
fluids

Article

Equation of State’s Crossover Enhancement of Pseudopotential
Lattice Boltzmann Modeling of CO2 Flow in Homogeneous
Porous Media

Assetbek Ashirbekov 1, Bagdagul Kabdenova 1, Ernesto Monaco 2 and Luis R. Rojas-Solórzano 1,*

����������
�������

Citation: Ashirbekov, A.;

Kabdenova, B.; Monaco, E.;

Rojas-Solórzano, L.R. Equation of

State’s Crossover Enhancement of

Pseudopotential Lattice Boltzmann

Modeling of CO2 Flow in

Homogeneous Porous Media. Fluids

2021, 6, 434. https://doi.org/

10.3390/fluids6120434

Academic Editors: Goodarz Ahmadi,

Pouyan Talebizadeh Sardari and

Mehrdad Massoudi

Received: 23 June 2021

Accepted: 19 November 2021

Published: 1 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences,
Nazarbayev University, Nur-Sultan 010000, Kazakhstan; assetbek.ashirbekov@nu.edu.kz (A.A.);
bagdagul.dauyeshova@nu.edu.kz (B.K.)

2 Engineering Software Steyr (ESS), 4400 Steyr, Austria; ernesto.monaco@essteyr.com
* Correspondence: luis.rojas@nu.edu.kz; Tel.: +7-7787347929

Abstract: The original Shan-Chen’s pseudopotential Lattice Boltzmann Model (LBM) has continu-
ously evolved during the past two decades. However, despite its capability to simulate multiphase
flows, the model still faces challenges when applied to multicomponent-multiphase flows in complex
geometries with a moderately high-density ratio. Furthermore, classical cubic equations of state usu-
ally incorporated into the model cannot accurately predict fluid thermodynamics in the near-critical
region. This paper addresses these issues by incorporating a crossover Peng–Robinson equation of
state into LBM and further improving the model to consider the density and the critical temperature
differences between the CO2 and water during the injection of the CO2 in a water-saturated 2D
homogeneous porous medium. The numerical model is first validated by analyzing the supercritical
CO2 penetration into a single narrow channel initially filled with H2O, depicting the fundamental
role of the driving pressure gradient to overcome the capillary resistance in near one and higher
density ratios. Significant differences are observed by extending the model to the injection of CO2

into a 2D homogeneous porous medium when using a flat versus a curved inlet velocity profile.

Keywords: pseudopotential lattice Boltzmann model; crossover Peng-Robinson equation of state;
supercritical fluids; displacement pattern and CO2 sequestration

1. Introduction

Carbon Dioxide (CO2) and other greenhouse gases (i.e., methane, nitrous oxide, among
others) are key contributors to climate change. According to the Energy Information Ad-
ministration (EIA) estimates, the global emission of CO2 alone can rise to 6.41 billion tonnes
by 2030 [1]. Therefore, various mitigation measures have been proposed to tackle global cli-
mate change. Among those proposed solutions, we use CO2 in different applications such
as Hot-Dry Rock (HDR) systems, heat engines, selective extraction processes, reclamation
processes of metals from industrial effluents, and chemical reactions [2,3]. Nevertheless,
CO2 sequestration is recognized as one of the key strategies for reducing CO2 emission
rates. Due to its low critical temperature (31 ◦C), CO2 is in supercritical (for example, in
CO2 sequestration) or in near-critical (as in air conditioning and cooling systems [4,5]) state.

The wide usage of CO2 around the critical state requires a deeper investigation of the
fluid thermodynamics under and above critical conditions, affecting fluid transport prop-
erties [1]. In addition, it facilitates understanding the industrial and laboratory processes
wherever the fluid is involved since the behavior of fluids in supercritical or near-critical
conditions dramatically differs from those with constant properties.

The fluid flow under different conditions can be studied experimentally and nu-
merically. However, as the experimental study may not always be feasible and is time-
consuming, the numerical analysis can be used as a starting point. It can even replace the
experiments to provide valuable insights into the complex flow patterns.
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Computational Fluid Dynamics (CFD) techniques such as the finite volume, volume
of fluid, and level-set methods solve the discrete Navier–Stokes equations. However, these
methods become computationally expensive when applied to the interface tracking of
transient multiphase flows [6,7]. The mesoscale Lattice Boltzmann Model (LBM), specifi-
cally the LBM employed in the current work, does not explicitly track the phase interface;
instead, it includes inter-particle forces naturally preserving the interfaces [8]. Additionally,
it accommodates complex boundaries such as porous media and narrow channels. Fur-
thermore, the pseudopotential LBM can incorporate real Equations of State (EoS) such as
Van der Waals (VdW), Carnahan–Starling (CS), and Peng–Robinson (PR) EoS [9], which, in
turn, allows the model to match the fluid characteristics more closely.

Despite its advantages, the pseudopotential LBM still faces issues when high density
and viscosity ratios are included in multicomponent-multiphase flows in complex geome-
tries. For example, studies on displacement patterns in porous media do not consider
density contrast and differences in the fluids’ critical properties [10–14]. Hence, most
numerical studies do not consider that CO2 and H2O are in different thermodynamic states.
For example, CO2 is usually in a supercritical state during sequestration, while H2O is in a
liquid state, limiting the accuracy of the numerical results.

In addition, most studies apply classical EoS to analyze the thermodynamic properties
of the fluid in different ranges of temperature [9,15–17]. Though classical cubic EoS predict
well the fluid properties away from the critical region, they fail to accurately capture the
fluid behavior in the near-critical region or at a supercritical state because of long-scale
fluctuations in density that cover a wide range of temperatures [1,18–22]. In this region,
analytical solutions provided by classical EoS are no longer accurate. As a remedy for
this pitfall, a so-called “crossover” formulation of the EoS was proposed, incorporating
the non-analytical scaling laws and predicting fluid properties in the critical region more
accurately [1,18,21]. Any classical EoS can be re-formulated in a crossover fashion. In this
work, the crossover formulation is incorporated into PR EoS. As a result, PR EoS better
characterizes the specific fluid through an acentric factor. This approach’s advantage is a
hybrid equation that accounts for both non-analytical and analytical fluid behavior, close
and far from the critical point, respectively. It can also transform back to ideal gas EoS at a
zero-density limit.

