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Abstract: In the present paper, we provide an analytical expression for the first- and second-order
thermal slip coefficients, σ1,T and σ2,T , by means of a variational technique that applies to the
integrodifferential form of the Boltzmann equation based on the true linearized collision operator
for hard-sphere molecules. The Cercignani-Lampis scattering kernel of the gas-surface interaction
has been considered in order to take into account the influence of the accommodation coefficients
(αt, αn) on the slip parameters. Comparing our theoretical results with recent experimental data on
the mass flow rate and the slip coefficient for five noble gases (helium, neon, argon, krypton, and
xenon), we found out that there is a continuous set of values for the pair (αt, αn) which leads to
the same thermal slip parameters. To uniquely determine the accommodation coefficients, we took
into account a further series of measurements carried out with the same experimental apparatus,
where the thermal molecular pressure exponent γ has been also evaluated. Therefore, the new
method proposed in the present work for extracting the accommodation coefficients relies on two
steps. First of all, since γ mainly depends on αt, we fix the tangential momentum accommodation
coefficient in such a way as to obtain a fair agreement between theoretical and experimental results.
Then, among the multiple pairs of variational solutions for (αt, αn), giving the same thermal slip
coefficients (chosen to closely approximate the measurements), we select the unique pair with the
previously determined value of αt. The analysis carried out in the present work confirms that both
accommodation coefficients increase by increasing the molecular weight of the considered gases, as
already highlighted in the literature.

Keywords: Boltzmann equation; hard-sphere molecules; Cercignani-Lampis scattering kernel; ther-
mal slip coefficients; thermal molecular pressure exponent

1. Introduction

From the pioneering works of Reynolds [1], Maxwell [2] and Knudsen [3,4] it is known
that a gas flow is generated through a capillary if the temperature is different at its ends,
and this flow is directed toward the hot extremity of the capillary. This phenomenon is
called the thermal transpiration or thermal creep and the mass flow rate generated by
applying a temperature gradient along the capillary walls is called the temperature driven
mass flow rate, denoted in the following by MT. If the capillary is settled between two
reservoirs of finite volumes maintained at different temperatures and initially at the same
pressure, first a temperature driven flow is generated from the cold to the hot side, then
it is counterbalanced by the Poiseuille flow, denoted in the following by MP, since the
pressure in the hot reservoir becomes higher than in the cold one. The system comes to an
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equilibrium when the Poiseuille mass flow rate matches the temperature driven mass flow
rate, MP = MT, making the total mass flow rate between the reservoirs equal to zero. The
pressure difference between the reservoirs, which corresponds to this final stage, is called
the Thermal molecular Pressure Difference (TPD). These phenomena become important when
a gas flowing through a capillary is rarefied, i.e., the ratio between the molecular mean free
path, λ, and a characteristic flow dimension, a, (in this case the capillary radius) called
the Knudsen number, Kn = λ/a, is larger than 0.01. Since the Knudsen number is defined
as the ratio between two quantities, λ and a, it could be relatively large either when the
molecular mean free path is large (low pressure) or when the characteristic flow dimension
is small (gas flows in the microsystems). Therefore, the thermal creep phenomenon is
important either at low pressure or for the gas flows at small scales.

In the last decades, the property of the TPD generation, due to a temperature gradient
applied to a surface, started to be used for the development of microdevices like micro
gas sensors [5,6], micropumps without moving parts and lubricant fluids [7–10] and
micro gas chromatography columns [11–13]. The information about the TPD can also be
used to calculate several physical quantities as the Eucken factor, the rotational collision
number [14] and the heat conductivities of polar and non-polar polyatomic gases [15].

However, the thermal molecular pressure difference has also a negative effect in the
accuracy of the pressure measurements. For example, in order to minimize the zero drift,
some of Capacitance Diaphragm Gauges (CDG) are operated keeping the sensor at a higher
temperature [16]. This difference in the temperature between the sensor and the vacuum
chamber makes the behavior of the gauge non-linear due to thermal transpiration effects
and the pressure readings have to be corrected. The same effect needs to be taken into
account when the vapor-pressure thermometry or gas thermometry techniques are used to
measure the temperature below 0 ◦C [17], due to a large difference in temperature between
the vessels where the pressure is measured.

The thermal molecular pressure difference effect depends on several factors [17]: the
nature of the gas and in particular its thermal conductivity; the absolute pressure value; the
flow regime (hydrodynamic, transitional or free molecular); the temperature values or the
mean temperature and the temperature gradient between the cold and the hot measurement
points; the material and the state of the internal surface of the connecting tube.

If one considers all the applications described above, it is clear that an accurate
prediction of the TPD is very important in practice. Relying on the results of the kinetic
theory, Reynolds pointed out [1] that in the free molecular flow regime the pressure ratio
between the cold and the hot reservoirs is proportional to the square root of the respective
reservoir temperatures:

pc

ph
=

(
Tc

Th

)1/2
, (1)

where pc and ph are the pressures in the cold and the hot reservoirs, respectively; Tc and
Th are the corresponding temperatures. Equation (1) has been derived for two reservoirs
connected by an orifice and the probabilities for the molecules to traverse the orifice are
equal on its both sides. However, more often, a capillary connects two reservoirs. In this
case, the mentioned probability, to a great extent, depends on the surface properties of
the tube where the gas molecules collide and on the degree of energy exchange. Under
these conditions, the pressure ratio pc/ph will be smaller than the ratio predicted by
Equation (1) [18]

pc

ph
=

(
Tc

Th

)γ

. (2)

In the above formula, the ratio pc/ph is usually called the Thermal molecular Pressure
Ratio (TPR) and the factor γ is called the Thermal molecular Pressure Exponent (TPE).

