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Abstract: Due to rising human infertility, sperm motility has been an important subject. Among the
hundreds of millions of sperms on the journey up the oviducts, only a few excellent travelers will
reach the eggs. This journey is affected by many factors, some of which include sperm quality, sperm
density, fluid rheology and chemotaxis. In addition, the sperm swimming through different body
tracks and fluids involves complex sperm flagellar, complex fluid environment, and multi-sperm
and sperm-wall interactions. Therefore, this topic has generated substantial research interest. In this
paper, we present a review of computational studies on sperm swimming from an engineering per-
spective with focus on both simplified theoretical methods and fluid–structure interaction methods.
Several open issues in this field are highlighted.

Keywords: sperm swimming; low Reynolds number; finite-boundary method; immersed boundary
method; lattice Boltzmann method

1. Introduction

“Life is like a journey” as stated by an anonymous philosopher. But in the case of
living beings like mammals, life literally begins with a journey. It begins with a long journey
of hundreds of millions of sperms, passing through the reproductive tracks of the female
trying to reach the oviducts, with an ultimate aim to unite with one of the eggs. However,
only a few excellent travelers will reach the eggs indicating the complexity of the flow paths
and the environments experienced by the sperms. This remarkable journey has attracted
growing interest over the past several decades [1–7], to understand the mechanisms used
by the sperms to swim through different complex environments with the potential of using
the findings to solve some of the significant problems faced nowadays like human infertility
and to save some mammal species from extinction. Among the applications, solving human
infertility can have a huge impact on the lives of many people. It is estimated that about
70 million couples around the world cannot conceive a child [8] due to infertility and that
that nearly 7% of men is affected by infertility [9,10]. The male infertility is due to several
factors such as low sperm count, low sperm quality, low sperm motility etc. In addition,
it is also observed that the average sperm density has been decreasing during the past
several decades [11]. Therefore it is desired to study the sperm swimming to achieve a
better understanding of sperm motility.

There are different types of swimming organisms in nature ranging from large whales
to micro-organisms like bacteria. Depending on their size and speed, these swimmers
experience different types of flow regimes while swimming. For large creatures such a
fishes, the inertial forces of the fluid are dominant while for micro organisms the viscous
forces of the fluid plays a significant role. To correlate the inertial forces to the viscous
forces of a fluid, an important non-dimensional parameter, Reynolds number (Re), is used
and defined as,

Re =
UL
ν

, (1)

where ν is the kinematic viscosity of the fluid, U is the reference speed, and L is swimmer
length. If numerical methods are used to study the fluid–structure interaction of swimmers,
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the swimming speed is usually unknown, and determined by the fluid–structure interaction
solver. In this case, the traveling wave speed is usually used as the reference speed [12],
which defines a Reynolds number larger than the one defined by the forward swimming
speed. Regarding sperm swimming, there are several factors that should be considered.
In general, the sperm length is less than 100 µm, while the sperm speed is less than
200 µm/s [13]. Such parameters define a Reynolds number of O(0.1) indicating that
the sperm should swim in a special way different from larger and faster swimmers [3].
Considering the facts that the traveling wave speed is generally larger than the forward
speed and that most body fluid is shear-thinning-like non-Newtonian fluid, the effective
Reynolds number for sperm swimming could be of O(1). In addition, the motion of
ambient fluids should be taken into account as well, which in general have much higher
velocities compared to the sperm speed. Therefore we can conclude that the flow regimes
involved in sperm swimming cover both Stokes and laminar flows, which have been
respectively covered by Lauga [14] and Childress [15].

The dominantly used strategy for a sperm swimming through a fluid is to make
traveling wave (from head to tail) motion [7] and/or to improve its frequency so that
σRe = O(1) (where σ is the ratio of lateral oscillating speed to the forward swimming
speed) to break the time-reversal symmetry [16]. This is different from the large animals
which use both traveling and flapping motions [12,17,18]. The traveling wave can be
described by [19,20]

(x0, y0) = [x0, A(x0) sin (2π(x0 − ct)/λ)], for 2D, (2)

(x0, y0, z0) = [x0, A(x0) cos (2π(x0 − ct)/λ), A(x0) sin (2π(x0 − ct)/λ)], for 3D, (3)

where x0 is the distance measured from the head of the sperm, y0 and z0 are respectively the
prescribed displacement of the body in y-and z-directions, A(x0) is the amplitude, c is the
traveling wave phase speed, and λ is the wave length. Three additional non-dimensional
numbers are introduced, i.e., non-dimensional amplitude Am/L, traveling-wave Reynolds
number cL/ν and wave number L/λ, where Am is the maximum or average amplitude.
In the cases where the motion is driven by a prescribed function [21] or an internal moment,
the traveling wave is used to describe the driving function or moment. If non-Newtonian
fluid is considered, extra parameter(s) will be introduced [22,23], and the definition of
Reynolds number should be modified. Without loss of generality, we take the power-law
fluid as an example [24] of which the dynamic viscosity is

