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Abstract: The onset of the thermal instability is investigated in a porous channel with plane par-
allel boundaries saturated by a non–Newtonian shear–thinning fluid and subject to a horizontal
throughflow. The Ellis model is adopted to describe the fluid rheology. Both horizontal boundaries
are assumed to be impermeable. A uniform heat flux is supplied through the lower boundary, while
the upper boundary is kept at a uniform temperature. Such an asymmetric setup of the thermal
boundary conditions is analysed via a numerical solution of the linear stability eigenvalue problem.
The linear stability analysis is developed for three–dimensional normal modes of perturbation show-
ing that the transverse modes are the most unstable. The destabilising effect of the non–Newtonian
shear–thinning character of the fluid is also demonstrated as compared to the behaviour displayed,
for the same flow configuration, by a Newtonian fluid.

Keywords: Ellis fluid; porous medium; normal modes; Rayleigh–Bénard instability; convection

1. Introduction

The emergence of convection Rayleigh–Bénard cells in a fluid saturated porous
medium heated from below is a cornerstone topic in the research on convection heat
transfer in porous solids. There is an impressively wide literature on this topic, often called
Darcy–Bénard instability, which is surveyed in Chapter 6 of Nield and Bejan [1]. Other sur-
veys relative to this area of research are provided by Straughan [2], Barletta [3]. Except for
a minor part of the papers available in the literature regarding the Darcy–Bénard instability,
most investigators have focussed their attention on the Newtonian fluids saturating a
porous medium.

The Darcy–Bénard instability for saturating fluids with a non–Newtonian rheology has
been investigated with reference to viscoelastic fluids [4–6], to fluids with yield–stress [7]
and to purely viscous fluids [8–14]. In particular, Barletta and Nield [8], Alves and Barletta
[9], Celli et al. [10] and Petrolo et al. [11] discuss the onset of the Darcy–Bénard instability
in a porous medium by considering the power–law model. A more sophisticated model,
i.e. Carreau–Yasuda, is employed by Brandão and Ouarzazi [12] and by Brandão et al. [13]
to model purely viscous, non–Newtonian flow in porous media.

The usual setup envisaged in the studies on the onset of Darcy–Bénard instability
in a saturated porous layer is one where the plane parallel boundaries are considered as
isothermal with different temperatures. In the present paper, the objective is to extend
the analysis carried out by Celli et al. [14]. In fact, Celli et al. [14] employ Ellis’ model
to describe the behaviour of a shear–thinning non–Newtonian fluid saturating a porous
medium. The temperature boundary conditions are modified, with respect to the study
developed by Celli et al. [14], by assuming a uniform heat flux on the lower boundary
of the layer. Such a modification is accompanied by a numerical solution of the stability
eigenvalue problem, whereas an analytical dispersion relation is available with isothermal
boundary conditions [14]. The shear–thinning rheology of the fluid is formulated by
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adopting the Ellis model extension of Darcy’s law. Results will be discussed for the
instability onset in terms of the neutral stability curves and of the critical values of the
perturbation wavenumber and of the Darcy–Rayleigh number. The main result is the
demonstration of the destabilising effect of the Ellis fluid rheology as compared to the
Newtonian fluid behaviour, with the transverse normal modes leading the transition to
the instability.

2. Mathematical Formulation

A porous layer of height H saturated by a non–Newtonian fluid is considered.
The boundary walls are considered to be impermeable. The layer is heated from be-
low by a constant heat–flux q0, while the upper boundary is kept at a constant temperature
T0. A sketch of the porous layer with a scheme of the boundary conditions and of the
coordinate axes is displayed in Figure 1. The Oberbeck–Boussinesq approximation is
employed and local thermal equilibrium between the fluid and the solid matrix is assumed.
A basic uniform throughflow is imposed along the horizontal x direction.

Figure 1. A sketch of the porous layer, of the boundary conditions and of the coordinate axes.

2.1. Rheological Model

The rheological behaviour of the non–Newtonian fluid is described by employing the
Ellis model. More precisely, such a model is based on three–parameters that describe the
rheology of a time–independent, shear–thinning and non–yield–stress fluid [15]. According
to Sochi [15], the Ellis model is more reliable than the power–law model in matching
the experimental data. The apparent viscosity η, according to the Ellis model, is given
by [15,16].