Our previous study [23] incorporated the crossover PR EoS into the standard pseu-
dopotential multicomponent LBM. We showed that crossover PR EoS improved the model
accuracy for fluids at near/supercritical conditions compared to the classical PR EoS.
Another previous work [24] showed that a higher water wettability promotes a higher
effective CO2 penetration through a porous medium. We then applied the improved model
formulation to study the transport of a supercritical CO2 bubble within a simplified hy-
drophilic porous medium saturated with H2O, proving the capacity of the newer model
crossover formulation.

This work extends our work by introducing the PR EoS multicomponent LBM to
study the penetration mechanisms of a continuous front of supercritical CO2 through
a pore-scale homogeneous domain saturated with H2O. Firstly, a 2D narrow channel is
considered to model the penetration of a supercritical CO2 bubble through the channel
with a significant density ratio. Secondly, the sequestration of a continuous flow of CO2 is
modeled by injecting it through a water-saturated 2D homogeneous hydrophilic porous
medium (contact angle of 70◦), varying the pressure gradient around the pressure drop
needed to overcome the capillary resistance. Finally, we study the CO2 injection under
a fixed flow regime and a mildly hydrophobic 2D porous medium (contact angle 85◦)
to demonstrate the effect of the injection profile in the CO2 penetration into the water-
saturated porous medium. The porous media was constructed by placing circle-obstacles
homogeneously. Hence, this study represents the first investigation, to the very best of
our knowledge, featuring a crossover PR EoS formulation of LBM to shed some light
on the CO2-H2O-surface interaction and CO2 sequestration in a porous domain at near
supercritical conditions.
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This paper is organized as follows: Section 2 introduces the multicomponent LBM and
crossover PR EoS formulation. Section 3 presents the model’s performance for the static
H2O droplet immersed in CO2 and dynamic conditions of CO2 injection at supercritical
conditions into H2O-saturated capillary domains. The final discussion and conclusions are
presented in the last section of the paper.

2. Methodology
2.1. General Lattice Boltzmann Model

The LBM equation represents the evolution in time of distribution functions because
of fluid particles streaming and colliding.

The most general formulation of LBM for a multicomponent system is presented in
Equation (1):

fi
j(x + ei∆t, t + ∆t)− fi

j(x, t) = − 1
τ j

(
fi

j(x, t)− f j,eq
i (x, t)

)
(1)

where fi
j(x, t) is the density distribution function at point x and time t with the discrete

velocity in i direction for component j. In Equation (1), the left-hand side represents the
streaming step, while the right-hand side is the collision step, which can assume different
forms: in this work, we opted for the simplest one, the Bhatnagar–Gross–Krook (BGK)
collision operator [25], which each fluid species is characterized by a single relaxation
time τ j which is related to the whole mixture kinematic viscosity through the relation
(Equation (2)) [26]:

v = c2
s ∑j χ

j
(

τ j − 0.5
)

, (2)

where cs is the lattice sound speed and χ is the local value of the mass fraction. The collision
operator relaxes the local distribution function towards its equilibrium value, f j,eq

i (x, t)
which depends on macroscopic quantities, as prescribed by Kinetic Theory, and is given by
Equation (3):

f j,eq
i (x, t) = ωiρ

j

[
1 +

ei · uj

c2
s

+

(
ei · uj)2

2c4
s
−
(
uj)2

2c2
s

]
. (3)

In this work, we used a two-dimensional formulation with nine local speeds at each
computational node. This set of speeds, referred to as a lattice, must be carefully chosen
to recover the Navier–Stokes equation. If the lattice vectors possess different modules,
weighting factors wi need to be defined to achieve this goal. The number of dimensions
and speeds defines a generic lattice. We chose the standard D2Q9 one, depicted in Figure 1,
characterized by weighting factors 4

9 (i = 0), 1
9 (i = 1, 2, 3, 4), 1

36 (i = 5, 6, 7, 8).

Figure 1. Discrete velocity model D2Q9.

Macroscopic quantities, including density ρj, can also be obtained as discrete moments
of the particle distribution fi:

ρj = ∑i fi
j, (4)

ρjuj = ∑i fi
jei, (5)
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where u is the macroscopic velocity vector. The difference between continuous distribution
function f and fi is the discrete nature of the last one; subscript i refers to the discrete set of
velocities ei, and superscript j refers to a component.

2.2. Pseudopotential Lattice Boltzmann Model

In Shan-Chen’s or pseudopotential model, the interaction between the particles is
modeled using pairwise interaction potentials. These interaction potentials are functions of
density for each component. If we define the interaction matrix Gjk between two generic
species j and k at a generic node x, ψ as a pseudopotential (“effective mass”), then the force
acting on jth component can be written as [27]:

Fint
j(x, t) = −ψj(x, t)∑

k
Gjk(x)∑

i
ωiψ

j(x + ei∆t, t)ei (6)

The interaction force is given by Equation (6), and it is applied between the nearest
neighbor particles and leads to the pressure Pj in the EoS:

Pj = ρjc2
s + ∑k

gjk

2
c2

s ψk2, (7)

where the first term represents the ideal EoS and the second term accounts for repul-
sive (positive gjk) and attractive forces (negative gjk) between the fluid particles. For a
two-component system, usually the diagonal terms of interaction matrix, accounting inter-
actions between particles of same species are equal to zero, while interparticle terms are
chosen positive to enforce repulsion, as shown in Equation (8).

G(x)jk =

{
gjk = gkj, j 6= k

0, j 6= k.
(8)

The pseudopotential ψ in Equation (7) can be tailored to obtain a given equation of
state. Pseudopotential can also be obtained by rearranging Equation (7):

ψj
(

ρj
)
=

√
2
(

Pj − ρjc2
s
)

gc2
s

(9)

Yuan and Schaefer incorporated different EoS such as VdW, PR, and CS into the
pseudopotential model through Equation (9). In this case, the term g is used to ensure the
positive sign under the square root [9].

