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Abstract: The flow characteristics of the single-phase liquid and the gas–liquid two-phase flows in-
cluding the Newtonian and non-Newtonian liquids were experimentally investigated in a horizontal
rectangular micro-channel with a sudden contraction—specifically the pressure change across the con-
traction. The rectangular cross-sectional dimension has Wu × Hu (width × height) = 0.99 × 0.50 mm2

on the upstream side of the contraction and Wd × Hd = 0.49 × 0.50 mm2 on the downstream side. The
resulting contraction ratio, σA (=Wd/Wu), was 0.5. Air was used as the test gas (in the case of the gas–
liquid two-phase flow experiment), distilled water and three kinds of aqueous solution, i.e., glycerin
25 wt%, xanthangum 0.1 wt% and polyacrylamide 0.11 wt% were used as the test liquid. The pressure
distribution in the flow direction upstream and downstream of the channel was measured. The
pressure change and loss at the sudden contraction were determined from the pressure distribution.
In addition, the pressure change data were compared with the calculation by several correlations
proposed by various researchers as well as a newly developed correlation in this study. From the
comparisons, it was found that calculations by the newly developed correlations agreed well with
the measured values within the error of 30%.

Keywords: two-phase flow; microchannel; pressure change; sudden contraction; non-Newtonian fluid

1. Introduction

Thermo-fluid devices and blood circulatory systems contain flow channels of various
cross-sections, e.g., circular and rectangular, as well as various types of geometrical singu-
larities, such as abrupt flow area changes (sudden contractions, sudden expansions and
bends, branches, etc.). Gas–liquid two-phase mixtures passing through the contractions and
the expansions are seen in piping connections as well as are relevant to many applications
such as chemical reactors, power generation units, heat exchangers, and petrochemical
plants [1]. With the progress of advanced micromachining technology, devices have been
miniaturized and the use of micro-devices has become widespread, e.g., micro-reactors [2],
mobile-type fuel cell [3], and micro-heat exchangers [4]. Thus, it is essential for the devel-
opment and the design of the micro-devices to know the characteristics of the single-phase
flow and the two-phase flow across the singularities [5,6].

Flow area change, i.e., sudden contraction and expansions might cause flow separa-
tion at the sharp edge. The separation might induce the flow pattern change and affect
the mass transfer performance. For example, since the flow is often laminar in the mi-
crochemical reactor, the flow parameters, which are bubble length, liquid slug length,
and liquid film thickness around the bubbles, are changed by utilizing the sudden con-
traction and expansion to promote the reaction. In the microchemical reactors, many
non-Newtonian fluid flows are frequently observed. Therefore, the knowledge of the
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single-phase and two-phase hydrodynamic properties of non-Newtonian fluids that pass
through singularities at micro- and/or mini-scales is required to create even micro-reactors
with an even higher performance. However, the flow characteristics of non-Newtonian
fluids passing through singularities in a microchannel are not always fully understood,
compared to Newtonian flow in micro- and mini-channels [1,5–9]. In addition, although
numerical simulations precede the research on the flow in the microchannel, e.g., [10,11],
there are insufficient data to be compared with the simulation results, and it is desired to
construct a database on the non-Newtonian flow through micro-singularities as well as in
the straight microchannels, e.g., [12,13].