η =
η0

1 +
(

τ

τ1/2

)ζ−1 ,
(1)

where ζ is a positive parameter such that ζ = 1/n, where n is the power–law index.
The apparent viscosity at zero shear–stress is represented by η0, while τ1/2 represents the
value of τ at which η = η0/2. By employing the power–law index, Equation (2) can be
rewritten as

η =
η0

1 +
(

τ

τ1/2

) 1−n
n

.
(2)
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The apparent viscosity predicted by the Ellis model, for some limiting cases, is given
by the following list: 

τ1/2 → 0 =⇒ η = 0,
τ1/2 → ∞ =⇒ η = η0,
τ < τ1/2, n→ 0 =⇒ η = η0,
τ > τ1/2, n→ 0 =⇒ η = 0,
n→ 1 =⇒ η = η0/2.

(3)

On the other hand, in the limiting case of strong shear stresses, τ � τ1/2, Equation (2)
reduces to

η = η0

(
τ

τ1/2

) n−1
n

. (4)

2.2. Generalization of Darcy’s Law

For a Newtonian fluid saturating a porous medium, Darcy’s law can be formulated
as [1]

u =
K
η

fd, (5)

where the bars over the symbols represent the dimensional fields, time and coordinates.
Here, u is the seepage velocity vector with components (u, v, w), K is the permeability of
the porous medium and fd is the drag force which contains the pressure gradient and the
buoyancy term based on the Oberbeck–Boussinesq approximation, namely [1]

fd = −∇p− ρ0 g β (T − T0). (6)

In Equation (6), p is the local difference between the pressure and the hydrostatic pressure,
ρ0 is the fluid density evaluated at the reference temperature T0, g is the gravity acceleration
vector and β is the thermal expansion coefficient of the fluid. Darcy’s law can be generalised
for non–Newtonian fluids by replacing the fluid viscosity with an effective viscosity [16,17].
Hence, Equation (5) becomes

u =
K

ηe f f
fd, (7)

where ηe f f is the effective viscosity given by

1
ηe f f

=
1
η0

1 +
4n

3n + 1

(
|fd|rh
τ1/2

) 1−n
n
. (8)

Here, rh is the mean hydraulic radius, which is directly proportional to the square root of
the permeability of the porous medium divided by its porosity ϕ [16]

rh =

√
5 K
ϕ

. (9)

Thus, the modified Darcy’s law for a porous medium saturated by an Ellis fluid can be
rewritten in a more convenient way as

u =
K
η0

(
1 + A |fd|

1−n
n

)
fd, (10)
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where A is a coefficient determined by the properties of the porous medium and of the fluid,

A =
4 n

3 n + 1

(
rh

τ1/2

) 1−n
n

. (11)

It is worth noting that, near the instability threshold, the drag forces have, usually, a small
magnitude. In fact, in the limit of vanishing drag forces, fd → 0, Equation (10) reduces to
Equation (5).

2.3. Governing Equations

The mass balance, momentum balance and energy balance equations for the present
problem are given by

∇ · u = 0,
η0

K
u =

(
1 + A |fd|

1−n
n

)
fd,

fd = −∇p− ρ0 g β (T − T0),

σ
∂T
∂t

+ u · ∇T = α∇2T,

y = 0 : v = 0, −χ
∂T
∂y

= q0,

y = H : v = 0, T = T0.

(12)

In Equation (12), σ is the ratio between the average volumetric heat capacity of the porous
medium and the volumetric heat capacity of the fluid; α and χ are the average thermal diffu-
sivity and the average thermal conductivity of the saturated porous medium, respectively.

The following scaling allows one to express Equation (12) in a dimensionless form

x =
x
H

, u =
H
α

u, p =
K

η0 α
p, t =

α

σH2 t, T =
T − T0

∆T
, (13)

where ∆T = q0H/χ and x is the position vector with Cartesian components (x, y, z).
By substituting Equation (13) into Equation (12), one may write

∇ · u = 0,

u =
(

1 + El |fd|
1−n

n

)
fd,

∂T
∂t

+ u · ∇T = ∇2T,

y = 0 : v = 0, −∂T
∂y

= 1,

y = 1 : v = 0, T = 0,

(14)

where

fd = −∇p + R T ey. (15)

The parameter El is the Darcy–Ellis number and the parameter R is the Darcy–Rayleigh
number. They are defined as follows:

El = A
( α η0

H K

) 1−n
n , R =

ρ g β H K ∆T
α η0

. (16)
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2.4. Basic State

The stationary solution of the problem is given by a uniform throughflow in the
horizontal direction and by a negative vertical temperature gradient. The latter is due to the
supplied heat flux on the bottom and the prescribed temperature on the top. The uniform
throughflow is generated by a prescribed constant pressure drop along the x axis, ∂pb/∂x.
Thus, the basic solution is expressed as

ub = −∂pb
∂x

(
1 + El

∣∣∣∣∂pb
∂x

∣∣∣∣ 1−n
n
)

, vb = 0,

wb = 0,
∂pb
∂y

= R Tb,
∂pb
∂z

= 0, Tb = 1− y,

(17)

where the subscript b denotes the basic state. Without any loss of generality, we can assume
that ∂pb/∂x is negative, so that ub assumes only positive values.

2.5. Linear Stability Analysis

In order to simplify the numerical treatment, the governing equations can be rewritten
by employing a pressure–temperature formulation. By considering the first Equation (14)
and by applying the divergence operator to the second Equation (14), we can get the rid
of the velocity field in the momentum balance equation. For the energy balance equation,
we employ the second Equation (14) to express the velocity as function of pressure. Thus,
the pressure–temperature formulation of the governing equations is given by

∇ ·
[(

1 + El |fd|
1−n

n

)
fd

]
= 0,

∂T
∂t

+
[(

1 + El |fd|
1−n

n

)
fd

]
· ∇T = ∇2T,

fd = −∇p + R T ey,

y = 0 :
∂p
∂y

= RT, −∂T
∂y

= 1,

y = 1 :
∂p
∂y

= 0, T = 0,

(18)

where the boundary conditions based on the pressure–temperature formulation are ob-
tained by employing the governing Equation (14).

2.6. Normal Modes

The stability of the system is investigated by decomposing pressure and temperature
into two parts: one relative to the basic equilibrium solution, and the other relative to the
infinitesimal disturbances. The stability analysis consists in observing the linear evolution
in time of such disturbances in order to determine the threshold values of the governing
parameters for the onset of the instability. Such disturbances are investigated through a
normal mode analysis. The decomposed pressure and temperature are given by

p(x, y, z, t) = pb(x, y) + ε f (y) eλ tei(kx x+kz z−ω t),

T(x, y, z, t) = Tb(y) + ε h(y) eλ tei(kx x+kz z−ω t),
(19)

where λ is the growth rate, kx and kz are the wavenumbers in the x and z direction, ω is
the angular frequency, f and h are the eigenfunctions of the problem, and ε is a positive
parameter that defines the amplitude of the disturbances. Since ε� 1, all terms O(ε2) are
neglected in the present analysis.

The instability threshold is determined by seeking the neutral stability, which is the
transitional condition given by the normal modes with a zero growth rate. The present
analysis is focussed on the dynamics of the most unstable normal modes arising in the sys-
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tem. By imposing λ = 0, we ensure the neutral stability condition. Hence, the differential
dispersion relation for the disturbances is given by

f̃ ′′ − ñ k2 f̃ − R̃ h′ = 0,

h′′ − (k2 − R̃− iω̃)h− f̃ ′ = 0, (20)

subject to the boundary conditions

y = 0 : f̃ ′ = R̃h, h′ = 0,

y = 1 : f̃ ′ = 0, h = 0, (21)

where the following quantities have been defined:

f̃ = (1 + Ẽl) f , R̃ = (1 + Ẽl)R, Ẽl = El
∣∣∣∣∂pb

∂x

∣∣∣∣ 1−n
n

,

kx = k cos φ, kz = k sin φ,

ñ =
Ẽl + n (Ẽl + 2) + Ẽl (1− n) cos(2φ)

2 n (Ẽl + 1)
.

(22)

Here, φ is the angle between the wave vector of the normal mode and the x axis. In
Appendix A, a proof that the eigenvalue problem is to be solved with ω̃ = 0 is provided.
In Appendix B, it is shown that the most unstable modes are the transverse rolls, whose
wave vector is parallel to the basic flow direction (φ = 0). These findings are the basis for
the discussion of the results presented in the forthcoming section.

3. Results and Discussion

Equations (20) together with the boundary conditions (21) are solved numerically
by using the procedure described in Appendix C. The results of the stability analysis are
presented by displaying the neutral stability curves and the plots of the critical values of R
and k versus the governing parameters (Ẽl, n).