ν = ηγ̇n−1, (4)

γ̇ =
√

2EijEij, (5)

Eij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, (6)

where η is the power-law consistency index, n is the power-law fluid behavior index, and γ̇
is the shear rate. It should be noted that the Einstein summation convention is applied
in Equation (5). One additional parameter, i.e., n, is introduced. The power-law fluids
of n < 1, n > 1 and n = 1 are respectively the shear-thinning, shear-thickening and
Newtonian fluids. The definition of Reynolds number is modified to [18,22,25]

Re =
U2−nLn

η
. (7)

In addition to the flow regimes and sperm kinematics discussed above, the sperm
material properties should be considered in the fluid–structure interaction simulations,
e.g., bending rigidity, stretching rigidity, structure damping, and mass [20,21]. Therefore,
many methods have been developed to address the fluid–structure interaction of sperm in
order to study different aspects involved in this topic. In this paper, we present a review of
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the numerical methods used in this topic from an engineering perspective to understand
the swimming mechanism of sperm. The earliest simplified theories used to evaluate the
forces on the sperm are first introduced. Then the boundary-element method that solves
Stokes flow is introduced. Finally, the Cartesian grid based methods are introduced.

The rest of this paper is organized as follows. Section 2 summarizes several simpli-
fied theories. The boundary–element method for flagellar propulsion in Stokes flow is
introduced in Section 3. Section 4 presents driving-configuration-function model based
on immersed boundary method (IBM). An integrative model based on IBM is introduced
in Section 5. A Singular-Value Decomposition based on the Generalized Finite Difference
method for the simulation of fluid–structure interaction problems in a viscous fluid is
discussed in Section 6. Section 7 gives an IBM based on finite difference method. Section 8
proposes an immersed boundary–lattice Boltzmann method based driving moment func-
tion. Final conclusions are given in Section 9.

2. Simplified Theories
2.1. Taylor’s Swimming Sheet and Cylinder

Taylor [26] pioneered the hydrodynamic analysis of low-Reynolds-number swimmers.
In this model, a flagellum is modeled as a two-dimensional infinite waving sheet and
the fluid inertia is neglected. By doing this waving motion, a forward speed U will be
produced and will be determined. As the forward velocity is in the opposite direction
of the traveling wave, we assume the waving sheet is moving with a velocity of −Uex.
The vertical displacement of the material points is prescribed as

y0 = A sin [2π(x0 − ct)/λ]. (8)

Please note that this motion is active. The passive deformation is not considered. The swim-
mer is only allowed to move in longitudinal direction which is determined by the hy-
drodynamic force. Using the first-order approximation of 2πA/λ, it is found that waves
of small amplitude traveling down a sheet do not give rise to propulsive stresses in the
surrounding viscous fluid. If the second-order approximation of 2πA/λ is used, a forward
speed is obtained,

U
c
=

2π2 A2

λ2

(
1− 19

4
π2 A2

λ2

)
. (9)

If the amplitude is much less compared to the wave length, the above equation can be
simplified as

U
c
=

2π2 A2

λ2 . (10)

The simplified wave theory was further extended to the three-dimensional sperm
which was modeled by a waving cylindrical tail [27]. If the waving cylindrical tail makes a
two-dimensional traveling wave as described by Equation (8), the forward speed is

U
c
=

2π2 A2

λ2
K0(2πR/λ)− 1/2
K0(2πR/λ) + 1/2

, (11)

where R is the diameter of the cylindrical tail and K0 is the modified Bessel function of the
second kind. If the motion is a three-dimensional spiral wave, the forward speed is

U
c
=

4π2 A2

λ2
K0(2πR/λ)− 1/2
K0(2πR/λ) + 1/2

. (12)

It is found that the forward speed by spiral wave is twice of that generated by a plane
traveling wave.
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2.2. Resistive Force Theory

The resistive force theory was first developed by Taylor [28] for long and narrow
animals, and later was applied by Gray and Hancock [29] to sea-urchin sperm swimming.
In this model, the local force on an element δs moving with velocity of (u, v) can be
written as

δT = δNy sin(θ)− δLy cos(θ), (13)

δD = −(δNx sin(θ) + δLx cos(θ)), (14)

δLx = uCL cos(θ)δs, (15)

δLy = vCL sin(θ)δs, (16)

δNx = uCN sin(θ)δs, (17)

δNy = vCN cos(θ)δs, (18)

where δT and δD are respectively the horizontal forces generated by velocity v and u, δNy
and δLy are respectively the reactions (by lateral motion v) from the water acting normally
and tangentially to the surface of the element, δNx and δLx are respectively the reactions
(by lateral motion u) from the water acting normally and tangentially to the surface of the
element, CL and CN are the coefficients of resistance to the surface of the element for a
medium of known viscosity, and θ is the angle of inclination of the element to the x-axis.
δT and δD are also taken as the thrust and drag, respectively. The diagram illustration of
the above mentioned forces can be found in Ref. [29]. The total force will be∫

S
(δT − δD) = 0. (19)

If a traveling wave described by Equation (8) is used, a forward speed is obtained by
solving Equation (19),

U
c
=

2π2 A2

λ2

(
CN − CL

CL

)
, (20)

which is the same as Equation (10) if CN = 2CL. The details of CN and CL can be found in
Ref. [29].