Among flow parameters, the determination of the pressure loss produced by the
singularities is of considerable importance in the design of the piping system. Table 1
shows previous studies investigating the pressure drop for two-phase flow through sudden
contraction in a channel with a relatively small characteristic diameter. Abdelall et al. [5]
and Chalfi et al. [6] experimentally investigated the pressure change due to sudden con-
traction from the experiment of the air-distilled water system in the circular cross-sectional
flow channel. Chen et al. [7,8] conducted experiments on an air-distilled water system
in which the flow suddenly contracted from a rectangular cross-section flow channel to
a circular cross-sectional one and measured the pressure drop in the contraction section.
Kawahara et al. [9] conducted the experimental investigations on gas–liquid two-phase
flows through a sudden contraction in rectangular microchannels. Two rectangular mi-
crochannels with different contraction ratios were used. The widths of the wide channels
upstream of the contraction were 0.53 or 0.78 mm (0.230 mm in height), while those of the
narrow ones downstream were fixed at 0.270 mm (0.230 mm in height). Distilled water,
ethanol 49 wt% aqueous solution, pure ethanol and hydrofluoroether (HFE)-7200 were
used as the test liquids, and nitrogen was used as the test gas. In these previous studies,
no studies investigated the two-phase flow of non-Newtonian liquids through sudden
contraction placed in channels of 1 mm or less. In this connection, the purpose of this
study was to experimentally investigate the pressure drop of single-phase non-Newtonian
liquid and two-phase gas and non-Newtonian liquid flows across the sudden contraction
in a horizontal rectangular microchannel and compare it with Newtonian liquids. Two
kinds of polymer aqueous solutions which exhibit shear thinning behavior with elasticity,
were used as the non-Newtonian liquid. Data on the pressure drop due to the contraction
for single-phase and two-phase flows were obtained and analyzed. In addition, several
correlations for predicting the pressure drop were validated against the present data.

Table 1. Previous studies on gas–liquid two-phase flow through sudden contraction in small channel.

Authors
Cross–Section of Test Channels

(Shape: # Circular, � Rectangular)
(Dimension in mm)

Test Fluids (Gas–Liquid)

Abdellal et al. (2008)
# 1.6 –> # 0.84

Air–waterChalfi et al. (2008)

Chen et al. (2008) � 3 × 9 –> # 3
� 3 × 6 –> # 3

Chen et al. (2009)

� 2 × 4 –> # 2
� 2 × 6 –> # 2
� 4 × 4 –> # 2
� 4 × 6 –> # 2

Kawahara et al. (2015) � 0.53 × 0.23 –> � 0.27 × 0.23
� 0.78 × 0.23 –> � 0.27 × 0.23

Nitrogen gas–water
Nitrogen gas–ethanol 49 wt% aqueous solution

Nitrogen gas–ethanol
Nitrogen gas–HFE7200
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2. Experiments
2.1. Test Apparatus

Figure 1 shows a schematic diagram of the present channel made of two transparent
acrylic resin plates. As shown in Figure 1a, a rectangular channel groove with a sudden
contraction was machined on one of the two plates by an end mill. The channel with the
rectangular cross-section was constructed by covering the plate with a groove and the other
flat plate with an upper plate. Table 2 shows the cross-sectional dimensions of the channel.
Here, W and H are the width and the height of the channel in the upstream or downstream
of the contraction and DH is the hydraulic diameter. σA is the contraction ratio (=Ad/Au:
area ratio of the downstream to upstream). The channel has three ports. The ports #1 and
#2 were liquid and gas inlets, respectively. Thus, two phases were supplied through a
T-junction type gas–liquid mixer. Port #3 was the gas–liquid mixture outlet to atmosphere.
Pressure taps #P1—P2 were connected to calibrated pressure transducers. The distance
between the ports and the pressure taps is shown in Figure 1b.
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Figure 1. The rectangular test channel with a sudden contraction: (a) schematic diagram with dimension; and (b) photo of 
plate with groove. 
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Figure 1. The rectangular test channel with a sudden contraction: (a) schematic diagram with dimension; and (b) photo of
plate with groove.

Table 2. Dimensions of the test channel.

