and Antes [17], we will
apply the boundary-field equation method not to a time-harmonic problem, but rather one
in the transient regime. This will require the treatment of the wave equation, as opposed
to the Helmholtz equation that is used in the frequency domain. The problem of interest
is that of the interaction between a thermo-piezoelectric elastic body that is immersed in
a compressible fluid. The method will not be directly applied in the time-domain, but
rather in the Laplace transformed domain. The reasons for this will be made clear in due
time. The equations will then be reduced to those of a nonlocal boundary problem in the
transformed domain, where all tof he analysis will be performed. The technique that
will be applied will allow for us to understand the behavior of the transient problem (and
even simulate it computationally if we were so inclined) without ever having to invert the
Laplace transform.

The outline of the solution/analysis procedure for the time-dependent wave-structure
interaction is as follows:

1. Formulate a time-dependent transmission problem.
2. Apply the Laplace transform to the time-dependent transmission problem.
3. Reduce the transformed transmission problem to a nonlocal boundary problem in the

bounded domain Ω with the help of a Boundary Integral Equation (BIE). This leads to
the boundary-field equation formulation of the problem in the transformed domain.

4. Obtain estimates of variational solutions of the nonlocal boundary problem in terms
of the Laplace transformed variable s.

5. Deduce estimates for the solutions in the time domain from those of the corresponding
solutions in the Laplace domain while using Lubich’s and Sayas’s approach for
treating BIEs of the convolution type [18–20]).

The process that is described above has been successfully applied to a number of
special cases [21–24]. However, in all of the cases under consideration, the formulations
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in the fluid domain were given in terms of velocity potentials, not in terms of standard
fluid pressures. As will be seen, an appropriate scaling factor will have to be introduced to
formulate the problem in term of fluid pressure.

The analysis will proceed more or less following the steps that are outlined above.
Section 2 introduces the time-domain formulation of the problem, and Section 3 then
describes the corresponding nonlocal boundary problem in the Laplace transferred domain.
Section 4 contains mathematical ingredients concerning crucial estimates for the solution
of the nonlocal boundary problem in the transformed domain. Section 5 presents the main
results in the time domain and Section 6 ends the paper with some concluding remarks.

2. Formulations of the Problem

We will denote by Ω an open and bounded subset of R3 that will be considered to
be occupied by an elastic solid. We will further assume that the boundary of the solid is
described by a Lipschitz-continuous curve and it will be denoted by Γ. The exterior of this
solid, which will be denoted by Ωc = R3 \Ω, will be filled by an inviscid and compressible
fluid. Figure 1 depicts a schematic of the geometric setting.

We will consider that, when at rest, the velocity, pressure, and density in the fluid
are described by the constant fields v0 = 0, p0, and ρ f , and will be interested in the time
evolution of small parturbations from this static configuration, as described by the fields
v, p and ρ, which is given by the linearized Euler equation in the fluid domain Ωc

ρ f
∂v
∂t

+∇p = 0, (1)

the continuity equation
∂ρ

∂t
+ ρ f ∇ · v = 0, (2)

for ρ, and v, and the state equation for p and ρ

p = c2ρ. (3)

Above, the sound speed c is a function that varies depending on the properties of the
fluid (see e.g., [25,26]), and the operator ∂

∂t is the usual partial derivative with respect to
the time variable, not to be confused with the material derivative. All of these equations are
posed in Ωc × [0, ∞). A simple manipulation shows that, with the help of Equations (2)
and (3), we may replace Equation (1) by a single wave equation for the pressure p

1
c2

∂2 p
∂t2 − ∆p = 0 in Ωc × [0, ∞).

Now, inside the domain Ω that is occupied by the solid, the governing equation
depends on the properties of the solid. It may be as simple as an elastic obstacle, or
it may have more complicated physical properties, such as a thermoelastic solid, or a
thermopiezoelectric solid, as in our present case. The problem under consideration, for a
thermo-piezoelectric body, consists of determining the stress and strains tensors, σ(x, t)
and ε(x, t), the elastic displacement u(x, t), temperature variation θ(x, t), and the electric
potential ϕ(x, t). The physics of the process can be described in terms of the reference
density of the solid ρe, the absolute temperature in the solid T and its stress-free reference
temperature T0, the electric displacement vector D(x, t), and the entropy per unit volume
P(x, t). The governing equations have been derived by Mindlin [27] and they consist of
three coupled partial differential equations, namely the dynamic elastic equations:

ρe
∂2u
∂t2 −∇ · σ = 0, (4)
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the generalized heat equation

T
∂P
∂t
− ∆ θ = 0, θ := T − T0, (5)

and the equation of the quasi-stationary electric field (i.e., Gauss’s electric field law without
electric charge density):

∇ ·D = 0. (6)

These equations need to be supplied with adequate constitutive relations provid-
ing a description of the functional dependence between the unknown variables within
the thermo-piezoelectric media. In the isotropic case, the constitutive relations may be
simplified in the form (see [28]):

σ = σ(u, θ, ϕ) := σe(u)− ζ θ I− e>E, (7)

P = P(u, θ, ϕ) := ζ∇ · u +
cε

T0
θ + p · E,

D = D(u, θ, ϕ) := e ε(u) + θ p + ε E, (8)

where:
σe := λ (∇ · u) I + 2 µ ε(u), and ε(u) :=

1
2
(∇u +∇u>)

are the usual stress and strain tensors for isotropic elastic media, while e = ((eijk)) is the
piezoelectric tensor with constant elements, such that ekij = ekji. This third order tensor
maps matrices into vectors, while its adjoint, which will be denoted by e>, maps vectors
into symmetric matrices. More precisely, for a real symmetric matrix M ∈ Rd×d

sym and for a
vector, d ∈ Rd, we define:

(eM)k := ∑
ij

ekijMij ∈ Rd and (e>d)ij := ∑
k

ekijdk ∈ Rd×d
sym .