These simplified models neglect both fluid and sperm inertial forces. In addition,
two-dimensional infinite wave sheet and/or simple kinematics are used. However, they
are quite important to understand the fundamental mechanisms of sperm swimming,
especially the relationship between average forward speed and traveling wave motion.
In order to consider inertial force, complex kinematics, and transient state, numerical
methods are required.

2.3. Slender Body Theory

Slender body theory represents a flagellum whose length is much larger than its
thickness with an arrangement of Stokeslets and doublets along the centreline of the flagel-
lum [30–32]. It was first developed by Lighthill [30] without the end effects, and extended
by Johnson [31] to include the end effects. Johnson and Brokaw [33] showed that the
slender body theory is more accurate than the resistive force theory. The fundamental of
the slender body theory can be found in Ref. [30] and its implementation can be found
in Ref. [32]. Here a brief introduction to the result of spiral flagellar motion without end
effects is provided. We rewrite the 3D spiral motion as

(x0, y0, z0) = [αs, A0 cos(κ(s− ct)), A0 sin(κ(s− ct))], (21)

where κ is the wave number, s is the arc length measured along the centreline, and α =√
1− A2

0κ2. According to the slender body theory, the forwarding velocity is given as

U0 =
hαA0κ

4πµ
[−1− ln ε− A1(α)], (22)
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where h is a constant, ε = 5.2a/λ with a being the radius of the flagellum, and A1(α) is a
function arising from an integral. More details of these parameters are referred to Ref. [30].

3. Boundary-Element Method for Flagellar Propulsion in Stokes Flow

The boundary-element method has been extensively used to study the fluid field
and forces induced by flagellar motion in Stokes flow where the fluid inertia is ignorable
(see Refs. [19,34–37] for several examples). The fluid dynamics considered is described by

∇p
ρ

= ν∇2u, ∇ · u = 0. (23)

The sperm/flagellar motion including position and velocity can be either
described [19,34–36] or obtained from fluid–structure interaction [37]. For the prescribed
motion, the position of the swimmer can be written as (see e.g., Ref. [19])

R = (X, Y, Z) = (X, Y(X, t), Z(X, t)), (24)

where Y and Z are traveling wave functions. If fluid–structure interaction is consid-
ered, Montenegro-Johnson et al. [37] employed the following equation to describe the
sperm/flagellar dynamics

fvis = ∂s(−EXsss + Mn + TXs), (25)

where fvis is the fluid viscous force, E is the bending rigidity, M is the internal moment,
and T is the tension. Compared to the model in Section 8, this model does not consider
structure damping. In addition, the internal driving moment appears as the form of Ms in
Section 8.

At the fluid–structure interface, the non-slip/non-penetration boundary condition
applies, and can be described as

u(x) = U(s, t), at x = X(s, t). (26)

Note that these equations are applicable to the fluid motion around the micro-organism,
where the Reynolds number based on the length of the organism and swimming velocity
(including forward speed and lateral vibration speed whichever is larger) is extremely
small. The flow solution of Equations (23) and (26) can be obtained by

uj(x) =
∫

S
Gij(X, x)ti(X)ds−

∫
S

Hij(X, x)Ui(X)ds, (27)

Gij(X, x) =
1

8πρνr

(
δij +

rirj

r2

)
, (28)

Hij(X, x) = − 3
4πρνr5 rirjr · n, (29)

r = X− x, (30)

r2 = r · r, (31)

where δij is the Kronecker delta, n is a unit outward normal on the fluid–structure interface,
and t is the traction field that can be obtained by taking x to a boundary point [19].

