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Abstract: The rheological behavior of non-Newtonian fluids in turbulent conditions is an important 
topic in several fields of engineering. Nevertheless, this topic was not deeply investigated in the 
past due to the complexity of the experimental tests for the assessment of the constitutive 
parameters. Pressure pipe tests on Herschel-Bulkley mixtures were proven to be suitable for 
exploring turbulent conditions, but discrepancies with the results of tests performed in laminar flow 
were detected. These contradictions could be attributed to the inconsistencies of the Herschel-
Bulkley model (HB) for high shear rate flows, proven by Hallbom and Klein, who suggested a more 
general “yield plastic” model (HK). Hence, in this study, a procedure for the estimation of the 
rheological parameters of both HB and HK models in pressure pipe tests is defined and rated on a 
complete set of experiments. The HK model performed much better than HB model in the turbulent 
range and slightly better than the HB model in the laminar range, confirming the consistency of the 
“yield plastic” model. The rheological parameters obtained by the proposed procedure were used 
to numerically model a dam-break propagation of a non-Newtonian fluid, showing significant 
differences in terms of process evolution depending on the constitutive model.  

Keywords: rheology; non-Newtonian flow; pipe flow; Herschel-Bulkley model; Hallbom and Klein 
model 
 

1. Introduction 
Non-Newtonian flows are present in many applications, such as mining, chemical 

engineering, environmental and civil engineering, etc. The non-Newtonian behavior can 
be generated by the internal structure of pseudohomogenous mixtures [1,2], such as in 
the case of foams, emulsions, suspensions, pastes, and polymer solutions, or by the 
particle interaction in heterogeneous mixtures, such as in mine tailings, mineral 
suspensions, wastewater sludges, and drilling muds.  

The non-Newtonian rheological behavior is generally well described by the 
Herschel-Bulkley equation [3]: 

where τ (Pa) is the shear stress, γ (s−1) is the shear rate, τ  (Pa) is the yield stress, n (-) 
is the flow behavior index, and k (Pa sn) is the flow consistency index. It is worth pointing 
out that the flow consistency index has a noncoherent unit of measurement depending on n. With regard to the yield stress (τ ), it is the stress value at which the deformation begins: 
such a minimum stress is required to break the internal ‘structure’ of the mixture before 
any relative movement can occur. The HB rheological model describes both shear 
thinning (n < 1) and dilatant (n > 1) behavior [2], and it is equivalent to the Bingham 
plastic model [4] for n =  1, the power-law model for τ  =  0, and the Newtonian model 
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τ = τ + kγ    (1)
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[5] for n =  1 and τ  =  0. The HB model has been generally employed for its simplicity 
and ability to quantify the presence of yield stress and has been applied to several fluids, 
including sediment mixtures and sewage sludge [6,7].  

Hallbom and Klein [8,9] found that the parameters of the HB model are variable 
functions of the shear rate [10]. Thus, the measured parameters (τ , k, n) are usually 
applicable over a limited shear rate range [11]. Moreover, with reference to shear thinning 
fluids, according to the HB model, the apparent viscosity (τ/γ) tends to zero with an 
increasing shear rate. As slurries reach an asymptotic value of viscosity [12], the HB model 
may imply inconsistencies for high shear rate flows, unless n =  1 (Bingham behavior) 
[13,14] is imposed. 

Hallbom and Klein [8] suggested that both HB and Bingham models are special cases 
of a more general rheological model (HK), expressed as: τ = τ + μ γ   (2)

where β is a dimensionless scaling factor and μ  is the infinite shear rate viscosity. 
The model, called “yield plastic”, is equivalent to the Casson model [15,16] for β = 1/2, 
and it was shown to be able to describe the behavior of mineral suspensions over a wide 
range of shear rates without varying the physical parameters. Unlike the Herschel-Bulkley 
model [3], the yield plastic parameters have rational units (i.e., Pa and Pa·s) [17]. 
Moreover, the yield plastic model implies a finite value of the apparent viscosity at high 
shear rates and thus properly models the existing “post-Newtonian” region of non-
Newtonian fluids [18].  

The standard procedure for the estimation of the rheological parameters is based on 
the use of a rheometer to carry out experimental tests [19]. By applying and measuring 
wide ranges of stress, strain, and strain rate, it is possible to obtain the rheological curve 
and, by fitting, rheological parameters with most appropriate constitutive equation [20]. 
This procedure is based on two important choices: the rheometer and the constitutive 
equation. In some cases, the choice of the rheometer can be problematic, since this 
instrument generally allows one to perform analysis only on a limited shear rate range [8]. 
Moreover, in the case of a two-phase (liquid-solid) mixture with a solid density higher 
than liquid density, the sedimentation tendency (caused by gravitational force) may affect 
the results of the rheometer tests. For this reason, an experimental measurement on a pipe 
flow of the mixture can be preferred. Indeed, compared to the traditional viscometer 
experiments, a pressure pipe test ensures larger flow velocities and, consequently, a lower 
tendency for solid particle sedimentation [21,22]. As a result, the mixture can be treated 
for most purposes as a single-phase fluid. An additional advantage of the pressure pipe 
test lies in the possibility of exploring a full range of fluid dynamic conditions, including 
laminar, transitional, or turbulent regimes.  