The constants ζ and ε are, respectively, the thermal and dielectric constants; cε is the
specific heat at constant strain, and the constant vector p is the pyroelectric moduli vector.
The electric field E in the constitutive equations is replaced by E = −∇ϕ. As usual, µ > 0
and λ are the Lamé constants for the elastic body (note that it is customary to require λ > 0,
however this is not necessary as long as the physically meaningful quantity 3λ + 2µ, which
is known as the bulk modulus, remains positive). Mindlin [27] first proposed the theory of
thermopiezoelectricity. The physical laws for thermopiezoelectric materials were explored
by Nowacki [29] (GCH would like to thank Prof. T.W. Chou for locating this reference for
him) [30], where more general constitutive relations are available than those that are given
in Equations (7) and (8).

Making use of these constitutive relations in conjunction with the governing Equa-
tions (4)–(6), we arrive at differential equations.

ρe
∂2u
∂t2 −∇ ·

(
σe (u)− ζθ I + e>∇ϕ

)
= 0 (9)

∂

∂t
(ζ∇ · u− p · ∇ϕ) +

1
T 0

(
cε

∂θ

∂t
− ∆θ

)
= 0 (10)

∇ · (e ε(u) + θp− ε∇ ϕ) = 0 (11)

We remark that Equation (10) is derived under the assumption that | θ
T0
| � 1. This means

T ' T0, since T = T0(1 + θ
T0
). Equations (9)–(11) constitute the complete set of equations

of thermopiezoelectricity coupling a hyperbolic equation for u, a parabolic equation for θ,
and an elliptic equation for ϕ. Here and in the sequel, all of the constant physical quantities
satisfy:

ρe > 0, µ > 0, 3λ + 2µ > 0, eijk > 0, ζ > 0, cε > 0.
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In order to formulate a typical time-dependent wave-structure problem, we need to
prescribe initial, boundary, and transmission conditions. This leads to a model of partial
differential equations for the time-dependent wave-structure problem.

Time-dependent transmission problem. Given (pinc, ∂n pinc, fθ , fD), find the solutions (u, θ, ϕ)
in Ω× [0, ∞), and p in Ωc × [0, ∞) satisfying the partial differential equations

ρe
∂2u
∂t2 −∇ ·

(
σe (u)− (ζθ)I + e>∇ϕ

)
= 0 in Ω× [0, ∞) (12)

∂

∂t
(ζ∇ · u− p · ∇ϕ) +

1
T0

(
cε

∂θ

∂t
− ∆θ

)
= 0 in Ω× [0, ∞)

∇ · (e ε(u) + θp− ε∇ ϕ) = 0 in Ω× [0, ∞)

and
1
c2

∂2 p
∂t2 − ∆p = 0 in Ωc × [0, ∞). (13)

together with the transmission conditions

σ(u, θ, ϕ)−n = −
(

p + pinc
)+

n on Γ× [0, ∞), (14)

∂u−

∂t
· n = − 1

ρ f

∫ t

0

∂

∂n

(
p + pinc

)+
dτ on Γ× [0, ∞),

the boundary conditions

∂nθ = fθ , and D · n = fD on Γ× [0, ∞) (15)

and homogeneous initial conditions for u, ∂u/∂t, θ, p and ∂p/∂t.

The given data and solutions are required to satisfy certain regularity properties that
will be specified later. In the formulation, we use the superscripts + or − to denote the traces
or restrictions to the boundary Γ of a function when taken as limits from functions defined
on Ωc and Ω, respectively. This is equivalent to the notation v+ = γ+v and v− = γ−v
customary in the mathematical literature. Whenever the trace—or restriction—of a function
to the boundary does not depend on the side from which the limit is taken, we will drop
the superscript and only write γv. In this formulation, one has to solve the wave equation
for the pressure in the exterior—unbounded—domain, which can be a drawback from the
computational point of view.

In order to sidestep the challenge of undboundedness, we will resort to a formulation
of the transmission problem that is defined by Equations (12)–(15) that will couple bound-
ary integral equations with partial differential equations. This technique, put forward in
the context of time-harmonic problems [14], transforms the problem into a nonlocal one
that is only posed in the bounded computational domain Ω by representing the pressure in
the fluid domain through an integral along the interface Γ between the solid and the fluid.
To this avail, we must introduce the fundamental solution to the wave equation:

G(x− y, t) =
1

4π|x− y| δ(t− c−1|x− y|).

Above, δ(·) is Dirac’s delta. Using this fundamental solution, it is possible to express
any solution to Equation (13) in terms of density functions φ, and λ that correspond to the
Cauchy data of the problem, namely, the pressure restricted to Γ and its normal derivative,
respectively. This is known as the Kirchhoff representation formula (see e.g., [18,31,32])

p(x, t) = (D ∗ φ)(x, t)− (S ∗ λ)(x, t), (x, t) ∈ Ωc × [0, ∞). (16)
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Above, the asterisk ∗ refers to convolution with respect to time,

f ∗ g =
∫ t

0
f (t− τ)g(τ)dτ,

and D and S are known, respectively, as the double- and simple-layer potentials. They can
be defined as convolutions with the fundamental solution and its normal derivative:

(S ∗ λ)(x, t) :=
∫ t

0

∫
Γ
G(x− y, t− τ)λ(y, τ) dΓydτ

=
∫

Γ

1
4π|x− y|λ(y, t− c−1|x− y|) dΓy

=
∫

Γ
E(x, y)λ(y, t− c−1|x− y|) dΓy,

(D ∗ φ)(x, t) :=
∫ t

0

∫
Γ

∂

∂ny
G(x− y, t− τ)φ(y, τ)dΓydτ

=
∫

Γ

∂

∂ny

(
1

4π|x− y|φ(y, t− c−1|x− y|)
)

dΓy

=
∫

Γ

∂

∂ny

(
E(x, y) φ(y, t− c−1|x− y|)

)
dΓy.

In these equations, we have denoted the fundamental solution of the negative Lapla-
cian in R3 by E(x, y) := 1

4π|x−y| . The reader will notice that the convolution with the
fundamental solution introduces a delay into the density functions λ and φ. It is customary
in the wave propagation community, to write [ϕ] = ϕ(y, t− c−1|x− y|) and call [ϕ] the
retarded value of ϕ. This is the reason why sometimes (S ∗ λ)(x, t) and (D ∗ φ)(x, t) are
referred to as the retarded layer potentials.