It is difficult to derive a reliable and universal expression based on a well-established
theory of the thermal molecular pressure difference effect, in particular in the transitional
region, which represents an intermediate regime between the low pressure free molecular
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flow limit (where Equation (2) can be used) and the high pressure hydrodynamic flow
regime (where Equation (2) reduces to pc = ph).

Maxwell was the first to propose an analytical expression [2] for the mass flow through
a capillary driven by the pressure and temperature gradients. He introduced the concepts of
the slip velocity and of the accommodation coefficient, the latter to describe the processes
involved in the gas-surface interaction. The formula derived by Maxwell allows one
to calculate the TPD assuming the zero final mass flow rate, but it is valid only in the
hydrodynamic and slip flow regimes. Later, Knudsen measured the thermal molecular
pressure difference of hydrogen at different gas rarefaction conditions and proposed
the improved semi-empirical expression for the TPD [3,19], satisfying the two limits:
Equation (1) in the free molecular flow regime and the zero TPD in the hydrodynamic
region. Several researchers followed the ideas of Knudsen and proposed various semi-
empirical formulas to calculate the TPD [20–24].

From the experimental results on the thermal molecular pressure difference reported
in [25], it became clear that the Maxwell model for the complete diffuse reflection of
the gas molecules from a surface was inappropriate to predict the thermal transpiration
phenomenon at arbitrary Knudsen numbers. The author of Ref. [25] extracted the accom-
modation coefficient from the experimental data by fitting the expressions for the pressure
and temperature driven mass flow rates proposed by Maxwell with a least square method
and found that this value is different from 1. However, these results have shown that
the thermal molecular pressure difference has little or no dependence on the gas-surface
interaction: all the tested gases converged towards the same value. These findings were in
good agreement with those reported in Ref. [26], where the thermal transpiration problem
was analyzed numerically with arbitrary accommodation at the surface, always in the
frame of the Maxwell diffuse-specular kernel.

Applying the Maxwell scattering kernel to calculate the TPD in the free-molecular
regime, one obtains that the exponent γ is equal to 0.5 for any value of the accommodation
coefficient. However, the authors of Ref. [27], by studying experimentally the thermal
transpiration flow with ultrahigh vacuum techniques, concluded that the theoretical value
of γ = 0.5, predicted by Reynolds (Equation (1)) is effectively never reached and that lower
values of γ, between 0.4 and 0.5, are possible.

The application of a more realistic scattering kernel, compared to the Maxwell one,
as the Cercignani-Lampis (CL) model, allows one to improve the understanding of the
gas-wall interaction properties for thermal creep flows. The author of Ref. [28] applied the
Cercignani-Lampis boundary conditions to the linearized Shakhov kinetic model to simu-
late a flow through a long tube of circular cross section. It has been found that the values
of γ are less sensitive to the variation of αn than of αt. Thus, the tangential momentum
accommodation coefficient αt has been extracted from the measurements of γ, given in [29]
for various gases in a glass capillary, assuming that the normal energy accommodation
coefficient, αn, is equal to 1. In this way, a good agreement has been obtained between the
measured and simulated values of γ for helium, neon, argon and xenon. However, in the
framework of the Cercignani-Lampis model of boundary conditions, reliable values of the
normal energy accommodation coefficient αn are rare. A standard procedure used up to
now consists of fixing the value of αn and then in fitting the experimental data to obtain
the value of αt, as done in Ref. [28]. In a recent paper [30], the values of αn, extracted from
the literature of measurements of the acoustic resonance frequencies of helium-filled and
argon-filled spherical metal cavities, have been reported. The Shakhov kinetic model with
the Cercignani-Lampis boundary conditions has been solved in order to reproduce the
temperature jump coefficient determined in these experiments. The numerical results have
revealed that a continuous set of values of αt and αn can lead to the same jump coefficient.
Therefore, to be able to uniquely estimate αn, one should use additional information about
αt, exploiting other methods of measurement different from the acoustic resonance. As a
consequence, the authors of [30] have reported the values of αt and αn for helium and argon
determined in diverse experimental settings. In the above cited works, the correlation
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between the measurements and the theoretical results has been analyzed in a narrow range
of the rarefaction parameter (typically the near-continuum regime or the free-molecular
flow limit where analytical formulas can be derived for the particular problem at hand).

Recently, in Ref. [31], the thermal-creep problem of a rarefied gas between two parallel
plates has been investigated by using a variational approach that applies to the integrodif-
ferential form of the linearized Boltzmann equation for hard-sphere molecules. In the frame
of the Cercignani-Lampis boundary conditions, new analytical expressions for the first-
and second-order thermal slip coefficients have been derived in terms of the tangential
momentum αt and the normal energy αn accommodation coefficients. These theoretical
results have been compared with the thermal slip parameters experimentally measured by
the authors of Ref. [32]. For five noble gases, the values of αt and αn have been extracted
and then used to evaluate the temperature-driven mass flow rates. A good agreement
has been obtained between the variational outputs and the experimental data. However,
as already underlined in [30], for some specific values of the thermal-slip coefficients, there
can exist multiple solutions for the accommodation coefficients.

The main objective of this work is to extend the previous findings reported in [31] and
to propose a methodology to uniquely determine αt and αn.