The fluid spreading on a solid surface depends on the strength of fluid–solid inter-
action. The surface wettability is modeled using Equation (10) proposed by Martys and
Chen [27] in multicomponent form:

Fwet
j(x) = −gwall

jρj(x)∑
i

ωis(x + ei)ei (10)

The gwall represents the fluid–wall interaction strength. For example, when gwall is
positive, the wettability decreases, while if the gwall is negative, the wettability increases.
s(x + ei) is the “switch” function equal to 1 in the presence of the solid surface at a lattice
node x; otherwise, it is 0. The following method is based on density instead of potential
ψ(x) [28].

The total force acting on a fluid particle is described with the equation:

Ftot
j = Fwet

j + Fint
j + Fb (11)

The Fb is the external body force, which can have a constant value if applied to drive
the flow, for example, or zero, if no external body force is present. The present work adopts



Fluids 2021, 6, 434 5 of 17

the velocity-shift force scheme, originally used by Shan and Chen [8]. In this scheme,
forces are incorporated by updating the velocity u in the equilibrium distribution function,
replacing it with ueq, giving:

ueq
j = uj +

τ j

ρj Ftot
j∆t, (12)

where the actual physical velocity u is taken from Equation (5). Other available schemes
are the Exact Difference Model (EDM) [17,29] and Guo’s [30]. These schemes result in a
further term at the right-hand side of (1), the source term Si(x, t).

2.3. Crossover Peng–Robinson EoS

According to Landau’s theory, free energy is an analytic function of the order parame-
ter. However, phase transition disregards the order of the parameters, and the partition
function becomes the sum of all possible values. Consequently, an analytical solution in
the region near the critical point cannot be formulated [18,31]. On the other hand, the
non-dimensional expression of Helmholtz’s free energy is expressed in Equation (13) in the
crossover formulation of EoS. Moreover, it is made up of two terms [18], where the first
term represents the non-analytical part ∆A, and the second term considers the analytical
part µ0(T) that depends on temperature.

A(T, V) =
A(T, V)

RT
= ∆A(∆T, ∆V)− V

Vc
P0(T) + µ0(T), (13)

where P0(T) =
P(T,Vc)Vc

RT is the non-dimensional pressure at the critical isochore (V = Vc),
and both ∆T = Tr − 1 and ∆V = V/Vc − 1 are dimensionless deviations from classical
critical parameters. The critical parameters are found by solving Equation (14):(

∂P
∂V

)
Tc

= 0,
(

∂2P
∂V2

)
Tc

= 0,
PcVc

RTc
= Zc, (14)

where Zc is the critical compressibility factor.
After imposing the condition expressed in Equation (15), the critical part of the

Helmholtz free energy takes the form shown in Equation (16) with the introduction of
dimensionless coefficients b and critical exponent α:

∆A(∆T, ∆V = 0) = 0, and

(
∂∆A
∂∆V

)
∆T(∆V=0)

= 0, (15)

∆A(∆T, ∆V) = − ln
(

∆V
b1

+ 1
)
− Tc

T 2.077873α(∆T) ln
(

∆V/b2+1
∆V/b3+1 + 1

)
+ ∆V

b1

− Tc
T

0.45724α(∆T)∆V
Zcb2 b3

(16)

The analytical part is given as:

µ0(T) = P0(T)− ln b1 +
Tc

T
2.077873α(T) ln

(
b2

b3

)
+ A0(T) (17)

The term A0(T) in Equation (17) is expressed as A0(T) = A0(T)/RT and defined as a
non-dimensional function of temperature that plays a role in reproducing ideal gas behavior
in the limit of zero density. Helmholtz free energy in crossover form uses the renormalized
form of classical reduced parameters ∆T and ∆V as shown in Equations (18) and (19):

τ = τY−
α

2∆1 + (1 + τ)∆τcritY
2(2−α)

3∆1 , (18)

∆η = ∆ηY
(γ−2β)

4∆1 + (1 + ∆η)∆ηcritY
2−α
2∆1 , (19)
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where τ = T/Tcrit − 1 is the temperature difference from the real critical temperature (Tcrit)
and ∆η = V/Vcrit − 1 is the deviation of the volume from the real critical volume (Vcrit).
Both Equations (19) and (20) use the real critical temperature and volume, and their second
term accounts for the difference between classical and real critical parameters. Moreover,
these shift parameters are expressed as ∆τcrit = Tcrit/Tc − 1 and ∆ηcrit = Vcrit/Vc − 1. As
in [22], we assume that Tc = Tcrit and therefore, ∆τcrit = 0. Another important parameter
in Equations (17) and (18) is a crossover function, Y, that accounts for volumetric changes
in the EoS depending on how far the system is from the critical region. If Y(q)→ 0 , when
the system is at the critical point, the crossover function should approach zero, Y(q)→ 0 ,
and Y(q)→ 1 when the system is away from the critical point. The crossover function
proposed by Feyzi et al. [21] satisfies these requirements, and we use the same formulation
in Equation (20).

Y(q) =

( ′
q
′
q + 1

)2∆1

,
′
q = q exp

(∣∣∣∣12.2− 12.2T
Tcrit

∣∣∣∣), (20)

where q is the renormalized parameter that measures the distance between the system
volume and the critical one; q is found solving the Equation (21), as in [20].

(
q2 − τ

Gi

)[
1− p2

4b2

(
1− τ

q2Gi

)]
= b2

{
∆η[1 + v1 exp(−10∆η)] + d1τ

m0Giβ

}2
Y

1−2β
∆1 , (21)

b2 = p2 = 1.359 and Gi is the Ginzburg number, while d1, v1, and m0 are system-
dependent parameters. Equation (21) has been solved numerically using MATLAB, and as
it has several solutions, we take the highest positive value among all possible solutions.
After finding q and Y(q), the renormalized parameters τ and ∆η are substituted into
Equation (16) to obtain the critical form of the Helmholtz free energy.