In Figure 2, the neutral threshold is displayed in the (k, R) plane for different values
of Ẽl and n = 0.5. It is evident that the parameter Ẽl has a destabilising effect. In fact,
with any fixed wavenumber k, the neutral stability condition for increasing values of Ẽl is
achieved for decreasing values of R.

El


=0

El


=1

El


=10

El


=100

0 2 4 6 8

0.1

1

10

100

k

R

Figure 2. Neutral stability curves for n = 0.5 and different values of Ẽl.

The most important information of a neutral stability curve is the global minimum of
R, which defines the critical condition. In order to compute directly the critical points, one
can derive the original Equation (20), as well as the boundary conditions (21), with respect
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to k and impose the condition ∂R/∂k = 0. The derivative of the eigenfunctions f̃ and h with
respect to k are treated as new eigenfunctions and the differential system expanded in this
way is solved together with the original one. More information regarding this technique
can be found in the paper by Alves et al. [18] and in the book by Barletta [3].

Figures 3 and 4 show the critical stability condition by reporting Rc and kc as functions
of Ẽl for different values of n. By analysing these results, the destabilising role of Ẽl is
confirmed. In addition, one may note that, for a vanishing Ẽl, the critical data do not
depend on n. Indeed, a vanishing value of Ẽl means either El→ 0 or ∂pb/∂x → 0. The first
case means absence of a shear–thinning effect, as suggested by the second Equation (14),
while the second case means no basic shear stress and, thus, no influence of the shear–
thinning effect on the dynamics. In both cases, we expect that the Ellis fluid behaves as
a Newtonian fluid. In fact, for Ẽl→ 0, we obtain critical values that coincide with those
reported in the literature for Newtonian fluids [1], namely Rc = 27.1 and kc = 2.33.

n = 1

n = 0.8

n = 0.6

n = 0.4

n = 0.2

0 5 10 15 20

0.5

1

5

10

El


Rc

Figure 3. Critical value of R as a function of Ẽl for different values of n.

n=1

n=0.8

n=0.6

n=0.4

n=0.2

0 5 10 15 20

1.4

1.6

1.8

2.0

2.2

2.4

El


kc

Figure 4. Critical wavenumber kc as a function of Ẽl for different values of n.

Figures 5 and 6 show similar findings, even if Rc and kc are presented as functions of
n for different values of Ẽl. Again, the conclusion that, for Ẽl→ 0, the critical data do not
depend on n is confirmed. One may also note that, by increasing the value of Ẽl, the value
of Rc decreases with n. For a nonzero value of Ẽl, the critical value of R depends on n and
this dependence becoming weaker and weaker as n→ 1. Figure 6 shows that, for nonzero
values of Ẽl, the critical wavenumber tends to kc = 2.33 when n→ 1. In the limiting case
n→ 0, there is a significant decrease of both Rc and kc.
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El
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Figure 5. Critical value of R as a function of n for different values of Ẽl.
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Figure 6. Critical wavenumber k as a function of ñ.

Figure 7 displays the isolines of both pressure and temperature, showing the cellular
flow pattern for Ẽl = 10 and n = 0.5. The convective cells are evidently asymmetric with
respect to the horizontal midplane. This is due to the different type of conditions imposed
at the horizontal boundaries.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

Pressure

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

Temperature

Figure 7. Isolines of pressure (left) and temperature (right) drawn for Ẽl = 10 and ñ = 0.5.
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4. Conclusions

The linear convective instability of shear–thinning fluids saturating a porous channel
has been investigated. The lower channel wall has been considered as subject to a uniform
heat flux, while the upper wall is maintained at a constant temperature. The rheology of the
shear–thinning fluid is described by employing the Ellis model. More precisely, a modified
version of Darcy’s law has been assumed to represent the shear–thinning behaviour of the
fluid. A study of small–amplitude disturbances has been proposed in order to determine
the threshold for the onset of instability. The resulting system of differential equations,
defining the stability eigenvalue problem, has been solved numerically. The governing
parameters of this analysis are the modified Ellis number, Ẽl, the power–law index n,
the Darcy–Rayleigh number R, the wavenumber k and the inclination angle φ of the wave
vector to the basic flow direction. The main results can be summarized as follows:

• The transverse rolls turned out to be the most unstable modes.
• The neutral stability curves display, qualitatively, the same shape when changing the

fluid flow parameters.
• The effect of decreasing the value of n on the threshold value for the onset of the

instability is similar to the effect of increasing the value of the modified Ellis number,
Ẽl: both decreasing n or increasing Ẽl yield a destabilising effect.