2. The Variational Approach to Plane Poiseuille and Thermal-Creep Problems

Let us consider two infinite parallel plates separated by a distance d and a gas flow-
ing between them, in the z-direction, owing to longitudinal gradients of pressure and
temperature defined as follows:

k =
1
p

∂p
∂z

, τ =
1
T

∂T
∂z

(3)

with p and T being the local gas pressure and temperature, respectively. Both walls
are fixed at x = ±d/2. If the pressure and temperature gradients are taken to be small,
the Boltzmann equation can be linearized [31]:

cx
∂h
∂x

+ kcz + τcz

(
c2 − 5

2

)
= Lh, (4)

where h(x, c) is the small perturbation on the basic equilibrium state, c is the molecular
velocity vector expressed in units of (2RT)1/2 (with R being the specific gas constant) and
Lh is the linearized collision operator. In the following, we study the Poiseuille and
thermal-creep flows on the basis of the linearized Boltzmann equation for hard-sphere
molecules. This approach provides a better approximation of real-gas behavior than
commonly used kinetic models, as the Bhatnagar-Gross-Krook (BGK) or the Shakhov (S)
models. The Boltzmann Equation (4) can be solved with appropriate boundary conditions
imposed on the walls of the channel. Once the distribution function h is evaluated, the
bulk velocity of the gas vz(x) and the heat flux qz(x) can be calculated as

vz(x) = π−
3
2

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
e−c2

czh(x, c) dc, (5)

qz(x) = π−
3
2

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
e−c2

cz

(
c2 − 5

2

)
h(x, c) dc. (6)

Hence, the mass Ṁ and heat Q̇ flow rates (per unit time through unit thickness) read

Ṁ = ρ
∫ d/2

−d/2
vz(x)dx, (7)

Q̇ =
∫ d/2

−d/2
qz(x)dx, (8)
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where ρ is the gas density. To apply the variational formulation, we shall rewrite Equation (4)
in the following symbolic form:

(D− L)h = S, (9)

where Dh = cx
∂h
∂x and S = −czk− cz

(
c2 − 5

2

)
τ. The boundary conditions to be matched

with Equation (9) have the general expression

h+ = Kh−, (10)

where h+ and h− concern the reemitted and the impinging molecules on the boundaries,
respectively, and the operator K depends on the scattering kernel used. In this work, we
consider the Cercignani-Lampis (CL) boundary conditions [33] based on two different
adjustable parameters: αt, which is the accommodation coefficient of the tangential mo-
mentum (αt ∈ [0, 2]) and αn, which is the accommodation of the kinetic energy owing to the
velocity normal to the bounding walls (αn ∈ [0, 1]). This model provides a more realistic
physical description of the gas-surface interaction, compared to the most popular Maxwell
diffuse-specular scattering kernel with only one adjustable parameter. The CL boundary
conditions take the form:

h+(−(d/2)sgncx, c) =
∫

c′x<0
RCL(−c→ −c′) h−(−(d/2)sgncx, c′) dc′, (11)

where

RCL(c′ → c) = 2cx
παtαn(2− αt)

exp
{
− [ct − (1− αt)c′t]2

αt(2− αt)

}
× exp

{
− [cx

2 + (1− αn)c′x
2
]

αn

}
Io

(
2
√

1− αn
αn

cxc′x

)
, (12)

with ct = (cy, cz) being the two-dimensional vector of the tangential molecular velocity and
Io being the modified Bessel function of first kind and zeroth order. Let us now introduce
the following functional J of the test function h̃ [34,35]:

J(h̃) = ((h̃, P(Dh̃− Lh̃)))− 2((PS, h̃)) + (h̃+ − Kh̃−, Ph̃−)B, (13)

where P is the parity operator in velocity space, defined by P[h(c)] = h(−c), while ((, )),
(, )B denote two scalar products:

((h, g)) = π−3/2
∫ +d/2

−d/2

∫ +∞

−∞
exp(−c2)h(x, c)g(x, c) dcdx (14)

(h±, g±)B = π−3/2
∫

∂Ω

∫
cx>0

cx exp(−c2)h±(c)g±(c) dcdσ . (15)

In the one-dimensional case, the integration over the boundary ∂Ω reduces to the sum
of the terms at x = ±d/2.

Using the variational principle described in Refs. [34,35], one can prove that the
functional J(h̃) attains its stationary (minimum) value when h̃ = h(x, c) solves Equation (9)
with the boundary conditions (10). If we let h̃ = h, Equation (13) reduces to:

J(h) = −((PS, h)) = −k
∫ d/2

−d/2
vz(x)dx− τ

∫ d/2

−d/2
qz(x)dx = −k

Ṁ
ρ
− τQ̇. (16)
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Thus, the stationary value of J has a direct connection with the quantities of physical
interest. For linearized problems, the mass and heat flow rates, per unit width, can be
written as the sum of the Poiseuille and thermal-creep contributions:

Ṁ = d2 p [−Gp k + GT τ], (17)

Q̇ =
d2

2
p [Qp k−QT τ], (18)

where Gp, GT , Qp and QT are positive dimensionless coefficients that represent the
Poiseuille coefficient, the thermal-creep coefficient, the mechanocaloric coefficient and
the reduced heat flux, respectively. One can prove that the cross coefficients, GT and Qp,
satisfy the Onsager relation [36–38]:

GT = Qp. (19)

Following the general method presented in [39] we derived an accurate expression
for the trial function h̃(x, c) by considering the solution of the BGK-Boltzmann equation
in integral form for the coupled Poiseuille and thermal-creep problems. In this formula,
the bulk velocity profile has been approximated by

ṽz(x) = Ax2 + C (20)

with the adjustable constants A and C being represented as:

A = Ap + AT , C = Cp + CT (21)

due to the linear superposition of the Poiseuille and thermal-creep effects. Since the solution
of the BGK-Boltzmann equation, valid for all rarefaction regimes, contains exponential
functions (describing the Knudsen layers) which cannot be easily manipulated in an
analytical way within the framework of the true linearized collision operator, the following
simplified test function has been used to evaluate Equation (13):

h̃(x, c) = 2Acz(x2 − 2xcxθ + 2cx
2θ2) + 2cz

(
C− kθ

2

)
− Bτθcz

(
c2 − 5

2

)
. (22)