In the pressure pipe tests, once the appropriate constitutive equations are selected, 
the rheological parameters can result from the evaluation of head loss and discharge 
measurements [23–26]. Rabinowitsch (1929) and Mooney (1931) [27,28] described a 
method, widely used in the literature [29–32], based on the integration of the analytical 
laminar velocity distribution in the cross-section. Wilson and Thomas (1985) [33] and 
Thomas and Wilson (1987) [34] investigated the turbulent flow conditions of non-
Newtonian fluids discussing the effects of the eddy size. According to the authors, the 
velocity profile of a non-Newtonian fluid can be split into three parts: (i) a viscous 
sublayer presenting an increased thickness compared to a Newtonian fluid, for the same 
wall shear stress, (ii) a turbulent zone, and (iii) a plug zone. By integrating the velocity 
profile in the cross-section, they found, for a Herschel-Bulkley fluid, a single relation 
between the rheological parameters of the fluid, the flow rate, the pipe friction losses, and 
the pipe diameter. Carravetta et al. (2016) [35] recently developed a methodology for the 
estimation of the rheological parameters of HB fluids based on the equations proposed by 
Chilton et al. (1996) [18] in laminar flow conditions and by Chilton and Stainsby (1998) 
[21] in turbulent flow conditions.  
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In this study, the constitutive equations HB and HK are integrated over the cross-
section to obtain a resistance formula in laminar flow, while the Wilson and Thomas 
method used to obtain a friction-flow relation in turbulent flow condition. As suggested 
by Thomas and Wilson (1987) [34], the theory should be applied using as constitutive 
equation the rheological model by Herschel-Bulkley. In this study, such a theory in the 
literature is also extended to the Hallbom and Klein (2004) constitutive model. Based on 
these results, a new technique for estimating the parameters of HB and HK fluids in 
turbulent flow conditions is proposed. The new technique was applied to a complete set 
of experiments on a bentonite mixture, with the aim of determining the rheological 
parameters of both HB and HK models in laminar and turbulent flow conditions. By 
comparing the parameters obtained for both the rheological models, a better agreement 
between the model and the data was found with reference to the HK model, especially in 
the turbulent conditions.  

Finally, a numerical model of dam-break propagation within a non-Newtonian fluid 
was applied by using the rheological parameters resulting from both HB and HK models. 
The differences in the process evolution arising from the application of either the HB 
model or HK model are discussed.  

2. Friction Flow Model in Laminar Flow Conditions 
In a pipe flow, the shear stress τ varies linearly with the radial distance r (Figure 1) 

from τ = 0  at r = 0  to its maximum value τ =  at the wall (i.e., r = D 2 ), 
where J is the head losses per unit length, and g is the gravity acceleration. The pipe flow 
occurs when J exceeds the following threshold value: J = 4τρgD (3)

and a plug region (unyielded core) exists where the shear stress is less than the yield stress 
and the velocity (u ) is constant. 

 
Figure 1. Shear stress distribution within a pipe flow. 

The radius r  of the plug region can be defined as: 

r = Dτ2τ  (4)
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2.1. HB Fluid 
According to the model proposed by Herschel-Bulkley [3], in laminar regime, the 

velocity profile out of the plug region can be calculated by integration of the Equation (1) 
as follows: 

where γ is the specific weight of the fluid. Hence, the resistance formula can be ob-
tained by an integration of the velocity profile: 

where V is the mean velocity and: 

2.2. HK Fluid 
In laminar flow conditions for a fluid modeled according to Hallbom and Klein (2009) 

[8], the velocity distribution is: 

imposing that u D 2 = 0. Once the characteristics of the pipeline and head losses are 
known and by assigning the rheological parameters, the prediction of mean velocity V 
can be carried out by integration of Equation (9), as following: 

In the case described by Equation (10), the relation between V and J is not explicit, 
but results from the substitution of Equation (9) and should be numerically calculated. 