• When Ẽl→ 0, the onset of the instability is not affected by n and the critical values of
the governing parameter match the values reported in the literature for Newtonian
fluids, namely Rc = 27.1 and kc = 2.33.
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Appendix A. A Proof that ω̃ = 0

In order to prove that ω̃ = 0, we multiply the first Equation (20) by the complex conju-
gate of the eigenfunction f̃ , f̃ ∗. Then, after integrating by parts and using the boundary
conditions given by Equation (21), one obtains∫ 1

0
| f̃ ′|2 dy + k2 ñ

∫ 1

0
| f̃ |2 dy− R̃

∫ 1

0
h f̃ ∗

′
dy = 0. (A1)

From Equation (A1), by recognising that the first two terms are both real and positive,
we reach the conclusion that ∫ 1

0
h f̃ ∗

′
dy ∈ R, (A2)

where R denotes the set of real numbers. By taking the complex conjugate of the integral
in Equation (A2), we conclude also that∫ 1

0
f̃ ′h∗ dy ∈ R. (A3)
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We multiply the second Equation (20) by the complex conjugate of h, h∗, and we
integrate by parts over the domain y ∈ (0, 1) to obtain∫ 1

0
|h′|2 dy +

(
k2 − R̃− i ω̃

) ∫ 1

0
|h|2 dy +

∫ 1

0
f̃ ′h∗ dy = 0. (A4)

By utilising Equation (A3), we may now split Equation (A4) into its real and imaginary
parts to get

ω̃
∫ 1

0
|h|2 dy = 0. (A5)

Finally, by recalling that the trivial solution (h = 0) must be excluded, we conclude
that

ω̃ = 0. (A6)

Appendix B. Dominant Modes

If we account for the dependence of ñ on φ, we can say that ñ is a monotonic decreasing
function of φ, considering that 0 ≤ φ ≤ π/2. The proof is simple: we evaluate dñ/dφ from
Equation (22),

dñ
dφ

= − Ẽl (1− n) sin(2φ)

n (Ẽl + 1)
. (A7)

Since n ≤ 1 and sin(2φ) ≥ 0 within the interval 0 ≤ φ ≤ π/2, one can easily conclude
that dñ/dφ ≤ 0, i.e., that ñ is a monotonic decreasing function of φ.

Thus, by looking at Figure A1, we can observe that Rc is a monotonic decreasing
function of ñ. Hence, we can infer that Rc is a monotonic increasing function of φ. This
conclusion implies that the most unstable modes are transverse (φ = 0).

El


=0

El


=0.1

El


=1

El


=10

20 40 60 80 100

0

5

10

15

20

25

n


Rc

Figure A1. Critical value of R as a function of ñ for different values of Ẽl.

Appendix C. Numerical Method

The numerical method used to solve the differential eigenvalue problem is the shoot-
ing method. The basis of this method is the reformulation of the original eigenvalue
problem (20), subject to the boundary conditions (21), as an initial value problem by using
additional initial conditions, namely

f̃ ′′ − ñ k2 f̃ − R̃h′ = 0,

h′′ −
(

k2 − R̃
)

h− f̃ ′ = 0,

f̃ ′(0) = R̃ h(0), f̃ (0) = 1, h′(0) = 0, h(0) = ξ.

(A8)
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We mention that the initial condition f̃ (0) = 1 can be imposed because the governing
differential equations in (A8) are homogeneous. On the other hand, ξ is an unknown real
parameter to be found. The system of Equation (A8) is solved numerically by means of
the Runge–Kutta method. The solution for the eigenfunctions f̃ and h depends on the
four governing parameters, k, ñ, R̃ and ξ. Such parameters are to be determined through a
root–finding algorithm in order to satisfy the target conditions

f̃ ′(1) = 0, h(1) = 0. (A9)

A comparison between our results and those reported in Chapter 6 of the book by
Nield and Bejan [1] reveals, in the special case El → 0, an excellent agreement, with
kc = 2.33 and Rc = 27.1.
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