In Equation (22), A, B and C are adjustable constants to be varied in order to obtain
the best value of J(h̃), and θ is a length parameter that will be specified in the following.
Due to the simplifications carried out in deriving Equation (22), the range of validity of the
variational results extends into the transitional and near-continuum flow regimes. The trial
function (22) shows the same dependence on x and c as the asymptotic form of the test
function derived in [36] via the use of the Chapman-Enskog procedure. Let us now rescale
the constant A appearing in Equation (22) as follows: A = A

θ2 , and define the rarefaction

parameter (inverse Knudsen number):

δ =
d
θ

. (23)

For molecules approximated by hard spheres of diameter σ, the length parameter θ
is given by θ =

√
2/(π3/2σ2n), where n is the gas number density. Substituting h̃, given

by Equation (22), in Equation (13) and splitting the constants as in Equation (21), with the
normalization

Âp =
Ap

(kθ)
, Ĉp =

Cp

(kθ)
, ÂT =

AT
(τθ)

, ĈT =
CT
(τθ)

(24)

the functional J(h̃) reduces to the sum of three functionals: J(1)(h̃), J(2)(h̃), J(3)(h̃), simply
grouping together the terms proportional to (kθ)2, (τθ)2 and (kθ)(τθ), respectively. Each
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functional is a polynomial of the second order with respect to the constants Ap, AT , B, Cp
and CT , that are to be determined:

J(1)(h̃)/(kθ)2 = (
√

π)
−1 ×

{
c11
2

A2
p +

c22
2

C2
p + c12 ApCp − c1 Ap − c2Cp +

1
2
(c2 − c22/4)

}
, (25)

J(2)(h̃)/(τθ)2 = (
√

π)
−1 ×

{
c11
2 A2

T + d22
2 B2 + c22

2 C2
T + d12 AT B + c12 ATCT − d1 AT

−d2B + d23BCT

}
, (26)

J(3)(h̃)/[(kθ)(τθ)] = (
√

π)
−1 ×

{
c11 Ap AT + c22CpCT + c12(ApCT + ATCp)

−d1 Ap − c1 AT − c2CT + d12 ApB + d23BCp − d23
2 B

}
. (27)

The nondimensional coefficients appearing in Equations (25)–(27) have been explicitly
reported in [31]. The derivatives of J(1)(h̃)/(kθ)2, J(2)(h̃)/(τθ)2, and J(3)(h̃)/[(kθ)(τθ)],
with respect to Ap, AT , B, Cp and CT vanish in correspondence of the optimal values of
these constants [31].

Since the functional J can be split into three parts and the relations (16)–(18) hold,
it is easy to see that the computation of the minimum of J(1)(h̃)/(kθ)2, J(2)(h̃)/(τθ)2

and J(3)(h̃)/[(kθ)(τθ)] will lead to an accurate estimate of the Poiseuille coefficient Gp,
the thermal-creep coefficient GT , and the reduced heat flux QT :

Gp =
2
δ2 min

J(1)(h̃)
(kθ)2 , (28)

GT = − 1
δ2 min

J(3)(h̃)
(kθ)(τθ)

, (29)

QT =
2
δ2 min

J(2)(h̃)
(τθ)2 . (30)

3. Derivation of the Slip Coefficients and the Thermal Molecular Pressure Exponent

Over the last decades, the application of the Boltzmann equation to describe flows
in nano- and microfluidic devices has become an area of intense research. Unfortunately,
when applied to realistic multidimensional problems, the numerical solution of the kinetic
equations is computationally demanding. However, in the case of low rarefaction level,
the gas flow can be still simulated in the frame of the classical hydrodynamic (Navier–
Stokes) equations, provided that slip boundary conditions are employed. These conditions
involve slip parameters which depend on the gas-surface interaction potential through the
accommodation coefficients. In particular, in the frame of the Cercignani-Lampis boundary
conditions, αt and αn describe the tangential momentum and normal energy exchange
at the solid-gas interfaces, respectively. This heat and momentum transfer highly affects
the thermo-physical properties of a gas. Therefore, to improve our understanding of the
gas-surface interaction to be used in practical applications, it is useful to derive a general
method for extracting the accommodation coefficients, regardless of the driving mechanism
of the fluid flow.

For pressure-driven flows, assuming a first-order boundary condition at a flat wall,
in the isothermal case, the slip velocity reads as

vs = σ
(1)
p λ

(
∂v
∂x

)
w

, (31)
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where σ
(1)
p is the viscous-slip coefficient, λ is the mean free path of the molecules and the

gas-velocity gradient is evaluated at the wall. Likewise, for thermal-driven flows, one can
write the following first-order slip boundary condition on a flat wall:

vs = σ
(1)
T

µ

ρT

(
∂T
∂z

)
w

, (32)

where σ
(1)
T is the thermal slip coefficient, µ is the gas viscosity, and the temperature gradient

is evaluated at the wall. The asymptotic near-continuum solutions of the Boltzmann
equation for the Poiseuille and thermal-creep flows allow one to indirectly compute both
the viscous and thermal slip coefficients, respectively. Equations (28) and (29) give in the
limit δ� 1:

Gp =
δ

σ0,p
+ σ1,p +

σ2,p

δ
+ · · · (33)

GT =
σ1,T

δ
+

σ2,T

δ2 + · · · (34)

where

σ0,p = (4
√

π)−1 ·
[

96
π

Ĵ1 + 48
√

π

]
, σ1,p = [4

√
παtAp]