Similarly, by introducing the convolution integral:

(I ∗ ϕ)(x, t) :=
∫ t

0

∫
Γ

δ(x− y; t− τ)ϕ(y, τ)dΓydτ = ϕ(x, t),

At non-singluar points of Γ, the Cauchy data φ and λ satisfy the following system of
boundary integral equations (see, e.g., [33–36])φ

λ

 =

 1
2I +K −V

−W
(

1
2I −K

)′
 ∗

φ

λ

 on Γ× [0, ∞). (17)

The boundary integral operators V ,K,K′, and W appearing above are known, re-
spectively, as the simple layer, double layer, transpose double layer, and hypersingular
boundary integral operators for the dynamic wave equation. They are defined, as follows:

(V ∗ λ) := {{γ(S ∗ λ)}} = 1
2
(
γ−(S ∗ λ) + γ+(S ∗ λ)

)
= γ−(S ∗ λ) = γ+(S ∗ λ)

(K ∗ φ) := {{γ(K ∗ φ)}} = 1
2
(
γ−(K ∗ φ) + γ+(K ∗ φ)

)
(K′ ∗ λ) := {{γ(K′ ∗ λ}} = 1

2
(γ−(K′ ∗ λ) + γ+(K′ ∗ λ))

(W ∗ φ) := − {{∂n(D ∗ φ)}} = −1
2
(
∂−n (D ∗ λ) + ∂+n (D ∗ λ)

)
= − ∂−n (D ∗ φ) = −∂+n (D ∗ λ)



on Γ× [0, ∞).
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Note that the averaging operator {{·}} has been implictly defined in the second
equality on the first line above.

We can now state the reformulation of the original problem that we will be focusing on:

Time-dependent nonlocal problem. Given (pinc, ∂n pinc, fθ , fD), find the solutions (u, θ, ϕ) in
Ω× [0, ∞) and (φ, λ) on Γ× [0, ∞) satisfying the partial differential equations

ρe
∂2u
∂t2 −∇ ·

(
σe (u)− (γθ)I + e>∇ϕ

)
= 0 in Ω× [0, ∞),

∂

∂t
(γ∇ · u− p · ∇ϕ) +

1
T 0

(
cε

∂θ

∂t
− ∆θ

)
= 0 in Ω× [0, ∞),

∇ · (e ε(u) + θp− ε∇ ϕ) = 0 in Ω× [0, ∞),

and the differential- boundary integral equations

−ρ f
∂u
∂t
·n+

∫ t

0

(
(W∗φ)(x, t)− 1

2
λ(x, t)+(K′∗λ)(x, t)

)
dτ=

∫ t

0
∂+n pincdτ on Γ×[0, ∞),

1
2

φ(x, t)−(K∗φ)(x, t)+(V∗λ)(x, t)=0 on Γ×[0, ∞).

together with the transmission condition

σ(u, θ, ϕ)−n = −
(

φ + pinc
)+

n, on Γ× [0, ∞),

the boundary conditions

∂nθ = fθ , and D · n = fD on Γ× [0, ∞),

as well as homogeneous initial conditions for u, ∂u/∂t, θ, φ and λ.

Throughout the paper, the given data (pinc, ∂n pinc, fθ , fD) will always be assumed to
be causal functions, namely, functions of time t that identically vanish for t < 0.

From the definitions of the operators V ,K,K′, andW , we notice that the non-locality
of the boundary integral equations in (17) is not restricted to space, but also extends into
the time variable.

To study the well-posedness of this formulation, we will first transform it to the
Laplace domain, where the analysis will be performed. This idea is due to Lubich and
Schneider (see, e.g., [19,20]) and it has been extended by Laliena and Sayas [18,37]. We re-
mark that the passage to the Laplace domain is only required to simplify the analysis and
the stability estimates, but, for a computational implementation, this technique does not
require the numerical inversion of the Laplace transform. Instead, from the estimates of
the solutions in the transformed domain, the properties of the solutions in the time domain
will be automatically deduced. The latter is particularly desirable from the computational
point of view. In the next section, we will consider the model of partial differential equa-
tions for the time-dependent wave-structure problem and/or the time-dependent nonlocal
boundary transmission problem in the Laplace domain.

3. A Nonlocal Boundary Problem

The passage to the Laplace domain will require us to first introduce some definitions.
The complex plane be denoted in the sequel by C, while we will use the notation

C+ := {s ∈ C : Res > 0},
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to refer to the positive half plane. For any complex-valued function with limited growth at
infinity f : [0, ∞)→ C, its Laplace transform is given by

f̂ (s) = L f (s) :=
∫ ∞

0
e−st f (t)dt,

whenever the integral converges. A broad class of functions for which the Laplace transform
is well-defined is that of functions of exponential order. More precisely, a function f is
said to be of exponential order if there exist constants t0 > 0, M ≡ M(t0) > 0, and
α ≡ α(t0) > 0, satisfying:

t ≥ t0 =⇒ | f (t)| ≤ Meαt.

In the following, let û(s) := L{u(x, t)}, θ̂(s) := L{θ(x, t)}, ϕ̂(s) := L{ϕ(x, t)}, and
p̂(s) := L{p(x, t)}. Subsequently, in the Laplace domain, Equations (12)–(14) become

−∇ ·
(

σe (û)− (ζθ̂)I + e>∇ϕ̂
)
+ ρes2û = 0 in Ω (18)

s(ζ∇ · û− p · ∇ϕ̂) +
1
T0

(
−∆θ̂ + cεs θ̂

)
= 0 in Ω (19)

∇ ·
(

e ε(û) + θ̂p− ε∇ ϕ̂
)
= 0 in Ω (20)

and

− ∆ p̂ +
s2

c2 p̂ = 0 in Ωc. (21)

together with the transmission conditions:

σ(û, θ̂, ϕ̂)−n = −
(

p̂ + p̂inc
)+

n on Γ, (22)

s2 û · n = − 1
ρ f

∂

∂n

(
p̂ + p̂inc

)+
on Γ, (23)

and the boundary conditions:

∂n θ̂ = f̂θ , and D̂ · n = f̂D on Γ. (24)

Above, analogously to the time-domain system, the generalized stress tensor is given
by σ(û, θ̂, ϕ̂) := σe (û)− (ζθ̂)I + e>∇ϕ̂.