3. Friction Flow Model in Turbulent Flow Conditions 
The friction flow model in turbulent conditions has been deeply investigated by Wil-

son and Thomas (1985) [33] and Thomas and Wilson (1987) [34]. According to the authors, 
the thickness of the viscous sublayer (δv) is proportional to the area ratio α, defined as the 
ratio between the area below the non-Newtonian rheogram (i.e., dashed area in the left 
plot of Figure 2) and the area below the Newtonian rheogram, for a given wall shear rate 
and the corresponding wall shear stress (i.e., dashed area in the right plot of Figure 2). 

u(r) = 2 kγJ  nn + 1 γJD4k − τk − γJr2k − τk  (5)

J = 4kγD 8VD  3n + 14n 11 − X  11 − aX − bX − cX  (6)

X = ττ = 4τDγJ  (7)

a =  1(2n + 1) ; b =  2n(n + 1)(2n + 1) ; c =  2n(n + 1)(2n + 1) (8)

u(r) = − ρgrJ2 −τμ dr (9)

V = 8 u(r)rdr + 4r u rD  (10)
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Figure 2. Rheogram of non-Newtonian (left plot) and Newtonian (right plot) fluids. The red dashed 
lines represent the rheogram of a Newtonian fluid (left plot) and of a non-Newtonian fluid (right 
plot). 

The expression of α is given by Equation (11): 

With reference to Figure 2, the slope of the Newtonian rheogram is the apparent vis-
cosity, and as previously mentioned, it is evaluated by the following expression: 

The velocity within the viscous sublayer (u ) is a linear function of the distance from 
the wall (y) according to the following expression: 

where ρ is the density, y is the distance from the wall, and u∗ is the shear velocity ( ). 

The intercept with the logarithmic profile of the turbulent layer is given by: 

The thickness of the viscous sublayer (δv) depends on α according to the following 
expression: 

Outside of the viscous sub-layer, the velocity of the turbulent flow (u ) varies loga-
rithmically with y, as follows: 

In the case of α = 1, the previous relations are valid for a Newtonian fluid. With ref-
erence to Equation (16), the plug velocity (u ) in turbulent condition can be therefore ex-
pressed as: 

α = 2 τ dγτ γ  (11)

η = τ γ   (12)

uu∗ = ρu∗yη  (13)

uu∗ = 11.6 α (14)

δ = 11.6 αηρu∗ (15)

uu∗ = 2.5 ln ρu∗yη + 5.5 + 11.6(α − 1) − 2.5 ln(α) (16)

u = u∗ 2.5 ln ρu∗ D2 − rη + 5.5 + 11.6 (α − 1) − 2.5 ln(α)  (17)
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With regard to the mean velocity V, it should be obtained by a numerical integration 
of the velocity profiles resulting from Equations (14), (16), and (17), as follows: 

By solving Equation (18), hence: 

where V  is the mean velocity for equivalent Newtonian flow (i.e., the Newtonian flow 
presenting the same wall shear stress τ ) with the secant viscosity η, whereas the term Ω 
takes into account the blunting of the velocity profile due to the yield stress and is ex-
pressed as follows [33]: 

With regard to α, its expression varies according to the viscosity model. In case of 
fluids modeled according to Herschel-Bulkley [3] (HB), the following expression pro-
posed by Thomas and Wilson (1987) [34] can be used: 

Thus, Equation (19) is the resistance formula, relating V and J, in turbulent flow con-
ditions. 

Regarding fluids modeled by Hallbom and Klein [8] (2009), the value of α should 
result from Equation (22), which cannot be analytically solved though. 

Hence, the value of α in HK fluids necessarily results from the numerical solution of 
the integral in Equation (22). Thus, even in turbulent flow, an explicit resistance formula 
does not exist for HK fluids, but the relation between V and J must be numerically ob-
tained. 

4. Experiments 
Extensive pressure pipe tests were performed on a recirculating pipe using two dif-

ferent mixtures: a natural Bingham-plastic mixture and a bentonite mixture. 
Steady state experiments were performed on three different pipes: (1) D = 2.91 mm, L = 1.47 m; (2) D = 18.05 mm, L = 5.42 m; (3) D = 25.82 mm, L = 5.88 m) with different 

volume concentrations of the mixtures. The pipe lengths were verified to be by far greater 
than the hydrodynamic entry region, which is approximately equal to 10 D in turbulent 
flow condition [36] and around 0.05 Re D in laminar flow condition [37]. In Table 1, the 
total number of samples (N) is presented for each combination of diameter (D) and con-
centration value (c). Head losses H  and discharge Q  were measured, respectively, 
by differential manometers and volumetric method. The details of the experimental facil-
ity can be found in Carravetta et al. (2010) [38]. 