Channels W (mm) H (mm) Dh (mm) sA (−)

Upstream 0.99 0.50 0.66
0.49Downstream 0.49 0.50 0.50

Figure 2 shows the present test apparatus. As the test fluids, distilled water and
aqueous solutions of glycerin and polymer (see Section 2.2) were used for the liquid
phase, while air was used for the gas phase. The liquid was introduced into a horizontal,
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rectangular channel by a pneumatic-type pump. The pump consisted of a pressure tank
containing one of the test liquids and a compressor for pushing the liquid surface in the
tank. This pump gave a stable and pulsation-free liquid flow. All tubing and fittings
were made of stainless steel or brass to prevent any volumetric expansion in the flow
loop and fluid leakage by a high pressure. A gas and liquid mixture made at a mixer
flowed through the test channel and discharged to the atmosphere. The liquid flow rate
was preliminarily monitored with a liquid flow meter (200 CCM, FD-SS02A, Keyence,
Osaka, Japan) determined by weighing the liquid discharged in a small container over a
sufficient period of time with an electronic balance (320 ± 0.001 g, Mettler Toledo, Tokyo,
Japan). The gas flow rate was read from a calibrated mass flow meter (200 SCCM, Type
HM5141B07AS, Tokyo Keiso Co., Ltd., Tokyo, Japan). The two-phase flows were observed
with a high-speed video camera (Hi-Dcam PCI 8000S, NAC Image Technology, Tokyo,
Japan) in four observation areas in Figure 1, i.e., Section 1 (Mixer), Section 2 (upstream),
Section 3 (contraction), and Section 4 (downstream).
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Figure 2. Schematic diagram of test apparatus.

2.2. Test Liquids and Flow Conditions

In this study, distilled water and an aqueous solution of 25 wt% glycerin (abbreviation,
GL25%) were used as the Newtonian liquid, and two aqueous solutions of 0.1 wt% xanthan
gum (XG) and 0.11 wt% polyacrylamide (PAM) as non-Newtonian liquid. XG 0.1 wt% and
PAM 0.11 wt% are pseudoplastic fluids whose apparent viscosity decreases as the shear
rate increases. In addition, XG 0.1 wt% has strong pseudoplasticity, and PAM 0.11 wt% has
weak pseudoplasticity but strong elasticity [14–16]. Table 2 shows the physical properties
of each test liquid. ρL and σL are the density and surface tension, respectively. The viscosity
of the test liquids is given by the power-law model:

τ = K
(

du
dy

)n
(1)

where τ is the wall shear stress, K is the consistency coefficient, n index is the flow index,
and du/dy is the shear rate. By a capillary method [17], i.e., measuring the single-phase
liquid pressure drop across the test section, the K and n index for the working liquids were
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determined and shown in Table 3. In the measurement, the liquid temperature ranges from
22 to 25 ◦C. (du/dy)y=0 is the shear rate at the channel wall as(

du
dy

)
y=0

=
a + bn

n
8u
Dh

(2)

a and b are the channel geometry factor [18] defined as

a + b = 3

[
2(1 + α∗)2

{
1 − 192

π5 α∗
∞

∑
m=0

1

(2m + 1)5 tanh
(2m + 1)π

2α∗

}]−1

(3)

a =

2(1 + α∗)2

1 + 4
∞

∑
m=0

(−1)m+1(
2m+1

2 π
)3

1

cosh (2m+1)π
2α∗



−1

(4)

Here, the α* (=H/W) is the aspect ratio of the rectangular channel. The values of (a, b)
of the present channel are (0.2437, 0.7275) for the upstream channel and (0.2122, 0.6772) for
the downstream channel. Regarding viscosity, in the case of Newtonian fluid, the K value
becomes viscosity, µL, because n = 1. In the case of non-Newtonian fluid, the apparent
viscosity, µa, is defined as

µa = K

[(
du
dy

)
y=0

]n−1

(5)

The apparent viscosities of XG 0.1 wt% and PAM 0.11 wt% under the present flow
conditions were 1.50 to 2.38 mPa·s and 1.58 to 1.61 mPa·s, respectively.