We will make use of Green’s third identity to derive the equivalent non-local problem.
First, we must represent the solutions of (21) in the form:

p̂(s) = D(s)φ̂− S(s)λ̂ in Ωc, (25)

where the Cauchy data for (21) is given by the densities φ̂ := p̂+(s) and λ̂ := ∂ p̂+/∂n, and
the simple-layer, S(s), and double-layer, D(s), potentials of the corresponding operator
that are defined by

S(s)λ̂(x) :=
∫

Γ
Es/c(x, y)λ̂(y)dΓy, x ∈ Ωc,

D(s)φ̂(x) :=
∫

Γ

∂

∂ny
Es/c(x, y)φ̂(y)dΓy, x ∈ Ωc.

Here

Es/c(x, y) :=
e−s|x−y|/c

4π|x− y|
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is the fundamental solution of Equation (21). As with their counterpart in the frequency-
domain, the Cauchy data λ̂ and φ̂ satisfy the following integral relations:φ̂

λ̂

 =

 1
2 I + K(s) −V(s)

−W(s)
(

1
2 I − K(s)

)′

φ̂

λ̂

 on Γ. (26)

In the preceding relation, V, K, K′ and W are the four basic boundary integral operators
that are defined by:

V(s) := {{γS(s)}} = 1
2

(
γ−S(s) + γ+S(s)

)
= γ−S(s) = γ+S(s)

K(s) := {{γD(s)}} = 1
2

(
γ−D(s)) + γ+D(s)

)
K′(s) := {{γS(s)}} = 1

2

(
γ−S(s) + γ+S(s)

)
W(s) := − {{∂nD(s)}} = −1

2

(
∂−n D(s) + ∂+n D(s)

)
= − ∂−n D(s) = −∂+n D(s)



on Γ.

In terms of φ̂ and λ̂, the two transmission conditions (22) and (23) become:

σ(û, θ̂, ϕ̂)−n = −
(

φ̂(s) + p̂(s) inc
)+

n on Γ,

−s2û− · n +
1
ρ f

(
W(s)φ̂−

(
1
2

I − K(s)
)′

λ̂

)
=

1
ρ f

(∂ p̂ inc

∂n

)+
on Γ. (27)

Using the densities φ̂ and λ̂ as new unknowns, Equation (21) may be eliminated from
the problem by using the second equation above together with the boundary integral
equation in the first row of (26), namely:(

1
2

I − K(s)
)

φ̂ + V(s)λ̂ = 0 on Γ. (28)

This leads to an integro-differential formulation for the unknowns (û, θ̂, ϕ̂, φ̂, λ̂) satisfy-
ing the partial differential Equations (18)–(20) in Ω, together with the boundary conditions
(23), and (24), and the boundary integral Equations (27) and (28) on Γ.

Let us first define the space:

H1
∗(Ω) :=

{
ϕ ∈ H1(Ω) |

∫
Ω

ϕ (x) dx = 0
}

,

and restrict our search for the unknown functions (û, θ̂, ϕ̂) to the product space H1(Ω)×
H1(Ω) × H1

∗(Ω). To do so, we multiply Equations (18)–(20) by (v̂, ϑ̂, ψ̂) ∈ H1(Ω) ×
H1(Ω)× H1

∗(Ω). Integrating by parts the resuting relations will lead to:

a(û, v̂; s)− ζ(θ̂,∇ · v̂)Ω + (∇ϕ̂, e ε(v̂))Ω + 〈φ̂ n, v̂−〉Γ = − 〈 p̂ inc+n, v̂−〉Γ

s(ζ∇ · û − p · ∇ ϕ̂, ϑ̂ )Ω +
1
T0

b (θ̂, ϑ̂; s)Ω =
1
T0
〈 f̂θ , ϑ̂−〉Γ

−(e ε(û),∇ψ̂)Ω − (θ̂ p,∇ψ̂)Ω + εc(ϕ̂, ψ̂; s)Ω = − 〈 f̂D, ψ̂−〉Γ

 (29)
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where a(·, ·; s), b(·, ·; s) and c(·, ·; , s) are sesquilinear forms defined, respectively, by:

a(û, v̂; s) := (σe(û), ε(v̂)) + s2ρe(û, v̂)Ω

b (θ̂, ϑ̂; s)Ω := (∇θ̂,∇ϑ̂)Ω + cεs(θ̂, ϑ̂)Ω

c(ϕ̂, ψ̂; s)Ω := (∇ϕ̂,∇ψ̂)Ω.

Now, let As, Bs and Cs be the operators that are defined by the mappings:

Asû := a(û, ·; s), Bsθ̂ := b (θ̂, ·; s)Ω, and Cs ϕ̂ := c(ϕ̂, ·; s)Ω,

and consider the function spaces:

X :=H1(Ω)× H1(Ω)× H1
∗(Ω)× H1/2(Γ)× H−1/2(Γ),

X′ := (H1(Ω))′ × (H1(Ω))′ × (H1
∗(Ω))′ × H−1/2(Γ)× H1/2(Γ),

X′0 :=
{(

d̂1, d̂2, d̂3, d̂4, d̂5

)
∈ X′ with d̂5 = 0

}
.

Subsequently, from Equations (29)–(28), we pose the nonlocal problem as:

The nonlocal boundary problem. For problem data (d̂1, d̂2, d̂3, d̂4, d̂5) ∈ X′, given by

d̂1 = −γ−′(γ+ p̂ incn), d̂2 = γ−′(Θ−1
0 f̂θ), d̂3 = −γ−′ f̂D,

d̂4 = (ρ f )
−1∂+n p̂inc, d̂5 = 0,

find functions (û, θ̂, ϕ̂, φ̂, λ̂) ∈ X satisfying

A(s)
(

û, θ̂, ϕ̂, φ̂, λ̂
)>

=
(

d̂1, d̂2, d̂3, d̂4, d̂5

)>
(30)

with

A(s)



û

θ̂

ϕ̂

φ̂

λ̂


:=



As −ζ (∇·)′ ε′ e>∇ γ−
′

n 0

s ζ∇· T0
−1Bs −s p · ∇ 0 0

−∇′e ε −∇′p εCs 0 0

−s2γ−n 0 0 ρ f
−1W(s) −ρ f

−1( 1
2 I − K(s))′

0 0 0 1
2 I − K(s) V(s)





û

θ̂

ϕ̂

φ̂

λ̂


. (31)

In the next section, we will show that this problem is, in fact, well-posed.