Finally, the crossover PR EoS is obtained after substituting all the parameters and
taking the differentiation with respect to the volume, Equation (22):

P = −
(

∂A
∂V

)
T
=

RT
Vc

[
− Vc

Vcrit

(
∂∆A
∂∆η

)
T

+ Pc(T) +
Vc

Vcrit

]
(22)

As mentioned earlier, the critical shift ∆τcrit is set to 0 and ∆ηcrit, Gi, d1, v1, m0, a20,
and a21 are parameters that depend on the type of fluid, and their values are shown in
Table 1 for CO2 and H2O. The crossover PR EoS is incorporated into the LBM through
Equation (22). For CO2, all parameters are taken from [21], while all other fluid parameters
are taken from [20]. Furthermore, the physical critical parameters are derived from the
NIST database [32].

Table 1. System-dependent parameters for the crossover PR EoS [23].

Physical Critical Parameters CO2 H2O

Tc(K) 304.1 647.1
Pc(MPa) 7.37 22.06

Zc 0.3046 0.3031
Critical shift ∆ηcrit −0.10077 −0.24483

Crossover parameters
Gi 0.23136 0.05897
d1 9.1179 4.32597
v1 0.02437 0.00299
m0 1.0459 1.4392
a20 15.8502 10.20517
a21 −0.5333 −5.2527
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3. Results

Our previous study [23] conducted several 2D-droplet tests at different reduced
temperatures, and their respective coexistence curves have been constructed. The detailed
comparison of the thermodynamic behavior of CO2 and H2O at various temperatures
predicted by PR and crossover PR EoS showed that PR EoS dramatically improves the
model accuracy, which is more noticeable in the liquid phase. PR generally overestimates
the density of the curve’s liquid branch, although it predicts the gas phase accurately. As
temperature reduces, the difference in liquid density predicted by the PR EoS increases,
following the experimental data’s behavior [23]. Similar results are also noted in other
studies [33,34]. It is also observed that the crossover PR EoS matches experimental data
much better than the classical PR EoS at different temperatures close to the critical point.
The results show that crossover PR EoS is more accurate than classical PR EoS because it
considers the non-linear behavior of fluid species in the critical regions [23].

3.1. Multicomponent System

Modeling the multicomponent system with actual fluid parameters is challenging
mainly due to a lack of thermodynamic consistency and potential large spurious currents at
interfaces. Moreover, the magnitude of these spurious currents increases with the density
ratio. Therefore, studies that involve complex systems such as flow in porous media are
mostly limited to fluids with similar densities [10,35,36].

In our previous study [23] and the current work, we implement the improvements to
the MCMP model following Stiles and Xu’s [15] approach, which improves the model in
terms of numerical stability and allows a density ratio higher than unity. The improved
model is then applied to simulate the stationary 2D droplet immersed in supercritical CO2,
accounting for density contrast and the fluid’s critical temperature difference. We use a
so-called scalar multiplier as suggested by Stiles and Xue [15] with the assumption that
∆t = ∆x = 1. The pressure term in the numerator of Equation (9) is replaced with P∗i = kPi.
We ensure stability of the model by using relaxation time of 1, which is a requirement of
the formulation.

In addition, using crossover PR EoS helps better match the binodal curve. It considers
fluid properties by applying the acentric factor and system-dependent parameters to
improve the critical region’s curve adjustment. The acentric factor for H2O is 0.344, and the
set of parameters used for CO2 is given in Table 1.

Stiles and Xu investigated the effect of scaling parameters on the interaction force
model and the coexistence curve (P versus V). As expected, the curve’s amplitude decreases
when k < 1 and the volume of the liquid phase remains constant. This parameter only
affects the volume of the gas phase. This effect becomes more intense at lower temperatures,
thus limiting the range of application to moderate and high temperatures [15,23]; in this
study, we assume that k = 0.75.

To account for differences in real fluids, critical temperatures
( Tc, H2O

Tc, CO2
≈ 2

)
, we use the

set of parameters presented in Table 2. Previous validation [23] shows supercritical CO2
co-existing with subcritical H2O at 0.071 (lattice units—LU—temperature), corresponding
to Tr of 2.07 and 0.97, respectively. Hence, we first set the critical lattice temperature of
H2O to 0.07292 and then use the relation in Equation (20) to find the critical temperature
of CO2.

TCO2, LU = TH2O, LU
TCO2, phys

TH2O, phys
(23)

Table 2. Critical temperature of CO2 and H2O in physical and LU units [23].

Physical Tc for CO2 Physical Tc for H2O Tc for CO2 in LU Tc for H2O in LU

304.1 K 647.1 K 0.03428 0.07292
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Figure 2 presents a 2D static water droplet surrounded by CO2 in the center of a
rectangular domain with the size of 201 × 201 LU2, where the system’s temperature is
0.071 in LU. Here, gij = gji = 0.001, as it gives good stability and is recommended in [15],
and the drop radius is 30 LU.

Figure 2. 2-Dimensional static H2O droplet at equilibrium surrounded by CO2. Contours of the
domain with a size of 201 × 201 LU. Density is shown in LU [23]. (a) Grid one: H2O drop in red
surrounded by an empty region in blue. (b) Grid two: CO2 in red surrounding an empty region
in blue. (c) Density profile at the cross-section of the domain taken at the horizontal centerline
(y = 100 LU).

Figure 2 shows a slight trace of H2O in the CO2 and vice versa, but the CO2, being the
primary phase, mainly dictates the interfacial dynamics. The presence of trace elements
in small amounts helps to reduce the initial gradient at the phase interface and improves
numerical stability.

3.2. Contact Angle Test

This section presents the contact angle tests and shows that the improved model is
valid for simulating fluid flows involving fluid–solid interactions.

Figure 3 shows that the multicomponent multiphase model can reproduce a wide
range of contact angles. The properties of both fluids are the same as described in Section 3.1.
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The interaction strength parameter between the solid and fluid gCO2,wall is 0.2, and for the
gH2O,wall is −0.2, accordingly.

Figure 3. Water droplet contour for different contact angles obtained through adjusting the interaction parameter g wall
(a) θeq = 70. (b) θeq = 90◦. (c) θeq = 120◦. (d) θeq = 130◦.