The primary advantage of using boundary-element method here is that the dimension
of the problem is reduced by one, and thus it reduces the number of algebraic equations and
avoids mesh generation for two- and three-dimensional problems. Therefore, this method
could save computational cost. However, this method ignores fluid inertia and nonlinearity,
and thus the associated phenomena cannot be captured.
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4. Driving-Configuration-Function Model Based on IBM

A model with both driving and configuration functions was developed by Fauci and
McDonald [21] to study the sperm motility. In this model, the immersed boundary method
(IBM) [38–41] was developed to couple the sperm dynamics with the fluid dynamics. Based
on this method, the surface force acting on the fluid by the sperm is spread onto the
volumetric fluid grids by

f(x, t) =
∫

F(s, t)δD(x− X(s, t))ds, (32)

where F(s, t) is the Lagrangian force density on the fluid , X is the point on the sperm, and δD
is Dirac’s delta function. The Lagrangian force at a node i on the sperm is calculated by

Fi = −
δEe

δXi
, (33)

where Ee is the elastic energy of the sperm model. Ee consists of three parts: cell energy
(or head energy) with a prescribed configuration function, flagellum energy with driving
function, and joint energy that couples the flagellum to the cell body. Therefore,

Ee = Ecell + E f lag + Ejoint, (34)

where Ecell , E f lag and Ejoint are respectively cell energy, flagellum energy and joint energy.
If the cell is divided into m points and the flagellum is divided into n−m points, Ecell ,

E f lag and Ejoint can be written as

Ecell =
1
2

S1

m

∑
k=1

[||Xk+1 − Xk|| − ∆s]2

+
1
2

S2

m

∑
k
[nz · (Xk+1 − Xk)× (Xk − Xk−1)− Ccell ]

2, (35)

E f lag =
1
2

S3

n

∑
k=m+1

[||Xk+1 − Xk|| − ∆s]2

+
1
2

S4

n−1

∑
k=m+2

[nz · (Xk+1 − Xk)× (Xk − Xk−1)− C f lag(k, t)]2, (36)

Ejoint =
1
2

S3[||Xn − X1|| − ∆s]2

+
1
2

S4[nz · (X1 − Xn)× (Xn − Xn−1)− C f lag(n, t)]2

+
1
2

S5[(X2 − Xm) · (Xn − X1)]
2 (37)

where S1 and S2 are respectively the stretching and bending coefficients of the cell, S3
and S4 are respectively the stretching and bending coefficients of the flagellum, S5 is the
constant used to force the flagellum orthogonal to the cell body at the point of attachment,
Ccell and C f lag are respectively the prescribed configuration function and driving function,
and nz = (0, 0, 1). In Equation (35), periodic boundary should be applied, i.e., X0 = Xm
and Xm+1 = X1. In Equation (36), the moment free at both ends is applied in the bending
energy calculation. The last point Xn of the flagellum is connected to the first point X1 on
the cell body by the joint energy (see Equation (37)). The last term of Equation (37) is used
to drive an orthogonal connection.

Ccell is used to maintain a prescribed shape. For example, a configuration of

Ccell = −(∆s)2 sin
(

2π

m

)
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prescribes an equilibrium configuration of the points along the cell body equally-spaced
along a circle of radius r = ∆s/(2 sin2(π/m)). Coefficients S1 and S2 determine how
closely the equilibrium configuration is enforced.

C f lag(k, t) is chosen so that a sine wave of amplitude a(k) is passed along the flagellum.
Because the motion of flagellum includes both passive and active parts, it is hard to generate
a specific amplitude profile. In general, C f lag(k, t) = A(k) sin((s−ωt)/λ), where λ is the
wave length.

The non-slip/non-penetration boundary condition is achieved by using

Uorg =
∫

u(x, t)δD(x− Xorg(s, t))dx,
∂Xorg

∂t
= Uorg. (38)

The Navier-Stokes equations are solved by using the projection method of Chorin
with periodic boundary conditions and the velocity field is solved by an implicit scheme.
The implicit method is used for the calculation of Equation (32). Such treatment could
enhance the numerical stability. In practice, a few hundred to one thousand time steps per
period of undulation should be used; the number of time steps per period of undulation
should increase with the undulation amplitude as well.

The major advantage of this method is associated with the driving function C f lag
used. C f lag is actually the prescribed motion in the body-fixed frame of reference, which
interacts with the fluid forces. In addition, the fluid inertia and nonlinearity are considered.
The internal driving mechanism is unclear in this method. In addition, the structure inertia
is not considered.

5. An Integrative Model Based on IBM

An integrative model based on IBM, which considers an axoneme consisting of two
microtubules, was developed by Dillon et al. [5,42–44]. In this model, the microtubule is
modeled as a pair of filaments with diagonal cross-links. The microtubules are linked by
nexins and dyneins (dynamic diagonal elastic links) (see Figure 1).

Dynein

Microtubules

Nexin

Figure 1. Schematic of a deformed silia in LR (left to right) model.
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The immersed boundary method is employed to couple this cilia dynamics with the
fluid dynamics. It spreads the surface force onto the volumetric fluid grids in the vicinity
of the boundary and treats it as a body force through the following expression

f(x, t) = ∑
k

∫
Fk(s, t)δD(x− Xk(s, t))ds, (39)

where Fk(s, t) is the Lagrangian force density on the fluid by the k-th filament, Xk is the
point on the k-th filament, and δD is Dirac’s delta function. The Lagrangian force can be
written as

F = FM + FN + FD + FC + FT , (40)

where FM is the elastic force arising from the deformation of the microtubules (including
contributions from the filaments and the cross links), FN is the force caused by the elonga-
tion of nexin links, FD is induced by the contraction of the dynein links, FC is the tethering
force to prevent movement of cell wall, and FT is the tethering force to prevent movement
of the axoneme base.