4. Variational Solutions

We are interested in seeking variational solutions of the nonlocal boundary prob-
lem (30) in the transformed domain. To this end, we need some additional preliminary
results and definitions. We begin with the norms:

|||û|||2|s|,Ω := (σ(û), ε̂( ¯̂u))Ω + ρe‖ |s| û‖2
Ω û ∈ H1(Ω),

|||θ̂|||2|s|,Ω := ‖∇θ̂‖2
Ω + c−1

ε ‖
√
|s| θ̂‖2

Ω θ̂ ∈ H1(Ω),

|||ϕ̂|||21, Ω := ‖∇ϕ̂‖2
Ω ϕ̂ ∈ H1

∗(Ω), (32)

||| p̂|||2|s|,Ωc := ‖∇ p̂‖2
Ωc + c−2‖ |s| p̂‖2

Ωc p̂ ∈ H1(Ωc).

For ϕ̂ ∈ H1
∗(Ω), we see that ‖∇ϕ̂‖2

Ω = 0 if and only if ϕ̂ = 0. Hence, (32) indeed
defines a norm in H1

∗(Ω) (see Hsiao and Wendland [Lemma 5.2.5, p.255] [36]).
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We will define σ := Re s and σ := min{1, σ}. With this notation, it is not hard to
verify that:

σ ≤ min{1, |s|}, and max{1, |s|}σ ≤ |s|, ∀s ∈ C+.

Using these relations, it is possible to prove the following inequalities relating the
energy norms that are defined above

σ|||û|||1,Ω ≤ |||û||||s|,Ω ≤
|s|
σ
|||û|||1,Ω, (33)

√
σ|||θ̂|||1,Ω ≤ |||θ̂||||s|,Ω+

≤

√
|s|
σ
|||θ̂|||1,Ω, (34)

σ||| p̂|||1,Ω+ ≤ ||| p̂||||s|,Ω+
≤ |s|

σ
||| p̂|||1,Ω+ . (35)

These relations will be used heavily when estimating the norms of the solutions in
terms of the Laplace parameter s and its real part σ. The norms ||| · |||1,Ω and ||| · |||1,Ωc

are, respectively, equivalent to ‖ · ‖H1(Ω) and ‖ · ‖H1(Ωc). An application of Korn’s second
inequality [38] shows that, for a vector-valued function û, the energy norm ||| · |||1,Ω is also
equivalent to the standard H1(Ω) norm. Now, given a vector of solutions (û, θ̂, ϕ̂, φ̂, λ̂) to

(30), by defining
p̂(s) = D(s)φ̂− S(s)λ̂ in R3 \ Γ,

then p̂ ∈ H1(R3 \ Γ) is the unique solution of the transmission problem:

−∆ p̂ +
s2

c2 p̂(s) = 0 in R3 \ Γ, (36)

[[γ p̂]] = φ̂ ∈ H1/2(Γ) on Γ,

[[∂n p̂]] = λ̂ ∈ H−1/2(Γ) on Γ,

where the symbol [[·]] denotes the ”jump" relations of a function across Γ. More specifically,
we have

[[γ p̂]] := ( p̂+ − p̂−), and [[∂n p̂]] := (∂+n p̂− ∂−n p̂).

We remark that, in the present case, no radiation condition is needed to ensure
uniquness because of Huygen’s principle. In terms of the jumps of p̂, the last two equations
of (30) are equivalent to

−s2γ−n û− 1
ρ f

∂+n p̂ =
1
ρ f

d̂4 on Γ (37)

−γ− p̂ = d̂5 on Γ

Because d̂5 = 0, we conclude that p̂ satisfies the homogeneous Dirichlet problem for
(36) in Ω and, by uniqueness, it must follow that p̂ ≡ 0 in Ω. As a consequence, we have
the following relations between the unknown densities and Cauchy data:

[[γ p̂]] = γ+ p̂ = φ̂ and [[∂n p̂]] = ∂+n p̂ = λ̂. (38)

On the other hand, the transmission condition (37) is closely related to the variational
equation of Equation (36)

−〈∂+n p̂, γ+ q̂〉Γ =
∫

Ωc
(∇ p̂ · ∇q̂ + (s/c)2 p̂ q̂ )dx

=: dΩc( p̂, q̂; s)

=: (Ds p̂, q̂)Ωc ,
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where the domain of integration for the sesquilinear form dΩc( p̂, q̂; s) and the associated
operator Ds, has been explicitly indicated in the definition. Now, using (37), we arrive at

−s2〈γ−û, γ+ q̂ n〉Γ +
1
ρ f

(Ds p̂, q̂)Ωc = 〈d̂4, γ+ q̂〉Γ.

Combining the above equality with the weak formulations of the first three Equations
in (30), we can formulate an equivalent variational problem. We will first introduce the
space H := H1(Ω)× H1(Ω)× H1

∗(Ω)× H1(Ωc) and then endow it with the norm:

‖(û, θ̂, ϕ̂, p̂)‖H :=
(
|||û|||21,Ω + |||θ̂|||21,Ω + ‖ϕ̂‖2

Ω + ||| p̂|||21,Ωc

)1/2
.

The variational problem. Find (û, θ̂, ϕ̂, p̂) ∈ H satisfying

A((û, θ̂, ϕ̂, p̂), (v̂, ϑ̂, ψ̂, q̂); s) = `d((v̂, ϑ̂, ψ̂, q̂)), ∀(v̂, ϑ̂, ψ̂, q̂) ∈ H (39)

where the sesquilinear form on the left hand side of the equation is defined by:

A((û, θ̂, ϕ̂, p̂), (v̂, ϑ̂, ψ̂, q̂); s) := (As û, v̂)Ω − ζ(θ̂,∇ · v̂)Ω + (∇ϕ̂, e ε(v̂))Ω + 〈γ+ p̂ n, γ−v̂〉Γ
+ sζ(∇ · û, ϑ̂)Ω + T−1

0 (Bs θ̂, ϑ̂)Ω − s(p · ∇ϕ̂, ϑ)Ω

− (e ε(û),∇ψ̂)Ω − (p θ̂,∇ψ̂)Ω + ε(Cs ϕ̂, ψ̂)Ω

− s2〈γ−û, γ+ q̂ n〉Γ +
1
ρ f

(Ds p̂, q̂)Ωc

for (v̂, ϑ̂, ψ̂, q̂) ∈ H. The bounded linear functional on the right hand side is defined by

`d((v̂, ϑ̂, ψ̂, q̂)) := (d̂1, v̂)Ω + (d̂2, ϑ̂)Ω + (d̂3, ψ̂)Ω + 〈d̂4, γ+ q̂〉Γ,

for all tests (v̂, ϑ̂, ψ̂, q̂) ∈ H. By construction, this variational problem is equivalent to the
transmission problem (18) through (24) which in turn is equivalent to (30). Consequently, it
suffices to show the existence of a solution of (39) in order to guarantee that (30) is indeed
solvable. We now present the following basic existence and uniqueness results.