  

V = 8 u rdr + u rdr + 4r uD  
(18)

Vu∗ = Vu∗ + 11.6 (α − 1) − 2.5 ln(α) − Ω (19)

Ω = −2.5 ln 1 − ττ  −2.5 ττ 1 + 0.5 ττ   (20)

α = 2 1 + n ττ1 + n  (21)

α = 2 τ + μ γ dγτ γ  (22)
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Table 1. Number of samples (N) for different diameters (D) and concentration values (c).             𝐜 (𝐤𝐠𝐦𝟑) 𝐃(𝐦𝐦)     0.0144 0.03 0.054 0.075 0.089 0.12 0.15 0.18 0.21 0.25 

2.91  45 48 35 36 52 35 36 36 27 20 
18.05  22 16 27 27 22 27 30 47 23 21 
25.82  22 16 27 27 21 27 30 47 23 21 

By increasing the flow rate, laminar, transitional, and turbulent flow conditions were 
observed. Since in the case of Bingham-plastic natural mixture few data were obtained in 
laminar flow conditions due to the sedimentation tendency of the suspended material, in 
this study, only the data resulting from bentonite mixture were used. This mixture was 
composed by salt water (3%), as well as bentonite at different values of volume concen-
tration c (i.e., 0.0144; 0.03; 0.054; 0.075; 0.089; 0.12; 0.15; 0.18; 0.21; 0.25). 

The experimental values of wall shear stress and mean velocity were calculated by 
means of Equations (23) and (24). 

The experimental errors involved in the estimation of τ  and V  approximately 
amount to 1.5% and 1%, respectively. Figure 3 shows the log-log plot of experimental wall 
shear stress against , obtained for a diameter equal to 2.91 mm and a concentration as 
0.0144. According to Figure 3, the points lie in three different regions depending on the 
flow regime (i.e., laminar, transitional, and turbulent), as first pointed out by Bowen (1961) 
[39]. 

 
Figure 3. Log-log plot of the experimental wall shear stress against 8V/D in laminar, transitional, 
and turbulent conditions, for a diameter equal to 2.91 mm and a concentration value as 0.0144. 

τ , = ρ g D ∆H4L  (23)

V = 4QπD  (24)
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Figure 4 shows the log-log plot of the experimental wall shear stress against ( ) for 
different diameters and fixed concentration (0.0144). With regard to the transitional flow 
regime, it was eliminated and is not considered any longer in this study owing to the 
hysteretic behavior (as shown in Figure 3). With reference to Figure 4, three turbulent 
branches can be observed, corresponding to three different pipe diameters, the larger one 
corresponding to the left line. The slopes s of the three turbulent branches are equal to: 
(i) s = 1.71 for D = 2.91 mm; (ii) s = 1.74 for D = 18.05 mm; and (iii) s = 1.76 for D = 25.82 
mm. The difference in slope between the three branches is significantly small and could 
be due to experimental uncertainties: in this case, in the dependence of τ  on , the 

exponent of  may be not dependent on D, in turbulent flow condition. With regard 

to the laminar regime, due to the dependence of the resistance term on  according to 
Equation (6), which is valid for HB fluids, the laminar flow data result to lie on the same 
curve, regardless of the pipe diameter. As demonstrated by Rabinowitsch (1929) [27] and 
Mooney (1931) [28], this behavior happens for any time-independent fluid, regardless the 
chosen rheological model. 

 
Figure 4. Log-log plot of the experimental wall shear stress against 8V/D in both laminar and tur-
bulent conditions, for different diameters and a concentration value as 0.18. 

5. Optimization Process 
In order to obtain the best triad of rheological parameters (τ , k, n  for Herschel-

Bulkley model [3]; τ , μ , β for Hallbom and Klein model [8]) for each concentration 
value, an optimization procedure was performed by means of the MATLAB (R2019b, 
MathWorks, Inc., Natick, MA, USA) optimization toolbox [40]. The objective function of 
the model consists of the minimization of the average error (E ) in the prediction of the 
mean velocity, as shown in Equation (25). 
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minimize    (E =  ∑ V − V  VN ) 
(25)

where the predicted mean velocity V   was evaluated according to both Herschel-
Bulkley [3] and Hallbom and Klein (2009) models [8] previously presented. 

The values of rheological parameters ( τ , k, n  for Herschel-Bulkley model [3]; τ , μ , β for Hallbom and Klein model [8]) were assessed for each concentration by apply-
ing the optimization procedure, using alternately laminar data (OPL), turbulent data 
(OPT), and finally all data (OPA). With reference to c = 0.0144, Figures 5 and 6 show the 
results of OPL (a), OPT (b), and OPA (c) when HB and HK, respectively, are chosen as 
rheological models. The results related to the other concentration values are reported in 
Appendix A. 

   
(a) (b) (c) 

Figure 5. Results of OPL (a), OPT (b), and OPA (c) in HB fluid (c = 0.0144). 

   
(a) (b) (c) 

Figure 6. Results of OPL (a), OPT (b), and OPA (c) in HK fluid (c = 0.0144). 