In this case, the H2O droplet behaves as a wettable fluid, and the CO2 is non-wettable.
The values of the gCO2,wall and gH2O,wall used in this study to perform the contact angle
tests are presented in Table 3. The results show that the pseudopotential model can model
a wide range of contact angles by adjusting the solid–fluid interaction parameters, gCO2,wall
and gH2O,wall.

Table 3. Values of gCO2,wall and gH2O,wall for different contact angles.

θeq gCO2,wall gH2O,wall

70◦ 0.2 −0.2
90◦ 0 0

120◦ −0.2 0.2
130◦ −0.3 0.3

3.3. Penetration Process in 2D Narrow Channel

In this section, we analyze the performance of the multicomponent LBM model using
the crossover PR EoS formulation in the visualization of the penetration of CO2 into an
H2O-saturated 2D funneled channel that helps approximate the contractions in a pore
network. CO2 is a non-wetting phase, and H2O is set as a wetting phase. The geometry of
the domain is depicted in Figure 4a–c filled with immiscible H2O and CO2 fluids subject to
a streamwise pressure gradient (body force) and inlet/outlet periodic boundary condition.
The domain size is 41 × 151 LU2, and the channel is narrowed by placing two-block
obstacles with a height of 40 LU and a width of 10 LU. Figure 4a also presents the initial
condition with two large CO2 bubbles immersed in H2O and placed initially at the entrance
and exit of the channel. H2O and CO2 fractions are 0.61 and 0.39, respectively, and the
system’s temperature is 0.071 in LU.

The density ratio H2O/CO2 is 4, and H2O is set as the wetting phase with a contact
angle of 70◦. The top and bottom sides of the domain are set as periodic and left, and
the right walls are set with a no-slip boundary condition. The streamwise body force is
then applied throughout the domain with magnitude G f = 4.8 × 10−5 just enough to
overcome the capillary resistance. Figure 4b–d show the evolution of the flow with the
bubble squeezing in a periodic pseudo-steady regime. The results show that the velocity of
the CO2 bubble is almost twice faster in a narrower section of the channel, as observed in
Figure 5. From further analysis, it is observed that bubbly flow tends to form when CO2
saturation is lower or equal to 0.4. At CO2 saturation between 0.4 and 0.7, the annular flow
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is formed where wetting phase water stays closer to the channel wall. These findings are
similar to what was observed in another similar study where free energy LBM was used
instead [37,38].

Figure 4. CO2 bubble passing through a narrow channel with a density ratio of 4 at Gf = 4.8 × 10−5

at (a) initial stage; (b) 36,600 ts; (c) 107,800 ts.

Figure 5. The bubble velocity profile at narrow and wide sections of the channel in a periodic
pseudo-steady regime.

The model is further challenged by varying the pressure gradient from insufficient to
a much larger value than needed to overcome the capillary resistance. Figure 6 presents the
snapshots after a long transient simulation (297,500 ts) to reach a pseudo-steady solution.
The boundary conditions and wettability are like those in the previous case. Figure 6a
shows that under a pressure gradient of 3.5 × 10−5, the CO2 cannot enter into the narrow
channel due to insufficient driving force to overcome the capillary resistance. The body
force is further increased to 4 × 10−5 (Figure 6b), slightly above the needed capillary
pressure. The CO2 squeezes through the narrow channel until an annular flow is developed
with a stable symmetrical shape. The centerline velocity in the middle (narrow) domain
section is 0.016 LU/ts, twice higher than in the broader section of the domain. When the
body force increases to 6 × 10−5, the multicomponent flow becomes unstable, and the
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inner CO2 starts oscillating in the spanwise direction, depicting a wavy shape surrounded
by a film of H2O (Figure 6c).

Figure 6. CO2 penetration into the channel initially filled with water at 297,500 ts and contact angle
70◦. (a) Gf = 3.5 × 10−5. (b) Gf = 4 × 10−5. (c) Gf = 6 × 10−5.

3.4. Penetration Process in the 2D Pore Network

The modeling CO2 penetration into a 2D porous media under different body forces
was also studied using the crossover PR EoS formulation embedded in the multicomponent
LBM. The porous media is constructed by placing several previously saturated cylinders
with H2O. The schematic diagram of the porous region is shown in Figure 7a, which has
a porosity of 0.78 and a pore throat of 10 LU. The domain size is 191 × 81 LU2, with the
horizontal length of the pore network being 90 LU. Top and bottom walls are set as a no-slip
boundary condition, while both left and right sides are set as periodic. The computational
domain is subject to a streamwise pressure gradient to drive the CO2 into the porous
medium saturated with H2O (wettable fluid) with a contact angle of 70◦. The density ratio
is set to 1, and the system’s temperature is 0.071 in LU. Figure 7b presents the case with
body force 2.5× 10−5 at 113,400 ts. In this case, the driving force is not enough to overcome
the capillary resistance.

Figure 7. CO2 displacement process with insufficient body force of 2.5× 10−5. The same color scheme is used, as in Figure 6.
(a) Geometry of the porous media with porosity 0.78. (b) CO2 penetration at 113,400 ts.
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We further increase the driving force to 4.5 × 10−5, and it is observed from Figure 8
that CO2 can then easily intrude the porous media with a flow pattern that resembles a
stable displacement process.

Figure 8. CO2 displacement process at body force 4.5 × 10−5 with a stable displacement pattern. The same color scheme is
used, as in Figure 6. (a) 63,700 ts. (b) 186,900 ts.

Next, we compare the effect of the front profile of the intruding fluid (CO2). According
to Fakhari et al. [39], the distance from the inlet to the porous section of the micromodel has
a significant effect on numerical simulations. The parabolic velocity profile better matches
the initial conditions between the numerical simulations and experiments. To achieve
a parabolic profile, we extended the length of the inlet region to 85 LU. To observe the
effect of the front shape of intruding fluid on displacement patterns, we also placed the
inlet region closer to the pore network at 7 LU from the first row. The initial conditions
for both cases are shown in Figures 9a and 10a. In both cases, the overall domain size is
401 × 201 LU2, with the pore network length of 229 LU in the streamwise direction. The
inlet velocity is 0.02 LU/ts as proposed by Zou and He [40], applied on the left bound of
the domain (inlet), and the outflow boundary condition is applied on the right end. Both
top and bottom walls are set as a no-slip boundary condition, and the contact angle is set
to 85◦. The density ratio is again set to 1, and the system’s temperature is 0.071 in LU.