Table 4 shows two-phase flow conditions. jL,d and jG,d are the volumetric flux of liquid
and gas in the channel downstream of the contraction. ReL,d and ReG,d are the generalized
Reynolds number [18] defined as

Re∗k,d =
ρk j2−n

k,d Dn
h,d

8n−1K
(
b + a

b
)n (6)

The subscript k is the phase index (k = G, gas phase; k = L, liquid phase).

Table 3. Physical properties of the test liquids.

Test Liquids rL (kg/m3) sL (N/m) K (Pa × sn) n (−) (du/dy)y=0 (1/s)

Distilled
water 997 0.072 8.97 × 10−4 1.00 -

GL 25 wt% 1058 0.063 1.82 × 10−3 1.00 -
XG 0.1 wt% 998 0.073 3.47 × 10−2 0.70 1400–52,000
PAM 0.11

wt% 998 0.073 1.85 × 10−3 0.98 1060–41,400

Table 4. Two-phase flow conditions.

Test Liquids jL,d (m/s) jG,d (m/s) Re*
L,d ReG,d

Distilled water 0.29–0.85 0.48–1.30 183–532 20–50
GL 25 wt% 0.61–1.53 0.38–1.07 197–497 20–50
XG 0.1 wt% 0.83–1.64 0.39–1.07 208–506 20–50

PAM 0.11 wt% 0.59–1.40 0.41–1.07 205–490 20–50

2.3. Data Reduction for Pressure Change through Contraction

Figure 3 shows typical pressure distributions along the upstream and the downstream
from the contraction. Figure 3a shows the pressure measured for two-phase flows at



Fluids 2021, 6, 440 6 of 16

jL,d = 0.86 and jG,d = 0.87 m/s. The ordinate is the gauge pressure, while the abscissa is
the distance from the contraction. To obtain experimental data on pressure change due
to the contraction, ∆PC, the linear extrapolation of the axial pressure distribution was
performed, and the difference of intersecting points, Pu and Pd, at the sudden contraction
was estimated, as shown in Figure 3b.
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3.1. Single-Phase Liquid Flow
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As a preliminary test to check the pressure measurement accuracy, the single-phase
friction factors were determined from the upstream and the downstream fully developed
pressure lines. Figure 4a,b show the Darcy friction factor data for the channels upstream and
downstream of the contraction, respectively. The data are plotted against the generalized
Reynolds number with a mean liquid velocity, uL (=volume flow rate/flow area), as the
characteristic velocity. The solid line shows the calculation by the classical theory for
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The calculations agree with the data within 2% root-mean-square errors for Newtonian
liquids (water and glycerin aqueous solution) and 13% root-mean-square errors for non-
Newtonian liquid (XG and PAM aqueous solutions).

3.1.2. Pressure Change across Sudden Contraction

Figure 5a shows the data on the pressure change, ∆PC,L, through the contraction for
single-phase liquid flows. These data are plotted against the generalized Reynolds number
in the downstream channel, Re∗L,d. ∆PC,L increases with the increase in the Reynolds
number. The ∆PC,L consists of the reversible component, ∆PCR,L, and the irreversible one,
∆PCI,L. From the energy balance, the reversible one is given by

∆PCR,L =
(

1 − σ2
A

)ρLu2
L,d

2
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Figure 5b shows the data on the irreversible pressure change obtained by subtracting
the reversible pressure change by Equation (8) from the total pressure change data shown
in Figure 5, ∆PCI,L = ∆PC,L − ∆PCR,L. ∆PCI, increases with the Reynolds number. The
magnitude of the ∆PCI,L values of each test liquid at the same Reynolds number depends
on an apparent viscosity of each liquid. Figure 6 shows variation in the apparent viscos-
ity by Equation (5) over the range of the flow conditions. Comparing Figures 5b and 6,
it can be seen that the irreversible pressure change of the liquid with a large apparent
viscosity is large for non-Newtonian liquid, i.e., XG and PAM. On the other hand, com-
paring the pressure change between non-Newtonian and Newtonian liquids, the pressure
change Newtonian liquid is slightly larger for the Newtonian liquid than the Newtonian
one, despite its lower viscosity for the non-Newtonian than Newtonian at similar viscosi-
ties. The reason for the larger pressure change is due to the elasticity having a polymer
solution [14–16]. It is considered that this elasticity changed the energy dissipation in
vena contracta.