5.1. Results of Optimization on Laminar (OPL) and Turbulent (OPT) Data 
The values of the rheological parameters obtained by fitting laminar data (OPL) are 

reported in Tables 2 and 3, with reference to an HB and HK fluid, respectively. The objec-
tive function of OPL was E  in laminar conditions (E _lam). The average error in predict-
ing the flow behavior was also evaluated with reference to the turbulent data (E _turb) 
and all data (E _all). According to Tables 2 and 3, the quality of the optimization for HB 
or HK fluid was the same, being the average errors on laminar data (i.e., E _lam, which is 
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the objective functions in OPL) significantly close. However, the average errors in predict-
ing the flow behavior with reference to both turbulent and all data result in differing 
among the constitutive models. 

Table 2. Values of rheological parameters and average errors of OPL for HB fluid. 𝐜 (𝐤𝐠/𝐦𝟑) 0.0144 0.03 0.054 0.075 0.089 0.12 0.15 0.18 0.21 0.25 τ _OPL 
(Pa) 0.0723 0.0790 0.1363 0.1178 0.0799 0.3514 0.2934 0.7756 1.4962 4.3776 k_OPL 

(Pa sn) 0.0005 0.0005 0.0013 0.0016 0.0035 0.0016 0.0076 0.0108 0.0230 0.0631 n_OPL 
(−) 1.1110 1.1162 1.0117 1.0144 0.9272 1.0685 0.9445 0.9297 0.8859 0.8343 E _lam 
(−) 0.0001 0.0002 0.0014 0.0020 0.0025 0.0004 0.0099 0.0103 0.0032 0.0305 E _turb 
(−) 0.0176 0.0178 0.0092 0.0032 0.0110 0.0091 0.0024 0.0035 0.0052 0.0141 E _all 
(−) 0.0139 0.0128 0.0078 0.0029 0.0073 0.0066 0.0054 0.0073 0.0038 0.0273 

Table 3. Values of rheological parameters and average errors of OPL for HK fluid. 𝐜 (𝐤𝐠/𝐦𝟑) 0.0144 0.03 0.054 0.075 0.089 0.12 0.15 0.18 0.21 0.25 τ _OPL 
(Pa) 0.1214 0.1238 0.1449 0.1043 0.0799 0.3952 0.2048 0.5558 1.1935 3.2606 μ∞_OPL 

(Pa s) 0.0011 0.0012 0.0014 0.0018 0.0019 0.0028 0.0046 0.0054 0.0076 0.0115 β_OPL 
(−) 2.9963 2.9270 1.1023 0.9446 0.7195 1.3753 0.6729 0.6644 0.6325 0.5485 E _lam 
(−) 0.0003 0.0005 0.0014 0.0020 0.0016 0.0006 0.0093 0.0101 0.0031 0.0313 E  
(−) 0.0012 0.0038 0.0102 0.0032 0.0050 0.0055 0.0022 0.0057 0.0029 0.0137 E _all 
(−) 0.0010 0.0029 0.0086 0.0029 0.0035 0.0041 0.0051 0.0082 0.0030 0.0279 

The values of the rheological parameters obtained by performing the optimization 
on turbulent data (i.e., OPT) are reported in Tables 4 and 5, with reference to an HB and 
an HK fluid, respectively. The objective function of the optimization was E  in turbulent 
conditions (E _turb). The average error in predicting the flow behavior was also evaluated 
with reference to the laminar data (E _lam) and all data (E _all). 

Table 4. Values of rheological parameters and average errors of OPT for HB fluid. 𝐜 (𝐤𝐠/𝐦𝟑) 0.0144 0.03 0.054 0.075 0.089 0.12 0.15 0.18 0.21 0.25 τ _OPT 
(Pa) 0.0447 0.0000 0.0000 0.0466 0.0002 0.0000 0.0886 0.0000 2.2122 0.7080 k_OPT 

(Pa sn) 0.0011 0.0016 0.0013 0.0012 0.0038 0.0045 0.0039 0.0051 0.0041 0.0014 n_OPT 
(−) 0.9999 0.9765 1.0229 1.0342 0.9429 0.9556 1.0100 0.9898 1.0702 1.1793 E _lam 
(−) 0.0010 0.0090 0.0753 0.0443 0.0190 0.0094 0.1145 0.7941 0.0717 25.8229 
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E _turb 
(−) 0.0013 0.0034 0.0062 0.0031 0.0035 0.0041 0.0018 0.0027 0.0007 0.0114 E _all 
(−) 0.0012 0.0050 0.0187 0.0139 0.0103 0.0057 0.0478 0.4478 0.0480 20.7528 

Table 5. Values of rheological parameters and average errors of OPT for HK fluid. 𝐜 (𝐤𝐠/𝐦𝟑) 0.0144 0.03 0.054 0.075 0.089 0.12 0.15 0.18 0.21 0.25 τ _OPT 
(Pa) 0.1301 0.0021 0.1590 0.2121 0.0003 0.0006 0.5830 0.5937 2.2167 5.8847 μ∞_OPT 