The microtubule forces at node i of k-th filament is denoted by Fk
M,i, and can be

written as

Fk
M,i = ∑

ii
−KS,i−ii(||Xk

ii − Xk
i || − ∆s)

Xk
i − Xk

ii

||Xk
ii − Xk

i ||
, (41)

where ii denotes those points linked to node i by filament segment and the cross-links,
KS,i−ii is the stretching coefficient between nodes i and ii, and ∆s is the rest length between
nodes i and ii. The calculation of FN is the same as Equation (41).

FD, FC and FT at node i, denoted by FX,i, can be written as,

FX,i = ∑
ii
−KX,i−ii(Xk

i − Xk
ii), (42)

where ii denotes those points linked to node i, and KX,i−ii is the stretching coefficient
between nodes i and ii.

Dillon et al. [43] also introduced a simple curvature control algorithm to control the
flagellar waveform. In this algorithm, individual dyneins are selected from LR (left to
right) or RL (right to left) families at each time step according to the local curvature at
the site of the dynein at a time τd in the past. The choice of modes is determined by the
sigh of the lagged local curvature. Initially the shape of the axoneme has a pair of bends,
and the resulting bend propagation depends on this curvature control mechanism when
the simulation begins. Details of this method can be found in Ref. [43].

The advantage of this method is associated with the facts that it applied curvature con-
trol method to achieve swimming motion, and that it includes microtubule structure details,
with the cost of algorithm complexity. This method does not consider structure inertia.

6. SVD-GFD Method on a Hybrid Meshfree-Cartesian Grid

In Ref. [45], Yeo et al. presented a Singular-Value Decomposition (SVD) based Gen-
eralized Finite Difference (GFD) method for the simulation of fluid–structure interaction
problems in a viscous fluid. This method was originally developed for moderate and large
Reynolds number swimming problems, e.g., fish swimming and manoeuvring. However,
this method can be directly extended to sperm swimming. In this method, computation is
carried out on a hybrid grid comprising meshfree nodes around the undulating swimming
body which are convected in tandem with the changing shape and motion of the body and
Cartesian nodes in the background (as shown in Figure 2). Both types of grids employ
the arbitrary Lagrangian–Eulerian (ALE) formulation of the incompressible Navier–Stokes
equations to calculate the fluid dynamics

∂u
∂t

+ (u− ug) · ∇u = −∇p
ρ

+ ν∇2u, ∇ · u = 0, (43)
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where ug denotes the convection velocity of the computational grids. At the meshfree
nodes and a small number of Cartesian nodes (which contain meshfree nodes in its
[−∆x, ∆x]× [−∆y, ∆y] neighbourhood), derivative approximation is carried out by a GFD
scheme that uses the SVD procedure for error minimization [45]. The GFD method is
based on the Taylor series approximation where the derivative components ∂f9×1 =
(∂x, ∂y, ∂x2 , ∂xy, ..., ∂y3)T f |x0 of a function f (x) at a given position x0 are related to its func-
tion values fi = f (xi) at n support nodes xi = x0 + ∆xi by

∆fn×1 = [S]n×9∂f9×1, (44)

∆fn×1 = ( f1 − f0, f2 − f0, ..., fn − f0), (45)

[S]n×9 =


∆x1 ∆y1 ∆x2

1/2! ∆x1∆y1 · · · ∆y3
1/3!

∆x2 ∆y2 ∆x2
2/2! ∆x2∆y2 · · · ∆y3

2/3!
...

...
...

...
...

...
∆xn ∆yn ∆x2

n/2! ∆xn∆yn · · · ∆y3
n/3!

. (46)

In general, n ≥ 9 support nodes are needed to approximate the second-order derivative
components of ∂f9×1. The derivatives are obtained as the solution of the over-determined
linear system (44) by the method of SVD, which minimizes the `2-norm (least square) of
the residual error vector.

Figure 2. The hybrid meshfree-Cartesian grid in the computational frame: filled circle denotes
meshfree body nodes defining the outline of the body; open circle represents the meshfree cloud of
nodes enveloping the body; and open square denotes the nodes of Cartesian background.