The irreversible change, ∆PCI,L, is usually expressed by

∆PCI,L = kC,L
ρLu2

L,d

2
=

(
1 − 1

CC

)2 ρLu2
L,d

2
, (9)

where kC,L is the contraction pressure loss coefficient and CC is the contraction coefficient
which is the ratio of the cross-sectional area for vena contracta to that for the downstream
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channel. Figure 7 shows the data on kC,L plotted against the generalized Reynolds number
downstream of the contraction. The coefficient kC,L for Newtonian liquids (water and
glycerin solution) slightly depends on the Reynolds number. That is, kC,L tends to decrease
and approach a constant value as the Reynolds number increases. On the other hand,
the coefficient for non-Newtonian liquids (XG and PAM solutions) is almost constant
regardless of the Reynolds number.
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Figure 8 shows the present contraction coefficient data against the generalized
Reynolds number in the downstream channel. The bold solid line shows the calculation by
Geiger’s [19] correlation:

Cc = 1 − 1 − σA
2.08(σA − 1) + 0.5731

(10)
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In addition, the blue solid line is calculated by

CC = B + (1 − B)σ4.519
A , B = 0.0645 ln Re∗L,d − 0.00792 (11)

Equation (11) [9] is correlated with the data obtained for micro- and/or mini-channels
with two contraction ratios (σA = 0.35 and 0.5) for single-phase Newtonian liquid flows.
The present CC data approach the blue solid line as the Reynolds number increases. The
average value of CC within the range of this experimental condition is 0.48 for Newtonian
case and 0.45 for non-Newtonian case.

3.2. Two-Phase Flow
3.2.1. Flow Pattern

Figure 9 shows a typical photo of the two-phase flow when the combination of the
volumetric flux of liquid phase jL and that of gas jG for each test liquid is almost the same.
The flow in Section 1 (mixer), Section 2 (upstream of contraction), Section 3 (contraction)
and Section 4 (downstream of contraction) are shown in order from the photograph on
the left in Figure 1. In Section 1, a photograph was selected of the moment when bubbles
were generated; in Sections 2 and 4, a photograph shows the entire image of the bubbles;
and in Section 3, there is a photograph in which bubbles passed approximately half of the
sudden contraction part. Regarding Section 1, the bubble formation for each liquid was
similar, which is the squeezing formation [20,21]. However, there was a difference in the
distance between the bubble and the opposite channel wall, which was the smallest in the
case of the distilled water system. The length of the generated bubbles becomes longer in
the order of the XG system > distilled water system > PAM system > GL system.

Regarding Section 2, the flow regime was slug flow, in which bubbles and liquid
slugs flow intermittently. Bubble flow, in which the bubble length in the flow direction is
smaller than the channel width, was also observed for another jL and jG combination. The
size relationship of the bubble length was the same as that of the bubble size in Section
1 if the bubble coalescence does not occur. The thickness of the liquid film around the
gas bubble was in the order of GL type > PAM type > XG type > distilled water type.
In addition, the shape of the bubble nose depends on the test liquids. The liquid film
thickness and the shape might be related to reduce the flow resistance of the bubbles. Due
to the minimization of the energy dissipation, the bubbles become thinner (smaller than the
projected area of the bubble) and the bubble nose becomes sharper as the liquid viscosity
increases. With the exception of the XG type, the thickness of the liquid film increases as
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the apparent viscosity increases. The reason why the liquid film thickness of the XG system
is lower than that of the GL system and the PAM system is that the apparent viscosity of
XG 0.1 wt%, which is a strong pseudoplastic fluid, is locally smaller than those apparent
viscosities near the bubbles.
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same for each fluid: (a) water: jL,d = 0.92 m/s, jG,d = 0.43 m/s; (b) GL 25 wt%: jL,d = 0.84 m/s, jG,d = 0.44 m/s; (c) XG 0.1 wt%:
jL,d = 0.84 m/s, jG,d = 0.44 m/s; (d) PAM 0.11 wt%: jL,d = 0.85 m/s, jG,d = 0.44 m/s.