(Pa s) 0.0011 0.0012 0.0017 0.0018 0.0020 0.0028 0.0043 0.0046 0.0079 0.0112 β_OPT 
(−) 2.9798 2.2878 2.1208 1.5329 2.3011 2.3045 2.9981 2.9992 1.3203 1.0378 E _lam 
(−) 0.0004 0.0010 0.0165 0.0080 0.0274 0.0148 0.0647 0.8515 0.0906 0.5847 E  
(−) 0.0012 0.0035 0.0062 0.0031 0.0039 0.0044 0.0017 0.0027 0.0010 0.0116 E _all 
(−) 0.0011 0.0028 0.0081 0.0044 0.0142 0.0074 0.0274 0.4801 0.0607 0.4721 

According to the results, since the average errors on turbulent data (i.e., E _turb, 
which is the objective function in OPT) are very close, the quality of the optimization for 
an HB or an HK fluid is essentially the same. However, the average errors in predicting 
the flow behavior with reference to both laminar and all data result in differing among 
the constitutive models. Finally, due to the dispersion of the experimental points in lami-
nar condition for high values of concentration (see figures in Appendix A), the error of 
OPL and/or OPT on laminar data (i.e., E _lam) can be even greater than the error associ-
ated with turbulent points (E _turb). 

Figure 7 shows, for both HB and HK models, the average errors in predicting laminar 
velocities in OPT (i.e., when turbulent data are employed within the optimization—see 
left plot), as well as the average errors in predicting the turbulent velocities in OPL (i.e., 
when the optimization is performed on laminar measurements—see right plot). Accord-
ing to Figure 7, the average error associated to OPT is overall larger than the error gener-
ated by OPL and such error results increase with increasing the value of the concentration c. As a consequence, the optimization performed on laminar data (OPL) may achieve more 
meaningful results. On the other hand, the measurements in laminar conditions are not 
always available due to the sedimentation tendency of the mixture. However, with refer-
ence to OPT, since the HK model exhibits a better performance in terms of average errors, 
it can be preferred over the HB model. 
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(a) (b) 

Figure 7. Average errors in predicting laminar behavior in OPT (a) and turbulent behavior in OPL (b), for both HB and 
HK models. 

5.2. Results of Optimization on all Data (OPA) 
The values of the rheological parameters obtained by an optimization on all data are 

reported in Table 6 with reference to an HB fluid and in Table 7 with reference to an HK 
fluid. The optimization was performed by using as objective function E _all. However, 
the average errors affecting the models are also given with reference to laminar and tur-
bulent data. According to the values in Tables 6 and 7, OPA results in smaller values of 
average errors, when compared with OPL and OPT. 

Table 6. Values of rheological parameters and average errors of OPA for HB fluid. 𝐜 (𝐤𝐠/𝐦𝟑) 0.0144 0.03 0.054 0.075 0.089 0.12 0.15 0.18 0.21 0.25 τ _OPA 
(Pa) 0.0185 0.0010 0.1412 0.1159 0.0799 0.2095 0.3189 0.7517 1.5972 0.0000 k_OPA 

(Pa sn) 0.0011 0.0012 0.0010 0.0017 0.0025 0.0030 0.0068 0.0117 0.0195 0.7293 n_OPA 
(−) 1.0003 1.0037 1.0486 1.0072 0.9755 0.9932 0.9599 0.9189 0.9059 1.7004 E _lam 
(−) 0.0004 0.0007 0.0017 0.0020 0.0037 0.0016 0.0100 0.0104 0.0034 1.3400 E _turb 
(−) 0.0013 0.0035 0.0067 0.0031 0.0042 0.0050 0.0021 0.0031 0.0041 0.0244 E _all 
(−) 0.0011 0.0027 0.0058 0.0028 0.0040 0.0040 0.0053 0.0072 0.0036 1.0816 

Table 7. Values of rheological parameters and average errors of OPA for HK fluid. 

c 0.0144 0.03 0.054 0.075 0.089 0.12 0.15 0.18 0.21 0.25 τ _OPA 
(Pa) 0.1264 0.0083 0.2003 0.1247 0.0799 0.3433 0.1843 0.3754 1.2771 3.1178 μ∞_OPA 