−1 · [Dp − 16/9παtCp], (35)

σ2,p = [4
√

παtAp]
−1 · [Ep + 16/9παtC2

p − 16/9παtBp − CpDp] (36)

Ap =
32
3π

Ĵ1 +
16
3
√

π, Dp =
128
3

Ĵ1 −
32
3

π3/2αt +
64
3

π3/2, (37)

Bp = A−1
p ·

[
128
π

Ĵ2 − 16
√

παt − 16
√

παn + 16
√

παtαn

]
, (38)

Cp = A−1
p · [−16− 4παt − 64F0αn(1− αt)− 64F1(1− αt)(1− αn)], (39)

Ep = −64π +
64
3

παt − 256πF0αn(1− αt)− 256πF1(1− αt)(1− αn) (40)

and

σ1,T =

[
64 Ĵ4

(
2 Ĵ1

π3/2 + 1
)]−1[

16
(

5 Ĵ1− 10 Ĵ3 + 2 Ĵ4

)
+ 10 π3/2

(
αt + αn− αtαn + 4

)]
, (41)

σ2,T = [2
√

πAT ]
−1
[
BTCT
AT

− ET

]
, AT =

32 Ĵ4 αt

3
√

π

[
2 Ĵ1

π3/2 + 1
]

, (42)

BT = −128
π Ĵ4αt(1− αt)

[
F0αn +F1(1− αn)

]
− 8αt Ĵ4

[
4
π + αt

]
+16

3
√

παt

[
αn + 7 αt + 2 α3

t − 6 α2
t − αt αn

][
2 Ĵ1

π3/2 + 1
]

, (43)

CT = −16
3

αt

[
5 Ĵ1 − 10 Ĵ3 + 2 Ĵ4

]
− 10

3
π3/2αt

[
αt + αn − αt αn + 4

]
, (44)

ET = −32
√

παt

[
5 Ĵ3 − Ĵ4

]
+ 160παt(1− αt)

[
F0αn +F1(1− αn)

]
+ 10π2αt

×
[

2 αt + αn − αt αn

]
− 32

3 παt

[
αt − 2 αn − 3 α2

t + α3
t + 2 αt αn − 15

4

]
, (45)
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with Ĵ1 = −1.4180, Ĵ2 = 1.8909, Ĵ3 = 0.9449, Ĵ4 = 4.7252, F0 = 0.196079 and F1 = 0.247679.
The definition of the integral expressions Ĵi is reported in the Appendix A. The reliability
of a “second-order” solution for the pressure- and temperature-driven mass flow rate
(Equations (33) and (34)) has been well assessed in Refs. [31,40,41].

If one compares the thermal-driven mass flow rate obtained by using the Navier–
Stokes equations with the slip boundary conditions (32) and the variational formula (34), it
is straightforward to identify σ1,T with the first-order thermal slip coefficient σ

(1)
T , while σ2,T

can be referred to as the “second-order” thermal slip coefficient (where we indicate with
“second-order” a term of the next-order with respect to the leading one). Likewise, this
identification can be performed for the Poiseuille flow (a complete derivation is presented
in Refs. [40,41]). Furthermore, the formulas (33) and (34) can be used to theoretically
calculate the γ-exponent. Assuming that the pressure and temperature drops are small,
one can integrate Equation (17) along the longitudinal direction z to obtain:

γ =
GT
Gp

. (46)

4. Experimental Measurements

The measurements of the thermal molecular pressure difference and the temperature
driven mass flow rates have been made by various authors and some of these works have
been cited in Section 1. The authors of Ref. [29] provided a set of data on the TPD and
also on the TPE. They found that the γ-exponent can vary with the gas nature and the
gas rarefaction, from 0 in the hydrodynamic flow regime to 0.5 in the free molecular one.
Recently, a series of measurements of the temperature driven flows have been carried
out [42–44] in the capillary glass tube with radius of 0.245 mm for three temperature
differences, 37 ◦C, 53.5 ◦C and 71 ◦C, keeping the cold temperature around 27 ◦C. The TPD,
TPR and γ values are provided for helium, argon and nitrogen.

The authors of Refs. [32,45] measured the different characteristics of the tempera-
ture driven mass flow rate through a microchannel over a wide range of the gas rarefac-
tion parameter using the same experimental apparatus. A microchannel made of PEEK
(PolyEtherEtherKetone) has been employed with a rectangular cross-section and the fol-
lowing dimensions: a height of d = 0.22± 0.01 mm, a width of w = 6 mm, and a length
of L = 73 mm. The temperature of the hot reservoir Th and that of the cold reservoir
Tc were maintained constant and two temperature differences ∆T have been tested: (1)
Th = 347.1± 0.5 K, Tc = 289.2± 0.2 K, where ∆T = 57.9 K and (2) Th = 337.0± 0.6 K,
Tc = 299.6± 0.4 K, where ∆T = 37.4 K. Such temperature differences were chosen to have
the same mean temperature Tm = (Tc + Th)/2 = 318 K. The final equilibrium flow char-
acteristics, as the thermal molecular pressure difference, the thermal molecular pressure
ratio and the thermal molecular pressure exponent, were evaluated as functions of the
rarefaction parameter from the measurements of pressure variations in time in both hot
and cold reservoirs. The thermal molecular pressure difference has been measured for 5
noble gases (helium, neon, argon, krypton and xenon) and for polyatomic nitrogen.