Regarding Section 3, the constriction of bubbles was the largest in the GL type. This
is thought to be because the surface tension of GL 25 wt% is smaller than that of other
liquid phases.

Regarding Section 4, the magnitude relationship of the gas bubble length was different
from that of the bubble size in Section 1, and it was XG system > PAM system > GL
system ≈ distilled water system. The reason for which the magnitude relationship changed
compared to Section 1 is that the expansion of bubbles in the PAM system and the GL
system was larger than that in the distilled water system. This is because the PAM and GL
systems had a larger pressure loss than the water system, as shown in Figure 3a.

3.2.2. Two-Phase Pressure Change across Sudden Contraction

Figure 10 shows the experimental data on two-phase pressure change due to the
contraction, ∆PC,TP. The data are plotted against the total volumetric flux, jd (=jG,d + jL,d),
in the downstream of the contraction. The ∆PC,TP value increases with the total volumetric
flux. Focusing on the magnitude relationship of ∆PC,TP of each gas–liquid system in the
same jd, the order of magnitude was XG system > PAM system > GL system > distilled
water system.

3.2.3. Correlation of Two-Phase Pressure Change

The present experimental data for ∆PC,TP were compared with models and/or correla-
tions in the literature, i.e., those of Chisholm [22], Collier–Thome [23], Schmidt–Friedel [24],
and Abdelall et al. [5]. The Chisholm and Collier–Thome correlations were based on ho-
mogeneous flow models. Regarding the correlation of Abdellal et al., the predicted values
were evaluated on the basis of two approaches [5]. One was based on the slip flow model
(type A) and the other one was based on the two-phase multiplier with the Martinelli
factor (type B). Table 5 shows the comparison results with the mean and root-mean-square
errors. Among three correlations, the calculation by Collier–Thome correlation agrees with
the experimental data for the Newtonian liquid with 30% root-mean-square error. On the
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other hand, the calculation by Abdelall et al. agrees with the experimental data for the
non-Newtonian liquid with 20–30% root-mean-square error.
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Table 5. Root mean square errors of five correlations of ∆PC,TP.

Correlations
Distilled Water GL 25 wt% XG 0.1 wt% PAM 0.11 wt%

em (%) erms (%) em (%) erms (%) em (%) erms (%) em (%) erms (%)

Chisholm (1983) 191 206 194 211 83 90 102 108
Collier-Thome (1994) −25 29 −25 31 −53 55 −48 51

Schmidt-Friedel (1997) −36 40 −25 33 −54 56 −52 554
Abdelall et al. A (2005) −29 40 8 39 −23 27 −27 31
Abdelall et al. B (2005) −26 35 33 50 −17 19 −22 29

As a trial, another correlation was developed for predicting two-phase pressure change.
The pressure change, ∆PC,TP., was assumed to be the sum of reversible and irreversible
changes, ∆PCR,TP and ∆PCI,TP, as follows:

∆PC,TP = ∆PCR,TP + ∆PCI,TP (12)

Based on the energy balance, ∆PCR,TP is expressed as

∆PCR,TP =
1
2

[
ρGαu2

G + ρL(1 − α)u2
L

]
d
− 1

2

[
ρGαu2

G + ρL(1 − α)u2
L

]
u

(13)

Here, α is the void fraction, uG and uL are the mean velocity of gas and liquid phases.
The subscripts “u” and “d” represent the values for upstream and downstream channels.
The experimental data on the irreversible change, ∆PCI,TP, was determined from the ex-
perimental data for ∆PC,TP by subtracting the reversible change, ∆PCR,TP, calculated by
Equation (13). The value of the void fraction was obtained by substituting the experimen-
tal value of the bubble velocity measured in upstream or downstream channel into the
following equation:

α =
uG
jG

(14)

Figure 11 shows the two-phase irreversible change due to the contraction determined.
The ∆PCI,TP values increase with increase in the total volumetric flux, jd.