Theorem 1. Under the assumption of the constant pyroelectric moduli vector vector p satisfying
the constraint

‖p‖R3 < min{ε,
cε

T0
},

the variational problem (39) has a unique solution (û, θ̂,ϕ̂, p̂) ∈ H. Moreover, the following
estimate holds:

‖(û, θ̂, ϕ̂, p̂)‖H ≤ c0
|s|3
σσ6 ‖(d̂1, d̂2, d̂3, d̂4)‖H′ . (40)

Here, and in the sequel, c0 > 0 will denote a constant that may only depend on ρ f , T0, cε, ε, p.

Proof. Let A((û, θ̂, ϕ̂, p̂), (v̂, ϑ̂, ψ̂, q̂); s) be the sesquilinear form that is defined by the varia-
tional Equation (39). We first show that A is continuous. It is easy to verify that

|(As û, v̂)Ω+T−1
0 (Bs θ̂, ϑ̂)Ω+ε(Cs ϕ̂, ψ̂)Ω+

1
ρ f

(Ds p̂, q̂)Ωc |≤

m1

(
|s|
σ

)2

‖(u, θ, ϕ, p)‖H‖(v̂, ϑ̂, ψ̂, q̂)‖H.
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The remaining terms in A((û, θ̂, ϕ̂, p̂), (v, ϑ, ψ, q)) can be easily bounded using the
Cauchy–Schwartz inequality, Poicaré’s inequality in H1

∗(Ω), the trace theorem, and the es-
timate

|(∇ϕ, e ε(v))Ω| ≤ emax‖∇ϕ‖Ω ‖∇ · v‖Ω.

This leads to the continuity estimate

A((û, θ̂, ϕ̂, p̂), (v̂, ϑ̂, ψ̂, q̂); s) ≤ (m1 + m2)

(
|s|
σ

)2

‖(u, θ, ϕ, p)‖H ‖(v̂, ϑ̂, ψ̂, q̂)‖H.

Here, m1 and m2 are constants only depending upon the physical parameters ζ, Θ0, p, ε,
and emax = max{eijk, i, j, k = 1 · · · 3}. We now introduce the scaling factor:

Z(s) :=


s̄ 0 0 0
0 1 0 0
0 0 s 0
0 0 0 s̄/|s|2

, (41)

and note that, for (û, θ̂, ϕ̂, p̂) ∈ H, we have

Re
(

s̄
(
−ζ(θ̂,∇ · û)Ω + (e>∇ϕ̂, ε(û))Ω + 〈γ+ p̂ n, γ−û〉Γ

)
+ s
(

ζ(∇ · û, θ̂)Ω − (e ε(û),∇ϕ̂)Ω

)
−
(

s̄/|s|2
)

s2〈γ−û, γ+ p̂ n〉Γ
)
= 0.

Therefore, it follows that:

Re
(
Z(s)A((û, θ̂, ϕ̂, p̂), (û, θ̂, ϕ̂, p̂); s)

)
=Re

(
s̄(As û, û)Ω+T−1

0 (Bs θ̂, θ̂)Ω

− s
(
(p · ∇ϕ̂, θ̂)Ω −(p θ̂,∇ϕ̂)Ω+ε(Cs ϕ̂, ϕ̂)Ω

)
+(s̄/|s|2)ρ−1

f (Ds p̂, p̂)Ωc

)
. (42)

By setting to zero some of the entries of (û, θ̂, ϕ̂, p̂) in the right hand side of (42), it is
possible to derive the following:

Re
(

s̄(As û, û)Ω)
)
= σ |||û|||2|s|,Ω

Re
(

T−1
0 (Bs θ̂, θ̂)Ω

)
= T−1

0

(
‖∇θ̂‖2

Ω + cεσ ‖θ̂‖2
)

Re
(
−s
(
(p · ∇ϕ̂, θ̂)Ω + (p θ̂,∇ϕ̂)Ω

))
≥ − σ‖p‖R3

(
‖∇ϕ‖Ω + ‖θ‖Ω

)
Re
(

sε(Cs ϕ̂, ϕ̂)Ω

)
= σ ε ‖∇ϕ‖2

Ω

Re
(
(s̄/|s|2)ρ−1

f (Ds p̂, p̂)Ωc

)
= (σ/|s|2)ρ−1

f |||p|||
2
|s|,Ωc


(43)

From Equatons (43) and (42), it follows that:

Re
(
Z(s)A((û, θ̂, ϕ̂, p̂), (û, θ̂, ϕ̂, p̂); s)

)
≥ σ σ2

|s|2
(
|||û|||2|s|,Ω+c1|||θ̂|||2|s|,Ω+c2‖ϕ̂‖2

Ω+||| p̂|||2|s|,Ωc

)
, (44)

where c1 = c−1
ε (cεΘ−1

0 − ‖p̂‖R3) > 0 and c2 = (ε− ‖p‖R3) > 0. Alternatively, in view of
(33)–(35), we have

|A((û, θ̂, ϕ̂, p̂), (û, θ̂, ϕ̂, p̂); s)| ≥ α0
σ σ6

|s|3 ‖(û, θ̂, ϕ̂, p̂)‖2
H

where α0 > 0 is a constant independent of σ, and |s|. Hence, by the Lax–Milgram lemma,
there exists a unique solution of the variational problem (39).
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Having shown that the problem is uniquely solvable, the stability estimate (40) can be
derived from (44) and (39), as we show next:

σ σ2

|s|2
(
|||û|||2|s|,Ω+c1|||θ̂|||2|s|,Ω+ c2 ‖ϕ̂‖2

Ω+||| p̂|||2|s|,Ωc

)
≤Re

(
Z(s)A((û, θ̂, ϕ̂, p̂), (û, θ̂, ϕ̂, p̂); s)

)
≤
∣∣∣s̄(d̂1, û)Ω + (d̂2, θ̂)Ω + s(d̂3, ϕ̂)Ω + s̄/|s|2〈d̂4, γ+ p̂〉Γ

∣∣∣
≤ |s|

σ2

(
|(d̂1, û)Ω|+ |(d̂2, θ̂)Ω|+ |(d̂3, ϕ)Ω|+ |〈d̂4, γ+ p̂〉Γ|

)
.