At other Cartesian nodes which do not contain meshfree nodes in its [−∆x, ∆x]×
[−∆y, ∆y] neighbourhood, traditional finite difference method is used.
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Once the fluid dynamics is acquired, the forces on the swimming body can be obtained.
Finally, the motion of the body is governed by (also see Ref. [18])

m
dVc

dt
= Fg + F f , (47)

d(ωIc)

dt
= Mc f , (48)

Vc =
dXc

dt
, (49)

ω =
dθ

dt
, (50)

where m is the mass of the body, Ic is the moment of inertia about centroid (Xc) of the body, θ
is the orientation angle of the body center line, Vc is the linear velocity of the mass centroid,
ω is the angular velocity of the body, Fg represents an external force such as gravitational
force, F f is the fluid forces, and Mc f is the fluid moment about centroid. In the body-frame,
the body performs motion with prescribed kinematics to achieve cyclic swimming and
turning manoeuvres. Similar swimmer dynamics model has been extensively used to study
fish-like and sperm-like swimming (see for example Refs. [12,17,20,46]). Equations (47)–(50)
governing the centroidal translation and rotation of the swimming body are integrated by
a Crank–Nicolson like implicit scheme.

We would like to highlight several major advantages of this method. It combines the
advantages of mesh-free discretization for precise definition of bodies and good resolution
of boundary regions with the efficiency of standard Cartesian finite difference scheme, so
that the interpolation is kept at a very minimal level associated with fresh nodes creation.
Furthermore, the density of mesh-free nodes around bodies may be freely varied to give
necessary resolution within boundaries. Finally, both meshfree nodes and background
Cartesian nodes can be convected if necessary. This will be particularly useful in problems
where the swimming body travels over extended distances. Though this method considers
structure inertia, it uses the prescribed kinematics, which is not affected by the fluid force,
to achieve cyclic swimming and turning manoeuvres.

7. IBM Based on Finite Difference Method

IBM based on finite difference method was extended by Qin et al. [20] to study a small
swimmer (e.g., sperm) in a viscous fluid. This method consists of three parts: swimmer
dynamics, fluid dynamics and fluid-structure interaction.

In this method, the swimmer dynamics is the same as that used in Refs. [12,17,45],
and is described by Equations (47)–(50). Therefore, it will not be repeated here. In the
fluid dynamics solver, the fractional step method was adopted to solve the Navier–Stokes
Equation (43) without mesh movement (i.e., ug = 0). Fully implicit time advancement and
the Crank–Nicolson scheme were respectively used for the discretization of the diffusion
and convection terms on a staggered Cartesian grid. Decoupling of the velocity and
pressure was achieved by using a variation of Chorin’s projection method (see Ref. [47] for
the details of this method).

The major difference of this method compared to Ref. [45] is that the immersed
boundary method is employed to handle the fluid–structure coupling, which spreads the
surface force onto the volumetric fluid grids in the vicinity of the boundary and treats it as
a body force through the following expression

f(x, t) = SRe
∫

F(s, t)δD(x− X(s, t))ds, (51)

where S = ρs/ρL is the mass ratio (with ρs being the structure linear density, ρ being fluid
density and L being the swimmer length), Re is the Reynolds number defined by cL/ν (this
definition was also used in Ref. [12]), F(s, t) is the Lagrangian force density on the fluid
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by the swimmer body, δD(x− X(s, t)) is Dirac’s delta function. In this work, the feedback
forcing scheme [48–50] is used to calculate the Lagrangian force density, i.e.,

F = α(X− xib) + β(U− uib), (52)

where α and β are positive constants, U is the Lagrangian velocity obtained from both
prescribed motion, uib is the interpolated velocity from flow field according to

uib =
∫

u(x, t)δD(x− X(s, t))dx, (53)

and xib is the position integrated by using uib,

xib =
∫

uibdt. (54)

In the implementation, Equation (52) is not directly used. Instead, the equations below
are used to calculate the Lagrangian force,

∆X = X− xib, (55)

F = α∆X
[

1 +
β

α∆t
∆X(t)− ∆X(t− ∆t)

∆X(t)

]
, (56)

where the second term of the Lagrangian force is usually less than the first term unless
the flagellum shape changes sharply with time or the body swims very fast. This fact is
useful for choosing appropriate values of α and β. Details regarding values of α and β can
be found in Ref. [47].

Qin et al. [20] applied this method to study a small swimmer (e.g., sperm) in a viscous
fluid. They found that for a very small swimmer such as sperm swimming at very low
Reynolds numbers, the traveling-wave beating propels the swimmer forward and the
asymmetrical parabola beating changes the swimming direction. Similar observation was
obtained by the method in Section 8 which applies an internal driving moment to generate
the beating motion of a sperm. Qin et al. also found that if the distance between the
swimmer and a wall is less than the wavelength, the wall effect on the swimmer motion is
strong, which is consistent with fish swimming as discussed in Ref. [51]. Another interesting
observation was that the swimmer approaches the wall due to the net torque generated by
the non-uniform distribution of the pressure along the flagellum.