Figure 9. CO2 penetration pattern with a parabolical profile and front initially at 75 LU from pore network. Same color
scheme is used, as in Figure 6. (a) 0 ts. (b) 3300 ts. (c) 6100 ts. (d) 9000 ts.
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Figure 10. CO2 penetration pattern with a flat front profile initially at 7 LU from pore network. The same color scheme is
used, as in Figure 6. (a) 0 ts. (b) 1600 ts. (c) 4800 ts. (d) 7100 ts.

Figure 9a shows the initial condition for the case where the front of the intruding
fluid (CO2) is initially placed 75 LU away from the pore network (i.e., 10 LU inside the
domain). The parabolic profile is formed at 3300 ts (Figure 9b). Tiny H2O droplets are
observed at 6100 ts (Figure 9c). Droplets evaporate after 2000 ts, and Figure 9d shows
that the flow pattern resembles a fingering displacement at 9000 ts. The process occurs
at near-constant pressure conditions around the evaporation region. Thus, the model
is expected to be capable of capturing the phenomenon despite the inherent isothermal
assumption. Figure 10a presents the case with the flat front of the intruding fluid placed
7 LU away from the porous section. Compared with the previous case, the front profile
of the velocity remains flat. In contrast, with the parabolical front profile, the velocity is
higher in the middle section of the porous media. These results suggest that the distance
from the inlet to the porous section can affect the displacement pattern.

A grid-independence analysis is developed by introducing two more refined models
of 601 × 301 LU2 and 801 × 401 LU2, with geometry, inlet speed, viscosity, and timestep
span scaled accordingly. The average velocity magnitude along a line drawn over the last
row of obstacles, as shown in Figure 11, was utilized as a comparison parameter for the
three grid sizes. Results of the velocity probe are shown in Figure 12, taken from lattice
time of 0 to 7100.

As shown in Figure 12, velocity magnitude is very similar in all grid sizes, deviating
only slightly in later time-steps, demonstrating the suitability of any of the three grids in
our analysis.

In another comparison between the grids, we used the CO2 flux through the probe
line for an extended period to permit the CO2 to reach the probe line. This parameter
was calculated as the fraction of CO2 multiplied by the time-average velocity magnitude
integrated over the whole probe line. Results, shown in Table 4, highlight the small error
between contiguous grid resolutions, justifying our initially selected grid for the analysis.
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Figure 11. Line probe location (shown in black) in the grid-independence analysis of CO2 penetration
LBM model.

Figure 12. Average velocity magnitude along the probe line (shown in Figure 11) in the CO2

penetration LBM model.

Table 4. Time-space average CO2 flux over a probe line (Figure 11) integrated over 7100 timesteps.

Grid Size, LU2 CO2 Flux, × 10−7 LU/ts Relative Error (%)

401 × 201 3.590 -
601 × 301 3.651 1.7%
801 × 401 3.679 0.76%

4. Discussion and Concluding Remarks

In this study, the crossover PR EoS was incorporated into the pseudopotential LBM,
and an improved model was further applied to study the CO2 penetration process in capil-
lary water-saturated domains. The improved model’s performance is analyzed through
several tests. Firstly, a static weightless water droplet is suspended in equilibrium and
immersed in CO2 to prove the stability of the numerical model. Secondly, a sessile water
droplet in equilibrium with the surrounding CO2 is presented to demonstrate the stability
and accuracy of the model in determining the static contact angle. Both static simula-
tions showed the model’s ability to describe different wettability regimes with sufficient
numerical stability.
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Then, several cases are presented to analyze the injection of supercritical CO2 in a
water-saturated capillary domain. In the first place, a validation of the model around
critical conditions is assessed through a single pore or capillary channel, demonstrating the
accurate prediction of the threshold pressure gradient needed to overcome constraints to
allow a CO2 bubble to squeeze through the narrow channel. Hence, the injection process
was analyzed at different pressure gradients and contact angles. After the necessary
pressure gradient was met, the non-wettable CO2 traveled through the center of the
channel surrounded by the wettable fluid (H2O), depicting a centerline velocity at the
narrow section almost twice higher than through the main channel. These results agree with
previous work [37]. Increasing the pressure gradient much farther beyond the minimum
capillary pressure affected the hydrodynamic stability of the CO2 stream, demonstrating
the existence of a secondary stability threshold of pressure gradient above which a transient
spanwise oscillation sets in.

Next, the CO2 sequestration process was further analyzed around supercritical condi-
tions where the non-wetting fluid is injected into a complex, but homogeneous 2D pore
network saturated with wetting H2O. Thus, we investigated the effect of a supercritical
CO2 front profile on its displacing through a 2D water-saturated pore network. The results
show that the intruding fluid’s front profile plays an important role and influences the
overall CO2-H2O flow pattern through the pore networks. That observation was also
highlighted in [41], where it was observed that the parabolical profile is more likely to
happen in actual CO2 sequestration, and this velocity profile returns results that are closer
to experimental data than obtained for the flat inlet profile. Therefore, our results proved
that with enough development length allocated in the inlet region of the computational
domain, it is reasonable to expect a more realistic parabolical profile at the entrance of
porous networks during the CO2 sequestration numerical modeling.

These preliminary results show that the improved model is numerically stable when
applied to reproduce moderately complex geometries and physical flow patterns, as
expected in realistic conditions. However, our study is limited to qualitative results and
a viscosity ratio of one and isothermal conditions. In future studies, we plan to continue
exploring the numerical stability of the new formulation for more complex 3D porous
media and even more realistic fluid–fluid conditions.

For a detailed expansion of the crossover PR EoS, please refer to Appendix 4 of [18].
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Abbreviations

χ Local value of the mass fraction
A Non-dimensional Helmholtz’s free energy per mole
Vc Critical volume
R Gas constant
T Tc
Tr Dimensionless temperature
Tc Critical temperature
Zc Critical compressibility factor
b1, b2, b3 Dimensionless coefficients for Helmholtz free energy for the PT equation of state
∆1 Critical exponent
a20, a21 Coefficients of Landau expansion
Gi Ginzburg number
d1 Coefficients of rectilinear diameter
α, β, γ Critical exponents
G f Body force

References
1. Polikhronidi, N.; Batyrova, R.; Aliev, A.; Abdulagatov, I. Supercritical CO2: Properties and Technological Applications-A Review.