Consequently, using the first inequality of the equivalences (33) through (35), we have
the estimate:(

|||û|||2|s|,Ω + |||θ̂|||2|s|,Ω + ‖ϕ̂‖2
Ω + ||| p̂|||2|s|,Ωc

)1/2
≤ c0

|s|3
σσ5 ‖(d̂1, d̂2, d̂3, d̂4, 0)‖X′ . (45)

Here, c0 is a constant only depending on the physical parameters ρ f , T0, cε, ε, p. The de-
sired estimate (40) can then be easily derived by simplifying the right hand side of the
expression above and applying (33) through (35) to the term on left hand side.

The estimate (45) will lead us to verify the invertibility of the operator matrix A(s)
that is defined in (31), as we now show.

Theorem 2. The operator A(s) : X → X′0, as defined in (31) is invertible. Moreover, we have the
estimate:

‖A−1(s)|X′0‖X′ ,X ≤ c0
|s|3+1/2

σσ6+1/2 . (46)

Proof. From Equation (38), we see that

[[γ p̂]] = γ+ p̂ = φ̂ and [[∂n p̂]] = ∂+n p̂ = λ̂.

From which it can be shown that (see, e.g., [39]):

‖φ̂‖2
H1/2(Γ) = ‖γ

+ p̂‖2
H1/2(Γ) ≤ c1 ||| p̂|||21,Ωc ≤ c1

1
σ2 ||| p̂|||

2
|s|,Ωc (47)

Similarly, we have

|〈λ̂, q̂+〉|= |〈∂+n p̂, q̂+〉|= |as,Ωc( p̂, q̂)|≤ ||| p̂||||s|,Ωc |||q̂||||s|,Ωc≤ c2

√
|s|/σ ||| p̂||||s|,Ωc‖q̂+‖H1/2(Γ)

which implies

‖λ̂‖H−1/2(Γ) = sup
0 6=q+∈H−1/2(Γ)

|〈∂+n p̂, q̂+〉Γ|
‖q̂+‖H1/2(Γ)

≤ c2

√
|s|/σ ||| p̂||||s|,Ωc . (48)

Above, Bamberger and Ha-Duong’s optimal lifting [33,34] has been used to bound
the norm |||q̂||||s|,Ωc by ‖q̂+‖H1/2(Γ) in (48). Subsequetly, (47) and (48) yield the estimates

1
2

( 1
c1

σ2‖φ̂‖2
H1/2(Γ) +

σ

c2
2|s|
‖λ̂‖2

H−1/2(Γ)

)
≤ ||| p̂|||2|s|,Ω+

. (49)
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As a consequence of (45), it follows from (49) that

(
σ2|||û|||21,Ω + σ|||θ̂|||21,Ω + ‖ϕ̂‖2

Ω +
1
2

(σ2

c1
‖ φ̂‖2

H1/2(Γ) +
σ

c2
2|s|
‖λ̂‖2

H−1/2(Γ)

))1/2

≤ c0
|s|3
σσ5 ‖(d̂1, d̂2, d̂3, d̂4, d̂5)‖X′0

which implies(
|||û|||21,Ω−+|||θ̂|||

2
1,Ω−+‖ϕ̂‖2

H1∗(Ω)
+‖φ̂‖2

H1/2(Γ)+ ‖λ̂‖
2
H−1/2(Γ)

)1/2

≤ c0
|s|3+1/2

σσ6+1/2 ‖(d̂1, d̂2, d̂3, d̂4, d̂5)‖X′0
.

5. Results in the Time Domain

Having established the properties of the operators and solutions to our problem in
the Laplace domain, we can now return to the time domain and establish analogue results.
Let us first define a class of admissible symbols in order to state the result that will allow
us to transfer our previous analysis in the Laplace domain back in to the time domain,
following [18].

The following definition, and the proposition following immediately after it (an im-
proved version of [Proposition 3.2.2] [37,40]) will be used to transform the Laplace-domain
bounds into time-domain statements.

A class of admissible symbols: let X and Y be Banach spaces and B(X,Y) be the set of
bounded linear operators from X to Y. An operator-valued analytic function A : C+ →
B(X,Y) is said to belong to the classA(µ,B(X,Y)), if there exists a real number µ, such that

‖A(s)‖X,Y ≤ CA(Re(s))|s|µ for s ∈ C+,

where the function CA : (0, ∞)→ (0, ∞) is non-increasing and satisfies

CA(σ) ≤
c

σm , ∀ σ ∈ (0, 1]

for some m ≥ 0 and c independent of σ.

Proposition 1. ([40]) Let A = L{a} ∈ A(k + α,B(X,Y)) with α ∈ [0, 1) and k a non-negative
integer. If g ∈ Ck+1(R,X) is causal and its derivative g(k+2) is integrable, then a ∗ g ∈ C(R,Y)
is causal and

‖(a ∗ g)(t)‖Y ≤ 2αCε(t)CA(t−1)
∫ 1

0
‖(P2g(k))(τ)‖X dτ,

where

Cε(t) :=
1

2
√

π

Γ(ε/2)
Γ((ε + 1)/2)

tε

(1 + t)ε
, (ε := 1− α and µ = k + α)

and
(P2g)(t) = g + 2ġ + g̈.