Fluids 2021, 6, 440 12 of 16

Fluids 2021, 6, x FOR PEER REVIEW 12 of 17 

Abdelall et al. B (2005) −26 35 33 50 −17 19 −22 29 
As a trial, another correlation was developed for predicting two-phase pressure 

change. The pressure change, ∆PC,TP., was assumed to be the sum of reversible and irre-
versible changes, ∆PCR,TP and ∆PCI,TP, as follows: ∆𝑃஼,்௉  =  ∆𝑃஼ோ,்௉ + ∆𝑃஼ூ,்௉ (12)

Based on the energy balance, ∆PCR,TP is expressed as ∆𝑃஼ோ,்௉  =  12 ሾ𝜌ீ𝛼𝑢ଶீ  + 𝜌௅ሺ1 −  𝛼ሻ𝑢௅ଶሿௗ  − 12 ሾ𝜌ீ𝛼𝑢ଶீ  + 𝜌௅ሺ1 −  𝛼ሻ𝑢௅ଶሿ௨ (13)

Here, α is the void fraction, uG and uL are the mean velocity of gas and liquid phases. 
The subscripts “u” and “d” represent the values for upstream and downstream channels. 
The experimental data on the irreversible change, ∆PCI,TP, was determined from the exper-
imental data for ∆PC,TP by subtracting the reversible change, ∆PCR,TP, calculated by Equa-
tion (13). The value of the void fraction was obtained by substituting the experimental 
value of the bubble velocity measured in upstream or downstream channel into the fol-
lowing equation: 𝛼 =  𝑢ீ𝑗ீ  (14)

Figure 11 shows the two-phase irreversible change due to the contraction deter-
mined. The ∆PCI,TP values increase with increase in the total volumetric flux, jd. 

Figure 11. Two-phase irreversible pressure change through sudden contraction. 

In the present study, the two-phase pressure loss coefficient due to the contraction, 
kCI,TP, is defined as ∆𝑃஼ூ,்௉  =  ௞಴಺,೅ುଶ ሾ𝜌ீ𝛼𝑢ଶீ  +  𝜌௅ሺ1 −  𝛼ሻ𝑢௅ଶሿௗ.  (15)

Figure 12 shows the loss coefficient, kCI,TP, data determined for all test liquids. The 
data are plotted against the volumetric quality in the channel downstream of the contrac-
tion, βd (=jG,d/(jG,d + jL.d)). The kCI,TP values for Newtonian liquids flow increases with the βd. 
The kCI,TP values for the non-Newtonian liquids’ flow are almost constant against the βd. 

Figure 11. Two-phase irreversible pressure change through sudden contraction.

In the present study, the two-phase pressure loss coefficient due to the contraction,
kCI,TP, is defined as

∆PCI,TP =
kCI,TP

2

[
ρGαu2

G + ρL(1 − α)u2
L

]
d
. (15)

Figure 12 shows the loss coefficient, kCI,TP, data determined for all test liquids. The data
are plotted against the volumetric quality in the channel downstream of the contraction,
βd (=jG,d/(jG,d + jL.d)). The kCI,TP values for Newtonian liquids flow increases with the βd.
The kCI,TP values for the non-Newtonian liquids’ flow are almost constant against the βd.
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The kCI,TP values were correlated with the two-phase multiplier, φ2
LC, as follows:

kCI,TP = φ2
LCkCI,L. (16)