J. Therm. Sci. 2019, 28, 394–430. [CrossRef]
2. Brown, D. A Hot Dry Rock Geothermal Energy Concept Utilizing Supercritical CO2 Instead of Water. In Proceedings of the

Twenty-Fifth Workshop on Geothermal Reservoir Engineering, SGP-TR-165, Stanford, CA, USA, 24–26 January 2000.
3. Holdych, D.J.; Georgiadis, J.G.; Buckius, R.O. Hydrodynamic instabilities of near-critical CO2 flow in microchannels: Lattice

Boltzmann simulation. Phys. Fluids 2004, 16, 1791–1802. [CrossRef]
4. Huai, X.L.; Koyama, S.; Zhao, T.S. An experimental study of flow and heat transfer of supercritical carbon dioxide in multi-port

mini channels under cooling conditions. Chem. Eng. Sci. 2005, 60, 3337–3345. [CrossRef]
5. Pitla, S.S.; Robinson, D.M.; Groll, E.A.; Ramadhyani, S. Heat transfer from supercritical carbon dioxide in tube flow: A critical

review. HVACR Res. 1998, 4, 281–301. [CrossRef]
6. Katopodes, N. Free-Surface Flow. Computational Methods, Butterworth-Heineman, Oxford. 2019. Available online: https:

//doi.org/10.1016/b978-0-12-815485-4.00002-4 (accessed on 10 January 2021). [CrossRef]
7. Osher, S.; Sethian, J.A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations.

J. Comput. Phys. 1988, 79, 12–49. [CrossRef]
8. Shan, X.; Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 1993,

47, 1815. [CrossRef]
9. Yuan, P.; Schaefer, L. Equations of state in a lattice Boltzmann model. Phys. Fluids 2006, 18, 042101. [CrossRef]
10. Liu, H.; Zhang, Y.; Valocchi, A.J. Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous

versus heterogeneous pore network. Phys. Fluids 2015, 27, 052103. [CrossRef]
11. Liu, H.; Valocchi, A.J.; Werth, C.; Kang, Q.; Oostrom, M. Pore-scale simulation of liquid CO2 displacement of water using a

two-phase lattice Boltzmann model. Adv. Water Resour. 2014, 73, 144–158. [CrossRef]
12. Liu, H.; Kang, Q.; Leonardi, C.R.; Schmieschek, S.; Narváez, A.; Jones, B.D.; Williams, J.R.; Valocchi, A.J.; Harting, J. Multiphase

lattice Boltzmann simulations for porous media applications: A review. Comput. Geosci. 2016, 20, 777–805. [CrossRef]
13. Zhao, H.; Ning, Z.; Kang, Q.; Chen, L.; Zhao, T. Relative permeability of two immiscible fluids flowing through porous media

determined by lattice Boltzmann method. Int. Commun. Heat Mass Transf. 2017, 85, 53–61. [CrossRef]
14. Boek, E.S.; Venturoli, M. Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries. Comput. Math.

Appl. 2010, 59, 2305–2314. [CrossRef]
15. Stiles, C.D.; Xue, Y. High density ratio lattice Boltzmann method simulations of multicomponent multiphase transport of H2O in

air. Comput. Fluids 2016, 131, 81–90. [CrossRef]
16. Ikeda, M.K.; Rao, P.R.; Schaefer, L.A. A thermal multicomponent lattice Boltzmann model. Comput. Fluids 2014, 101, 250–262.

[CrossRef]
17. Kupershtokh, A.L.; Medvedev, D.A.; Karpov, D.I. On equations of state in a lattice Boltzmann method. Comput. Math. Appl. 2009,

58, 965–974. [CrossRef]
18. Kiselev, S.B. Cubic Crossover Equation of State. Fluid Phase Equilib. 1998, 147, 7–23. [CrossRef]
19. Kiselev, S.B.; Ely, J.F. Generalized corresponding states model for bulk and interfacial properties in pure fluids and fluid mixtures.

J. Chem. Phys. 2003, 119, 8645–8662. [CrossRef]
20. Kiselev, S.B.; Ely, J.F. Generalized crossover description of the thermodynamic and transport properties in pure fluids. Fluid Phase

Equilib. 2004, 222–223, 149–159. [CrossRef]

http://doi.org/10.1007/s11630-019-1118-4
http://doi.org/10.1063/1.1691456
http://doi.org/10.1016/j.ces.2005.02.039
http://doi.org/10.1080/10789669.1998.10391405
https://doi.org/10.1016/b978-0-12-815485-4.00002-4
https://doi.org/10.1016/b978-0-12-815485-4.00002-4
http://doi.org/10.1016/b978-0-12-815485-4.00002-4
http://doi.org/10.1016/0021-9991(88)90002-2
http://doi.org/10.1103/PhysRevE.47.1815
http://doi.org/10.1063/1.2187070
http://doi.org/10.1063/1.4921611
http://doi.org/10.1016/j.advwatres.2014.07.010
http://doi.org/10.1007/s10596-015-9542-3
http://doi.org/10.1016/j.icheatmasstransfer.2017.04.020
http://doi.org/10.1016/j.camwa.2009.08.063
http://doi.org/10.1016/j.compfluid.2016.03.003
http://doi.org/10.1016/j.compfluid.2014.06.006
http://doi.org/10.1016/j.camwa.2009.02.024
http://doi.org/10.1016/S0378-3812(98)00222-2
http://doi.org/10.1063/1.1605375
http://doi.org/10.1016/j.fluid.2004.06.014


Fluids 2021, 6, 434 17 of 17

21. Feyzi, F.; Seydi, M.; Alavi, F. Crossover Peng-Robinson equation of state with introduction of a new expression for the crossover
function. Fluid Phase Equilib. 2010, 293, 251–260. [CrossRef]