The measurements of the thermal-creep mass flow rates have been reported in Ref. [32].
In this case, only the second term on the right-hand side of Equation (17) has been taken
into account, modified as follows in order to consider a rectangular channel of width w:

ṀT =
d2 p w GT√

2RT
1
T

dT
dz

. (47)

The lateral-wall effects have been neglected owing to the large channel width-to-
height ratio equal to 27.3 [46,47]. Thus, the dimensionless thermal-creep coefficient GT
for a gas flowing between two parallel infinite plates at a distance d apart can be used. In
Equation (47), GT depends on the local rarefaction parameter δ. Indeed, in the experiments,
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the variation of δ along the channel is small enough to approximate GT(δ) by GT(δm), where
the mean rarefaction parameter δm is calculated on the basis of the mean temperature Tm:

δm =
p d

µ(Tm)
√

2RTm
. (48)

The viscosity coefficient is computed using the following relation [48]:

µ = µref

(
T

Tref

)ω

(49)

where µref is the viscosity coefficient at the temperature Tref and ω is the viscosity index.
The experimental values for GT as a function of δm have been listed in Ref. [32]

(Table 1), for different noble gases. To extract the first- and second-order slip coefficients
from the experiments and mostly to improve the accuracy in evaluating the first order
coefficient, Equation (47) has been used with GT given by its asymptotic expression (34):

GT '
σ

exp
1,T

δ
+

σ
exp
2,T

δ2 . (50)

In Equation (50), we renamed the two coefficients σ1,T and σ2,T , appearing in (34),
with σ

exp
1,T and σ

exp
2,T to highlight that the latter are experimentally-determined coefficients.

Integrating the resulting expression along the channel (by using the property of mass
conservation) with µ given by (49) and δ substituted by its mean value δm (48), one obtains:

ṀT = Ṁref

[
σ

exp
1,T +

σ
exp
2,T

δm
σ +O

(
1

δ2
m

)]
(51)

where Ṁref reads

Ṁref =
d w µref

Tω
ref

(Tω
h − Tω

c )

ω L
. (52)

Since the constant σ in Equation (51) has been found to be quite close to unity, one can
fit the measured data on the mass flow rate with the formula:

ṀT

Ṁref
= σ

exp
1,T +

σ
exp
2,T

δm
. (53)

The fitting procedure has been carried out in the range of δm = [3, 40], since the
asymptotic formula (51) allows one to predict the mass flow rate also in the early transition
regime. The validity of this interval has been already assessed in [31], on the basis of
theoretical computations. The values of σ

exp
1,T and σ

exp
2,T are listed in Ref. [32] (Table 3),

for both ∆T = 57.9 K and ∆T = 37.4 K, and for five different noble gases: helium (He),
neon (Ne), argon (Ar), krypton (Kr) and xenon (Xe). In Ref. [45] the information on the
γ-exponent (Equation (2)) is obtained from the steady state flow condition, i.e., when the
thermal creep flow in the channel is counterbalanced by the Poiseuille flow generated by a
pressure difference between the tanks. Therefore, this quantity is influenced not only by
the temperature driven flow but also by the pressure driven one. It is worthwhile to note
that experimentally-obtained values of γ are essentially lower than 0.5.

5. Results and Discussion

The present investigation is mostly guided by the desire to analyze recent experimental
studies, described in detail in Section 4, in order to propose a reliable procedure of extraction
for the tangential momentum and normal energy accommodation coefficients. In Ref. [32]
the thermal slip coefficients σ1,T and σ2,T have been obtained applying a fitting procedure
to mass flow rate measurements. In Table 1, we listed the experimental estimates of σ1,T
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and σ2,T for each ∆T = 58 K and ∆T = 37 K, and also the experimental estimates using the
data for the two temperature differences (indicated by ‘All’).

Table 1. Experimental estimates for the first-(σ1,T) and second-order (σ2,T) thermal slip coefficients (with permission of [32]).

All ∆T = 58 K ∆T = 37 K

σ
exp
1,T σ

exp
2,T σ

exp
1,T σ

exp
2,T σ

exp
1,T σ

exp
2,T

He 1.006± 0.020 −1.147± 0.113 1.026± 0.027 −1.196± 0.149 0.985± 0.023 −1.100± 0.127
Ne 0.998± 0.029 −1.226± 0.172 1.013± 0.025 −1.197± 0.147 0.983± 0.049 −1.255± 0.290
Ar 1.017± 0.057 −1.274± 0.406 1.038± 0.035 −1.248± 0.249 0.997± 0.105 −1.299± 0.763
Kr 1.061± 0.053 −1.327± 0.400 1.111± 0.076 −1.442± 0.566 1.012± 0.074 −1.212± 0.554
Xe 1.102± 0.085 −1.746± 0.626 1.142± 0.087 −1.547± 0.640 1.061± 0.142 −1.946± 1.050

In the previous paper [31], relying on a numerical solution of the system (41) and
(42), where on the left-hand side we used values of σ1,T and σ2,T as close as possible to
the experimental measurements, we extracted a pair of accommodation coefficients αt,
αn, for each noble gas considered in the experiments: helium, neon, argon, krypton and
xenon. Although the system (41) and (42) is highly nonlinear in the unknowns αt and
αn, we numerically found only one solution for each fixed σ1,T and σ2,T . Indeed, a recent
deeper inspection, carried out analytically by means of symbolic tools, has revealed that
for some specific values of the thermal-slip coefficients, there can exist multiple solutions
for the accommodation coefficients. This means that, we can derive the same values of σ1,T
and σ2,T , with αt and αn ranging within a continuous interval and obtain equally accurate
temperature-driven mass flow rates. Therefore, if one relies only on the experimental data
presented in [32], there is no way to uniquely determine αt and αn.