The results that are proven in Section 4—specifically the bounds obtained in terms of
the Laplace parameter s and its real part σ—will now allow us to show that the operators
involved belong precisely to one such class of symbols.
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We begin with the results in Theorem 1 and, from (40), we may write

(û, θ̂, ϕ̂, p̂)> = A(s)(d̂1, d̂2, d̂3, d̂4, 0)>,

‖A(s)|X′0‖X′ ,H ≤ CA
|s|3
σσ6 . (50)

Hence, A(s) ∈ A(3,B(X′0,H)), and

(u, θ, ϕ, p)> = L−1
{

A(s) (d̂1, d̂2, d̂3, d̂4, 0)>
}

= L−1{A(s)} ∗ L−1{(d̂1, d̂2, d̂3, d̂4, 0)>}
= (L−1{A} ∗D)(t)

=: (a ∗ g)(t) according to Proposition 1 .

From the estimate of A(s) in Equation (50) , we have

µ = k + α = 3 implies k = 3, α = 0 and ε = 1− α = 1.

Thus, we have established the following theorem.

Theorem 3. Let H := H1(Ω)× H1(Ω)× H1
∗(Ω)× H1(Ωc). If

D(t) := L−1
{
(d̂1, d̂2, d̂3, d̂4, 0)>

}
∈ C4(R, X′0)

is causal and its derivative D(5) is integrable, then (u, θ, ϕ, p)> ∈ C(R,H)> is causal and

‖(u, θ, ϕ, p)>(t)‖H ≤ c0
t2

1 + t
max{1, t6}

∫ t

0
‖(P2D(3))(τ)‖dτ

for some constant c0 > 0, where (P2D)(t) = D + 2 Ḋ + D̈.

Similarly, from Theorem 2, we have(
û, θ̂, ϕ̂, φ̂, λ̂

)>
= A−1(s)

(
d̂1, d̂2, d̂3, d̂4, d̂5

)>
,

from which, while using (46), we infer that

‖A−1(s)|X′0‖X′ , H ≤ c0
|s|3+1/2

σσ6+1/2 ,

hence, A−1(s) ∈ A(3 1
2 ,B(X′0,H)). Applying Proposition 1 with

µ = (k + α) = 3
1
2

, k = 3, α = 1/2, ε = 1− α = 1/2,

then yields the following theorem.

Theorem 4. Let X := H1(Ω)× H1(Ω)× H1
∗(Ω)× H1/2(Γ)× H−1/2(Γ). If

D(t) := L−1{(d̂1, d̂2, d̂3, d̂4, d̂5)
>}(t) ∈ C(4)(R, X′0)
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is causal, and its derivative D(5) is integrable, then (u, θ, ϕ, φ, λ)> ∈ C(R, X) is casual, and there
holds the estimate

‖((u, θ, ϕ, φ, λ)>(t)‖X ≤ c1/2
t1+1/2

(1 + t)1/2 max{1, t6+1/2}
∫ t

0
‖(P2D(3))(τ)‖X′ dτ,

(P2D)(t) := D + 2 Ḋ + D̈.

for some constant c1/2 > 0.

In view of (25) and the inverse of A(s), we see that û, θ̂, ϕ̂ and p̂ are simply solutions
of the following system

(û, θ̂, ϕ̂, p̂)> = A2(s) ◦A−1(s) (d̂1, d̂2, d̂3, d̂4, 0)>, (51)

where

A2(s) =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 D(s) −S(s)


.

As a consequence of Theorem 3, A2(s) ◦A−1(s) belongs to the classA(3+ 1/2,B(X′0,H)).
However, we may also compute the index of the matrix of operators A2(s). For φ̂ ∈
H1/2(Γ), let û = D(s)φ ∈ R3 \ Γ, then

σ|||û|||2|s|,R3\Γ = Re
(

s
〈

Wφ̂, φ̂
〉

Γ

)
≤ |s| ‖Wφ̂‖H−1/2(Γ) ‖φ̂‖H1/2(Γ)

≤ c1

(
|s|
σ

)1/2

|s| |||û||||s|,R3\Γ ‖φ̂‖H1/2(Γ)

Hence, from (35), we obtain:

‖D(s)φ̂‖H1(R3\Γ) ≤ c1
|s|3/2

σσ3/2 ‖φ̂‖H1/2(Γ),

which implies D(s) ∈ A(3/2,B(H1/2(Γ), H1(R3 \ Γ)). Similarly, for λ̂ ∈ H−1/2(Γ), if we
set û = S(s)λ̂ in R3 \ Γ, then we may show that

‖S(s)λ̂‖H1(R3\Γ) ≤ c2
|s|

σσ2 ‖λ̂‖H−1/2(Γ).

That is, S(s) ∈ A(1,B(H−1/2(Γ), H1(R3 \ Γ)), and, hence

‖A2(s)‖X,H ≤ c3
|s|1+1/2

σσ2+1/2 .

Following [18], if we apply the composition rule and make use of the estimate of
A−1(s) in Equation (46), then we find the matrices of the operators in (51) ended with an
index µ = (1 + 1/2) + (3 + 1/2) = 5. However, this only gives an upper bound for the
actual index of A2(s) ◦A−1(s) in Equation (51).
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6. Concluding Remarks

A few remarks should be in order. This paper deals with a time-dependent wave-
thermopiezoelectric structure interaction problem by the time-dependent boundary-field
equation approach. With the help of a appropriate scaling factor Z(s) in (41), we are able
to establish the existence and uniqueness of the solutions to the problem. For simplicity,
in this paper, we only impose natural boundary conditions for the corresponding partial
differential equations involved in the interior domain Ω. Clearly, one may also impose
mixed boundary conditions. Moreover, the results presented in this communication gener-
alize those presented in [22] for elastic-acoustic interactions, [24] for acoustic-piezoelectric
interactions, and [23] for acoustic-thermoelastic interactions, since all of those results can
be recovered from the ones in this communication by setting to zero selected entries of the
piezoelectric tensor, or thermal consants. Moreover, the present work complements the
recent articles [41,42], where boundary integral equations of the first kind are studied for
the dynamic thermo-elastic equations.

These results can be used to numerically simulate wave-structure interactions by using
the nowadays well-known convolution quadrature (CQ) method. Numerical experiments
that are based on QC for the special cases of the wave-structure interactions listed above
are available in [21–24,43]. The numerical treatment for the operators in the present paper
will be reported in a separate communication.
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