Compared to Ref. [45], this method uses IBM, and thus it is more efficient regard-
ing the boundary condition treatment. We also note that an explicit scheme was used
in Ref. [20] for equations governing the sperm dynamics, while a Crank–Nicolson like
scheme was used in Ref. [45]. Therefore, a much smaller ∆t (e.g., 10−4) was used for both
structure and fluid dynamics in Ref. [20], while ∆t = 10−3 was used in Ref. [45]. Actually,
at each fluid–structure interaction, the integration of structure dynamic equations can be
further split into several substeps depending on the stiffness and/or mass ratio, as did
in Refs. [52–54]. Similar to the SVD-GFD method on a hybrid meshfree-Cartesian grid in
Section 6, this method uses the prescribed kinematics independent of hydrodynamics to
achieve cyclic swimming and turning manoeuvres.

8. IB-LBM Based Driving Moment Method

Here we introduce an internal driving nonlinear model based on the immersed
boundary–lattice Boltzmann method (IB-LBM) [23,55–61]. In this method, the sperm
is simplified as a nonlinear beam. To drive the swimming motion, an internal moment is
introduced into the beam equation [59]. Therefore, the geometrically nonlinear motion for
the sperm is described as

Kv
∂X
∂t
− ∂

∂s

[
T(s)

∂X
∂s

]
+ Kb

∂4X
∂s4 +

∂

∂s

(
∂M(s, t)

∂s
n
)
= F f , (57)
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where s is the arch length from the leading edge to the tail, T(s) = Ks(| ∂x
∂s | − 1) is the

stretching stress, Ks is the stretching coefficient, Kb is the bending rigidity, Kv is the damping
coefficient, X is the Lagrangian position vector of the sperm, n is the normal pointing to
the left hand side when s is increasing, M(s, t) is the driving moment, and F f is the fluid
stress. Both head and tail are shear-free and subjected to driving moment, which can be
described by (∂2X/∂s2)|s=0,L = M(s) and (∂3X/∂s3)|s=0,L = 0.

The incompressible viscous fluid dynamics is solved by using LBM [62,63] where
the kinematics of the fluid is governed by the discrete LBE of a single relaxation time
model [55,62–66]

gi(x + ei∆t, t + ∆t)− gi(x, t) = − 1
τ
[gi(x, t)− geq

i (x, t)] + ∆tGi, (58)

where gi(x, t) is the distribution function for particles, ei is the particle velocity, x is the
position, ∆t is the size of the time step, geq

i (x, t) is the equilibrium distribution function,
τ represents the nondimensional relaxation time, and Gi is the body force term. In the
D2Q9 model, the nine possible particle velocities are given by

e0 = (0, 0),

ei =

(
cos

π(i− 1)
2

, sin
π(i− 1)

2

)
∆x
∆t

, for i = 1 to 4,

ei =

(
cos

π(i− 9/2)
2

, sin
π(i− 9/2)

2

)√
2∆x
∆t

, for i = 5 to 8,

where ∆x is the lattice spacing. In Equation (58), geq
i and Gi are acquired by [64,67]

geq
i = ωiρ

[
1 +

ei · u
c2

s
+

uu : (eiei − c2
s I)

2c4
s

]
, (59)

Gi =

(
1− 1

2τ

)
ωi

[
ei − u

c2
s

+
ei · u

c4
s

ei

]
· f, (60)

where ωi are the weights given by ω0 = 4/9, ωi = 1/9 for i = 1 to 4 and ωi = 1/36 for i =
5 to 8, u = (u, v) is the velocity of the fluid, cs = ∆x/

√
3∆t is the sound speed, and f is the

fluid body force. The relaxation time is related to the fluid kinematic viscosity by

ν = (τ − 0.5)c2
s ∆t. (61)

Finally, the fluid density, velocity and pressure are computed by

ρ = ∑
i

gi, ρu = ∑
i

eigi + 0.5f∆t, p = ρc2
s . (62)

The immersed boundary method is employed to handle the moving boundary, which
spreads the surface force onto the volumetric fluid grids in the vicinity of the boundary
and treats it as a body force through the following expression

f(x, t) =
∫

F(s, t)δD(x− X(s, t))ds, (63)

where F(s, t) is the Lagrangian force density on the fluid by the elastic boundary,
δD(x − X(s, t)) is Dirac’s delta function. The regularized body force is the same as f
in Equation (60), and it enters the kinetic equation of the fluid, Equation (58), through
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Gi. Since F(s, t) is the reaction force of hydrodynamic force on the sperm, F f , it can be
written as

F(s, t) = −F f = Fv(s, t) + Fs(s, t) + Fb(s, t) + Fd(s, t), (64)

Fv(s, t) = −Kv
∂X
∂t

, (65)

Fs(s, t) =
∂

∂s

[
T(s)

∂X
∂s

]
, (66)

Fb(s, t) = −Kb
∂4X
∂s4 , (67)

Fd(s, t) = − ∂

∂s

(
∂M(s, t)

∂s
n
)

. (68)

where Fv, Fs, Fb and Fd are respectively the viscous, stretching, bending, and internal
driving forces.