To overcome this difficulty, we took into account a further series of measurements,
carried out with the same experimental apparatus of Ref. [32], where the thermal molecular
pressure exponent γ has been evaluated [45]. Since we verified that γ mostly depends on
the accommodation coefficient of the tangential momentum, the parameter αt has been fixed
first by comparing our variational results based on Equations (33), (34) and (46), with the
experimental data of γ (reported in [45]). Then αn has been chosen accordingly in order
to obtain thermal slip coefficients as close as possible to the experimental measurements
(reported in [32]). We have listed in Table 2 these variational-determined thermal slip
coefficients, σ1,T and σ2,T , along with the specific values of αt and αn extracted in order to
optimize the agreement between the theoretical results and the measurements performed
in both experiments [32,45]. The comparison between the variational calculations (formulas
(33), (34) and (46)) and the experimental data showing the dimensionless thermal-creep
mass flow rate GT and the γ-exponent is drawn in Figures 1–10.

Table 2. Variational predictions for the first-(σ1,T) and second-order (σ2,T) thermal slip coefficients
along with the accommodation coefficients (αt, αn), chosen to provide results as close as possible to
the experimental measurements.

σ1,T σ2,T αt αn

He 1.0480 −1.1324 0.63 0.54
Ne 1.0548 −1.1669 0.60 0.62
Ar 1.0661 −1.2249 0.63 0.67
Kr 1.0817 −1.3067 0.65 0.77
Xe 1.1119 −1.4693 0.70 1.00
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Figure 1. Comparison between the measured mass flow rate GT of helium for ∆T = 58 K (Exp) and
our variational outputs (Theo) with αt = 0.63 and αn = 0.54.
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Figure 2. Comparison between the measured mass flow rate GT of neon for ∆T = 58 K (Exp) and
our variational outputs (Theo) with αt = 0.6 and αn = 0.62.
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Figure 3. Comparison between the measured mass flow rate GT of argon for ∆T = 58 K (Exp) and
our variational outputs (Theo) with αt = 0.63 and αn = 0.67.
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Figure 4. Comparison between the measured mass flow rate GT of krypton for ∆T = 58 K (Exp) and
our variational outputs (Theo) with αt = 0.65 and αn = 0.77.
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Figure 5. Comparison between the measured mass flow rate GT of xenon for ∆T = 58 K (Exp) and
our variational outputs (Theo) with αt = 0.7 and αn = 1.

In these pictures, we reported only the results of the experiments performed with
a temperature difference between the hot and cold reservoir equal to ∆T = 58 K. The
agreement with the measurements obtained when ∆T = 37 K is fairly good for most of
the gases used in the experiments. However, there are some cases (as for xenon) where
the experimental data for ∆T = 37 K are more scattered, and this produces a discrepancy
between the measured quantities (see, for instance, the value of σ2,T for xenon in Table 1)
and finally less good agreement with modeling. Indeed, the measured pressure variation,
induced by the thermal creep flow, is smaller for heavier gas species (like xenon) and for
small temperature differences, leading to a relatively larger measurement error.

Comparing the values of the first- and second-order thermal slip coefficients reported
in Table 2 of the present paper with those listed in Table II of Ref. [31], one can immediately
recognize that these coefficients have remained unchanged for four gases (helium, neon,
argon, krypton). However, still the associated accommodation coefficients (αt, αn) are
different, since in Ref. [31] the authors have compared the variational results with a set of
experimental data related only to the thermal-creep mass flow rate GT , while in the present
paper the agreement with the measured thermal molecular pressure exponent γ is also
evaluated. Owing to the existence of multiple pairs of accommodation coefficients (αt, αn),
solutions of the system (41) and (42), we were able to leave unchanged σ1,T and σ2,T , which
have already given rise to a good agreement between experimental and theoretical results
for GT [31], and we chose the most appropriate accommodation coefficients in order to
reproduce also the measured values of γ. This procedure has been proven to be effective
for all gases except xenon. The problem with xenon is that the experimental data for γ
can only be accurately reproduced (in both cases when ∆T = 58 K and ∆T = 37 K) if
αt ' 0.7, while a so strongly negative second-order thermal slip coefficient, as measured
in the experiments with a temperature difference ∆T = 37 K, is compatible only with
αt > 1. Therefore, unlike what has been done in [31], in this work we took into account
only the experiments with ∆T = 58 K (which provide less scattered data) and accordingly,
for xenon, we reported in Table 2 the variational-determined values of σ1,T and σ2,T which
better reproduce only this kind of measurements.
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For the comparison between the theoretical and experimental results shown in
Figures 1–10, we adopted the conventional approach by defining a mean free path through
the classical hard sphere model, [49,50]:

λ =

√
π

2
µ

p

√
2RT. (54)

To derive Equation (54) it has been assumed that µ ∝ T1/2 while the real gas coefficient
of viscosity µ is proportional to Tω . A way to overcome this difficulty is to use Equation (54)
along with the definition (49) for the coefficient of viscosity. An alternative route to define a
consistent mean free path has been proposed a long time ago by Bird [48], who introduced
the variable cross-section hard sphere (VHS) model. This model properly accounts for
the real gas temperature exponent of the coefficient of viscosity. Indeed, our variational
results have been obtained for a hard-sphere gas, therefore we use Equation (54) also to
represent the experimental data. Accordingly, the rarefaction parameter δ appearing in
Figures 1–10 reads:

δ =
pd

µ
√

2RT
, (55)

where the viscosity µ is given by Equation (49), so the values of δ reported in Equations (48)
and (55) coincide. In Figures 1–10, the interval of variation for the rarefaction parameter is
different for each gas since in the experiments the pressure range has been taken to be the
same, while the viscosity and the most probable velocity of each species are different.
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Figure 6. Comparison between the measured thermal molecular pressure exponent (γ) of helium for
∆T = 58 K (Exp) and our variational outputs (Theo) with αt = 0.63 and αn = 0.54.
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Figure 7. Comparison between the measured thermal molecular pressure exponent (γ) of neon for
∆T = 58 K (Exp) and our variational outputs (Theo) with αt = 0.6 and αn = 0.62.
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Figure 8. Comparison between the measured thermal molecular pressure exponent (γ) of argon for
∆T = 58 K (Exp) and our variational outputs (Theo) with αt = 0.63 and αn = 0.67.
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Figure 9. Comparison between the measured thermal molecular pressure exponent (γ) of krypton
for ∆T = 58 K (Exp) and our variational outputs (Theo) with αt = 0.65 and αn = 0.77.
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Figure 10. Comparison between the measured thermal molecular pressure exponent (γ) of xenon for
∆T = 58 K (Exp) and our variational outputs (Theo) with αt = 0.7 and αn = 1.

6. Concluding Remarks

In the present study, a variational technique applied to the Boltzmann equation for
hard-sphere molecules has been used to derive analytical expressions for the first- and
second-order thermal slip coefficients in terms of the tangential momentum and the normal
energy accommodation coefficients, defined in the frame of the Cercignani-Lampis model
of boundary conditions. A new method for extracting the accommodation coefficients
has been proposed by comparing the theoretical results with two series of measurements
carried out with the same experimental apparatus, where the channel surfaces are made of
PEEK [32,45]. Since the thermal molecular pressure exponent mainly depends on αt, we
fixed the tangential momentum accommodation coefficient by requiring a fair agreement
with the experimental measurement of γ, given in [45]. Then, among the multiple pairs
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of variational solutions for (αt, αn), leading to the same first- and second-order thermal
slip coefficients, chosen to closely approximate the experimental data reported in [32], we
selected the unique pair with the previously determined value of αt. The mathematical
constraint that both thermal creep and Poiseuille flows are needed to fully derive in a
consistent way the parameters (αt, αn) has a physical counterpart, in that these problems
are strongly related to each other: when a temperature gradient exists along the channel
walls, then a thermal transpiration flow is induced from the cold side towards the hot
side of the channel and this produces a pressure-driven backflow. In addition, since the
analytical formulas derived from our variational method are valid for δ & 3 and the data
are provided for δ = [3, 40], the fitting procedure between the theoretical and experimental
results has been carried out in a wide range of the rarefaction parameter. The values of
the accommodation coefficients (αt, αn) extracted in our work are consistent with those
recently reported in [30] for argon, while a significant deviation (especially related to the
value of αn) is highlighted for helium. Indeed, by analyzing the data reported in [32,45] it is
not possible to detect a significant discrepancy in the measured quantities for the different
gases (in particular, about the first- and second-order thermal slip coefficients) such as to
justify a remarkable difference in the values of the accommodation coefficients between
the helium and the other gases. Since the accommodation coefficients strongly depend
on the properties of both the gas and the solid surface on which a molecule impinges,
part of our future research should focus on extending the variational method in order to
take into account interaction potentials more realistic than the hard-sphere model. In fact,
if one considers, for instance, the viscosity index ω, gases like argon, krypton and xenon
show significant deviations from a hard-sphere gas behaviour. On the other hand, new
experimental measurements are desirable to inspect more deeply the influence of the walls
material of the microchannel, also allowing for a more straightforward comparison with
the data available in the literature.
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Appendix A

In Equations (35)–(45), the symbol Ĵi stands for integral expressions defined by using
the brackets [φ, ψ],

[φ, ψ] =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
e−c2

φ(c)Lψ dc, (A1)

with Lψ being the linearized Boltzmann collision operator. For hard spheres of diameter σ,
the mean free path λ reads as λ = 1/(

√
2πσ2n) (where n is the number density). Therefore,

Lψ =
1

4
√

2π5/2λ

∫ 2π

0
dε
∫ π

0
sin ΘdΘ ·

∫ +∞

−∞
e−c1

2
V (ψ′1 + ψ′ − ψ1 − ψ) dc1, (A2)
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where ψ is a function of c, while ψ1 refers to c1. V is the relative velocity: |c− c1|. ψ′ ≡
ψ(c′) and ψ′1 ≡ ψ(c′1), where c′ and c′1 are the velocities after collision of two molecules
with velocities c and c1, respectively. The collision geometry, in conjunction with the
conservation laws, relates the velocities after collision to the velocities before collision.
Thus,

c′x = cx + (c1x − cx) cos2(Θ/2) + 1/2 · [V2 − (c1x − cx)
2]1/2sin Θcos ε,

c′1x = c1x − (c1x − cx) cos2(Θ/2)− 1/2 · [V2 − (c1x − cx)
2]1/2sin Θcos ε,

where Θ is the angle through which the relative velocity has turned and ε is the azimuthal
angle that the plane containing the relative velocities before and after collision makes with
a fixed reference plane. Similar relations exist for the y and z components [48].

The integrals J1, J2, J3, J4 appearing in Equations (35)–(45) are eightfold integrals,

J1 = [cxcz, cxcz], J2 = −[cx
2cz, cx

2cz]

J3 = −[cx
2cz, c2cz], J4 = −[c2cz, c2cz], (A3)

where Ĵi =
2λ√

π
Ji. These integrals have been computed using a Monte Carlo integration on

an eight-dimensional space. In order to validate this numerical scheme, we recalculated
with the Monte Carlo method the collision integrals evaluated in Refs. [51,52], by means
of the analytical technique developed by Wang Chang and Uhlenbeck [53].
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