Here, kCI,L is the loss coefficient when the liquid phase flows alone through the
contraction. Figure 13 shows the two-phase multiplier data plotted against the volumetric
flow quality, βd, in the channel downstream from the contraction. The φ2

LC data for the
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Newtonian liquid are almost less than unity and increase with βd. On the other hand, the
φ2

LC data for the non-Newtonian liquid are constant against βd and nearly equal to unity.
Figure 14 shows a typical photo of the bubble passing through the sudden contraction.
From these photos, it can be observed that the liquid film thickness around the bubble
just downstream from the contraction is larger for the non-Newtonian liquid than the
Newtonian one whose thickness is difficult to see. That is, due to the passage of bubbles, the
vena contracta formed immediately after the sudden contraction disappeared. Therefore, it
is considered that the energy dissipation in the vena contracta was reduced.
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Over βd = 0.15 − 0.70, the present φ2
LC data were correlated as follows:

φ2
LC = 0.82βd + 0.14 for Newtonian liquid (17)

φ2
LC = 1.07 for non − Newtonian liquid (18)

Figure 15 shows the comparison of the irreversible pressure change between the experi-
ment and calculation by Equation (15) with the two-phase multiplier of Equations (17) and (18).
The calculations agree with the experiment within a relative error of ±30%, except for
some GL data in the dotted circle. In these flows for GL, the bubble breakup occurs at the
contraction as shown in Figure 16a. On the other side, the bubble breakup does not occur
for water and non-Newtonian liquid cases as shown in Figure 16b. An energy might be
dissipated by the breakup. The calculation under-estimates the data because the calculation
does not account for dissipation.
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and downstream of the contraction. The size and/or length of the bubble and liquid
film thickness around the bubble depend on the liquid properties.

• The sudden contraction pressure change ΔPC,TP increased with the total gas and liq-
uid volumetric flux, jd, irrespectively of the test liquids.

Figure 16. Typical photos of the bubble through the sudden contraction: (a) air–GL 25 wt%, jLd = 0.62 m/s, jGd = 0.90
m/s in which the breakup of bubbles is observed at the sudden contraction (relative error—51% for prediction); and
(b) air–water, jLd = 0.65 m/s, jGd = 0.97 m/s in which the breakup of the bubbles was observed at the sudden contraction
(relative error—30% for prediction). Bubbles in red dotted circle are traced with time.

4. Conclusions

This study experimentally investigated the pressure change for the single- and two-
phase Newtonian and non-Newtonian viscous flows through sudden contraction in a
horizontal rectangular microchannel. The main findings are as follows:
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4.1. Single-Phase Flow

• Regardless of the test liquid, the sudden contraction pressure drop, ∆PCI,L, for single-
phase liquid flows increased as the average flow velocity increased. The magnitude
relation of ∆PCI,TP at the same flow velocity was PAM 0.11 wt% > XG 0.1 wt% > GL
25 wt% > distilled water.

• The contraction coefficient obtained in this single-phase liquid experiment was con-
siderably smaller than the value according to Gieger’s equation developed in a con-
ventionally sized channel. In addition, the coefficients of the non-Newtonian fluids
were slightly smaller than those of Newtonian fluids.

4.2. Two-Phase Flow

• Slug or bubble flow patterns were observed in the straight channel part upstream and
downstream of the contraction. The size and/or length of the bubble and liquid film
thickness around the bubble depend on the liquid properties.

• The sudden contraction pressure change ∆PC,TP increased with the total gas and liquid
volumetric flux, jd, irrespectively of the test liquids.

• The magnitude of the ∆PC,TP was affected by the pseudoplasticity and elasticity of
the liquid phase, and the magnitude at the same flow velocity was XG system > PAM
system > GL system > distilled water system.

• The calculated values of ∆PC,TP by a newly developed correlation were in agreement
with the experimental values within ± 30% of the relative error.
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