The velocity of a point on the sperm is interpolated from the flow field, and the
position of the sperm is updated explicitly by

U(s, t) =
∫

u(x, t)δD(x− X(s, t))dx, (69)

∂X(s, t)
∂t

= U(s, t), (70)

where U(s, t) is the velocity of the sperm.
The method ignores the internal structure details and the molecular motor mechanisms

of the sperm. Instead, an internal driving moment is employed to drive the swimming
motion. By designing a suitable driving moment, one is able to reproduce the traveling
wave motion, turning maneuver, and other motions. Furthermore, the structure inertia can
be incorporated by using the method in Ref. [55]. In practice, the driven force is sometimes
explicitly provided [68,69], i.e., Fd(s, t) = Fd0(s) sin[(s−ωt)/λ] where Fd0(s) is the force
amplitude. The leading edge trajectory, and speeds in x- and y-directions presented in
Ref. [59] are shown in Figure 3. The pressure distributions around a swimming sperm in
2D and 3D space by Liu et al. [69] are shown in Figure 4.

(a)
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Figure 3. A 2D sperm swimming by the immersed boundary–lattice Boltzmann method (IB-LBM)
based driving moment method: (a) Leading edge trajectory, and (b) speeds in x- and y-directions [59].
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(a)

(b)

Figure 4. A sperm swimming by the IB-LBM based driving moment method: pressure distribution
for 2D (a) and 3D (b) simulations [69] .

9. Conclusions

In this article, a number of previous efforts focusing on the theoretical and numerical
methods for sperm swimming have been introduced from an engineering perspective.
Specifically, the governing equations and parameters for sperm swimming in fluid are
first presented and discussed. The simplified theoretical methods, including Taylor’s
swimming sheet and cylinder, the resistive force theory and the slender body theory,
are then introduced. Finally, numerical methods, including boundary-element method for
flagellar propulsion in Stokes flow, driving-configuration-function model based on IBM,
an integrative model based on IBM, SVD-GFD method on a hybrid meshfree-Cartesian
grid, IBM based on finite difference method and IB-LBM based driving moment method,
are provided. The methods include IBMs and non-IBMs. IBMs are normally based on
the delta function which is a first-order approach in space. The major advantage of these
methods is the simplicity in handling boundary conditions at the fluid-structure interacts.
For the non-IBMs solving FSI systems, effort is required to handle the computational mesh,
bringing benefit of higher accuracy in space.

Actually, among the hundreds of millions of sperm cells that begin the journey up
the oviducts, only a few excellent travelers will ever reach their destination. They have
to swim in the right direction over distances that are around 1000 times their own length.
In addition, they are exposed to complex currents along the way. During their journey,
the sperms might explore the hydrodynamic benefits from other sperms around them or
the flexible walls so that they have better opportunities to reach the destination. There may
be both collaboration and competition between sperms. Therefore, significant work needs
to be done to gain better understanding of this complex process. There are several issues
for further research in this area.

First, the control strategy of driving moment is an interesting topic considering the
“fierce race” during the journey up the oviducts. The complex currents and the moving wall
require excellent control strategy which has not been studied. The combination of numerical
methods with artificial intelligence, which has been introduced in high-Reynolds-number
swimmers [70,71], is an attractive strategy to achieve this. Second, the sperm-sperm and
sperm-wall interactions are important during this journey. In previous numerical experi-
ments, it was found that two tandem sperms enjoy benefits from the interaction in terms
of acceleration and forward speed. However, instability occurs during the swimming,
and thus it may need extra energy for the sperm to recover from instability. In addition,
the interaction among large number of sperms and walls is not well understood. The chal-
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lenges are the swimming stability, control and the response of the sperm to the complex
environments which could be addressed by artificial intelligence. Third, chemotaxis is
an important feature of sperms. It is the movement in response to a chemical stimulus
from egg (and/or oviduct). Understanding of sperm chemotaxis is of importance to un-
derstand its swimming mechanism and driving moment control. Fourth, it is desired to
study the non-Newtonian effects on the swimming performance of sperms considering
most body fluids behave according to non-Newtonian rheologies which have strong effects
on fluid–structure interaction at low Reynolds numbers. Fifth, the beating of the sperm
tail is subjected to fluctuations in internal forces due to the noise in the activity of the
motors, which could be modelled by Brownian motion [72,73] which should be considered
in the numerical modelling. Finally, collaboration and competition between sperms [73],
and optimization, also need further study in the modelling.
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