22. Feyzi, F.; Riazi, M.R.; Shaban, H.I.; Ghotbi, S. Improving cubic equations of state for heavy reservoir fluids and critical region.
Chem. Eng. Commun. 1998, 167, 147–166. [CrossRef]

23. Kabdenova, B.; Rojas-Solórzano, L.R.; Monaco, E. Lattice Boltzmann simulation of near/supercritical CO2 flow featuring a
crossover formulation of the equation of state. Comput. Fluids 2020, 216, 104820. [CrossRef]

24. Atykhan, M.; Kabdenova, B.; Monaco, E.; Rojas-Solórzano, L.R. Modeling Immiscible Fluid Displacement in a Porous Medium
Using Lattice Boltzmann Method. Fluids 2021, 6, 89. [CrossRef]

25. He, X.; Luo, L. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation.
Phys. Rev. E 1997, 56, 6811–6817. [CrossRef]

26. Huang, H.; Sukop, M.; Lu, X.-Y. Multiphase Lattice Boltzman Methods Theory and Application; John Wiley & Sons, Ltd.: Sussex, UK, 2015.
27. Martys, N.S.; Chen, H. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann

method. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1996, 53, 743–750. [CrossRef]
28. Shan, X. Analysis and reduction of the spurious current in a class of multiphase Lattice Boltzmann models. Phys. Rev. E Stat.

Nonlinear Soft Matter Phys. 2006, 73, 6–9. [CrossRef]
29. Monaco, E.; Brenner, G.; Luo, K.H. Numerical simulation of the collision of two microdroplets with a pseudopotential multiple-

relaxation-time lattice Boltzmann model. Microfluid. Nanofluidics 2014, 16, 329–346. [CrossRef]
30. Guo, Z.; Zheng, C.; Shi, B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E Stat. Phys.

Plasmas Fluids Relat. Interdiscip. Top. 2002, 65, 6. [CrossRef] [PubMed]
31. Landau, L.; Lifshitz, E.M. Statistical Physics; Pergamon Press Ltd.: Headington Hill Hall, Oxford, England, UK, 1980.
32. Thermophysical Properties of Fluid Systems in NIST Chemistry Webbook, NIST Standard Reference Database No.69, National

Institute of Standards and Technology, (n.d.). Available online: https://webbook.nist.gov (accessed on 10 October 2018).
33. Li, Q.; Luo, K.H.; Li, X.J. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows. Phys. Rev. E Stat.

Nonlinear Soft Matter Phys. 2012, 86, 016709. [CrossRef]
34. Huang, H.; Krafczyk, M.; Lu, X. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models. Phys. Rev.

E Stat. Nonlinear Soft Matter Phys. 2011, 84, 046710. [CrossRef] [PubMed]
35. Liu, Y.; Mutailipu, M.; Jiang, L.; Zhao, J.; Song, Y.; Chen, L. Interfacial Tension and Contact Angle Measurements for the Evaluation

of CO2-Brine Two-Phase Flow Characteristics in Porous Media. Environ. Prog. Sustain. Energy 2015, 34, 1756–1762. [CrossRef]
36. Fakhari, A.; Rahimian, M.H. Phase-field modeling by the method of lattice Boltzmann equations. Phys. Rev. E 2010, 81, 036707.

[CrossRef]
37. Suekane, T.; Soukawa, S.; Iwatani, S.; Tsushima, S.; Hirai, S. Behavior of supercritical CO2 injected into porous media containing

water. Energy 2005, 30, 2370–2382. [CrossRef]
38. Swift, M.; Osborn, W.; Yeomans, J. Lattice Boltzmann Simulation of Nonideal Fluids. Phys. Rev. Lett. 1995, 75, 3824–3827.

[CrossRef] [PubMed]
39. Fakhari, A.; Li, Y.; Bolster, D.; Christensen, K.T. A phase-field lattice Boltzmann model for simulating multiphase flows in porous

media: Application and comparison to experiments of CO2 sequestration at pore scale. Adv. Water Resour. 2018, 114, 119–134.
[CrossRef]

40. Zou, Q.; He, X. On pressure and velocity flow boundary conditions and bounceback for the lattice Boltzmann BGK model. Phys.
Fluids 1997, 9, 1591–1598. [CrossRef]

41. Fakhari, A.; Rahimian, M. Investigation of deformation and breakup of a moving droplet by the method of lattice Boltzmann
equations. Int. J. Numer. Methods Fluids 2009, 64, 827–849. [CrossRef]

http://doi.org/10.1016/j.fluid.2010.03.032
http://doi.org/10.1080/00986449808912698
http://doi.org/10.1016/j.compfluid.2020.104820
http://doi.org/10.3390/fluids6020089
http://doi.org/10.1103/PhysRevE.56.6811
http://doi.org/10.1103/PhysRevE.53.743
http://doi.org/10.1103/PhysRevE.73.047701
http://doi.org/10.1007/s10404-013-1202-0
http://doi.org/10.1103/PhysRevE.65.046308
http://www.ncbi.nlm.nih.gov/pubmed/12006014
https://webbook.nist.gov
http://doi.org/10.1103/PhysRevE.86.016709
http://doi.org/10.1103/PhysRevE.84.046710
http://www.ncbi.nlm.nih.gov/pubmed/22181310
http://doi.org/10.1002/ep.12160
http://doi.org/10.1103/PhysRevE.81.036707
http://doi.org/10.1016/j.energy.2003.10.026
http://doi.org/10.1103/PhysRevLett.75.830
http://www.ncbi.nlm.nih.gov/pubmed/10060129
http://doi.org/10.1016/j.advwatres.2018.02.005
http://doi.org/10.1063/1.869307
http://doi.org/10.1002/fld.2172

	Introduction 
	Methodology 
	General Lattice Boltzmann Model 
	Pseudopotential Lattice Boltzmann Model 
	Crossover Peng–Robinson EoS 

	Results 
	Multicomponent System 
	Contact Angle Test 
	Penetration Process in 2D Narrow Channel 
	Penetration Process in the 2D Pore Network 

	Discussion and Concluding Remarks 
	References