(Pa s) 0.0011 0.0012 0.0016 0.0018 0.0019 0.0028 0.0044 0.0049 0.0077 0.0111 β_OPA 
(−) 2.9976 1.6770 2.3525 1.0991 0.7639 1.3487 0.6325 0.5407 0.6607 0.5305 E _lam 0.0003 0.0007 0.0046 0.0021 0.0018 0.0009 0.0093 0.0106 0.0032 0.0314 
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(−) E  
(−) 0.0012 0.0035 0.0068 0.0032 0.0046 0.0053 0.0021 0.0038 0.0027 0.0130 E _all 
(−) 0.0010 0.0027 0.0064 0.0029 0.0034 0.0040 0.0051 0.0076 0.0030 0.0278 

5.3. Final Considerations on the Optimization 
When a comprehensive set of data is available, both Herschel-Bulkley [3] and Hall-

bom-Klein [8] models could be used to assess the rheological parameters of a mixture. In 
many cases, only laminar data or turbulent data are available: the first situation occurs 
when the tests are performed by the use of a rheometer, whereas the latter is typically 
observed when pressure pipe tests are necessary to avoid sedimentation of the suspended 
particles of the mixture. In both cases, by considering a fluid modeled according to Hall-
bom-Klein [8], the prediction of the flow behavior in a different hydrodynamic regime can 
be made in a much safer way, as proven by this study. Figure 8 shows the values of τ  
(that is the parameter in common between the two rheological models) obtained by OPL, 
OPT, and OPA for both HB and HK fluids. 

 
Figure 8. Values of τ  resulting from OPL, OPT and OPA for both HB and HK models. 
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With reference to Figure 8, except for a few values of c, τ  resulting from OPL, OPT, 
and OPA is essentially the same when the fluid is modeled according to HK. Conversely, 
when HB is used as rheological model, the values of τ  significantly differ each other. 
Thus, unlike the HB model, HK is capable of fitting the experimental data in OPL, OPT, 
and OPA with a slighter variation of the parameters, further proving its internal con-
sistency. 

6. Engineering Implication: A Simple Dam-Break Example 
The propagation of the flow after a dam-break event [41] has been considered as a 

practical example to highlight the implication of the choice of the rheological model in 
terms of flow modeling [42–44]. 

The case study consists of an instantaneous dam break in a 1-D prismatic and hori-
zontal channel for a semi-infinite reservoir. The initial velocity is zero, while the initial 
depth is h = 1m. The 1-D shallow water equations that describe the motion of the fluids 
are the following: 

⎩⎨
⎧ ∂h∂t + ∂Vh∂s = 0∂Vh∂t + ∂∂s V2h + gh22 = gh(i − j)  (26)

where h is the fluid depth, V is the flow mean velocity, g the gravity acceleration, i the 
channel slope (zero in the case study), j = τ /(ρgh) is the resistance force for unit of 
weight, and (s, t) are the space and time coordinates. Harten-Lax-van Leer (HLL) finite 
volume method [45] was used to solve the problem, where the source term was modeled 
by an explicit backward-time scheme. The simulations consider either laminar or turbu-
lent flow conditions. For the calculation of the wall shear stress that appears in the source 
term, in turbulent flow condition, the abovementioned Thomas and Wilson theory [34] 
was used, whereas for the laminar flow, a numerical integration of the constitutive equa-
tion over the flow depth was performed. The time-step Δt was chosen in order to keep 
the Courant number significantly lower than 1, i.e., Δt = 0.1Δx/ gh , where Δx is the 
space discretization. For further information about the numerical method, please see 
[46,47]. In this simulation, the OPL parameters for a sediment concentration equal to 0.25 
were considered. 

The results of the HLL in terms of fluid depth (h), obtained by using the constitutive 
parameters in both HB and HK for the highest tested concentration (i.e., c = 0.25), are 
shown hereafter. Figures 9 and 10 show the fluid profile resulting from the use of both 
OPL and OPT rheological parameters, for laminar and turbulent flow condition, respec-
tively. These profiles are presented for different time instants between 0 and 10 s, with a 
step of 2.5 s. According to the results, if the fluid is modeled by the constitutive parameters 
obtained by fitting laminar data (i.e., OPL), the choice of the rheological model seems not 
to significantly affect the fluid behavior, and the resulting profiles approximately overlap, 
no matter if the flow regime is laminar or turbulent. Conversely, the profile resulting from 
OPT for the HB fluid is remarkably different from the other profiles. This is perfectly co-
herent with the results presented in the previous section, where the HK model resulted in 
exhibiting a better performance in terms of average errors, especially when the fluid is 
modeled according to the constitutive parameters obtained by fitting turbulent data (i.e., 
OPT). This behavior is highlighted for the highest concentration value. Moreover, as pre-
viously presented in Tables 4 and 5, in laminar flow condition, such errors can be greater 
than in turbulent condition for high values of concentrations, and this results in the greater 
discrepancy between the depth profiles in Figure 9. The same considerations are valid 
with reference to the mean velocity profiles, which are presented in Appendix B. Moreo-
ver, with reference to the profiles resulting from OPT when HB is used as rheological 
model, the wave tip, that is, the part of the fluid front where the shear stresses are not 
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negligible, is particularly evident. In the wave tip, such shear stresses are significant due 
to the high values of mean velocity (see Appendix B). Conversely, in the other plots, the 
wave tip is not discernible since the shear stresses are remarkably high within the whole 
profile, as proven by the small values of velocity, which tend to zero at the last time instant 
(see Appendix B). 

 
Figure 9. Results of HLL method in terms of fluid depth (h) applied to a simple dam-break problem 
in laminar flow condition by using the rheological parameters obtained by OPL and OPT in both 
HB and HK models for c = 0.25. 
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Figure 10. Results of HLL method in terms of fluid depth (h) applied to a simple dam-break problem 
in turbulent flow condition by using the rheological parameters obtained by OPL and OPT in both 
HB and HK models for c = 0.25. 

The following tables (Tables 8–13) show the results of the dam-break simulation in 
terms of average shear stress (τ ), maximum shear stress (τ ) and angle formed by the 
wave tip and the bottom line (δ), in laminar and turbulent flow condition, by using the 
rheological parameters obtained by OPL and OPT when both HB and HK are used as 
constitutive models. According to Tables 8–11, the optimization on turbulent data (i.e., 
OPT) for the HB model results in values of τ  and τ  significantly smaller than all 
other results. This can be considered as a further evidence of the better performance of the 
HK model compared to the HB model, especially in OPT. The same consideration can be 
made with reference to the values of δ presented in Tables 12 and 13. 

Table 8. Results of HLL method in terms of average wall shear stress (τ ) applied to a simple dam-break problem in 
laminar flow condition by using the rheological parameters resulting from OPL and OPT in both HB and HK models for c = 0.25. 𝐭𝐢𝐦𝐞  

(s) 
𝛕𝐰 𝐇𝐁𝐎𝐏𝐋  

(Pa) 
𝛕𝐰 𝐇𝐊𝐎𝐏𝐋  

(Pa)  
𝛕𝐰 𝐇𝐁𝐎𝐏𝐓  

(Pa)  
𝛕𝐰 𝐇𝐊𝐎𝐏𝐓  

(Pa) 
2.5  0.65 0.71 0.20 0.85 
5.0  0.99 0.92 0.29 1.09 
7.5  1.10 1.07 0.35 0.68 
10   0.88 0.85 0.42 0.97 

Table 9. Results of HLL method in terms of average wall shear stress (τ ) applied to a simple dam-break problem in 
turbulent flow condition by using the rheological parameters resulting from OPL and OPT in both HB and HK models for c = 0.25. 𝐭𝐢𝐦𝐞  

(s) 
𝛕𝐰 𝐇𝐁𝐎𝐏𝐋  

(Pa) 
𝛕𝐰 𝐇𝐊𝐎𝐏𝐋  

(Pa) 
𝛕𝐰 𝐇𝐁𝐎𝐏𝐓  

(Pa) 
𝛕𝐰 𝐇𝐊𝐎𝐏𝐓  

(Pa)  
2.5  0.61 0.66 0.42 0.86 
5.0  1.04 0.99 0.50 1.13 
7.5  0.90 0.95 0.54 0.77 
10  0.60 0.93 0.56 0.70 

Table 10. Results of HLL method in terms of maximum wall shear stress (τ ), applied to a simple dam-break problem 
in laminar flow condition by using the rheological parameters resulting from OPL and OPT in both HB and HK models 
for c = 0.25. 𝐭𝐢𝐦𝐞  

(s) 

𝛕𝐰𝐦𝐚𝐱 𝐇𝐁𝐎𝐏𝐋  
(Pa) 

𝛕𝐰𝐦𝐚𝐱 𝐇𝐊𝐎𝐏𝐋  
(Pa) 

𝛕𝐰𝐦𝐚𝐱 𝐇𝐁𝐎𝐏𝐓  
(Pa) 

𝛕𝐰𝐦𝐚𝐱 𝐇𝐊𝐎𝐏𝐓  
(Pa) 

2.5  5.69 5.30 1.51 6.50 
5.0  5.12 4.67 1.32 6.14 
7.5  4.57 4.02 1.20 6.19 
10  4.51 3.42 1.31 6.03 

Table 11. Results of HLL method in terms of maximum wall shear stress (τ ), applied to a simple dam-break problem 
in turbulent flow condition by using the rheological parameters resulting from OPL and OPT in both HB and HK models 
for c = 0.25. 𝐭𝐢𝐦𝐞  

(s) 

𝛕𝐰𝐦𝐚𝐱 𝐇𝐁𝐎𝐏𝐋  
(Pa) 

𝛕𝐰𝐦𝐚𝐱 𝐇𝐊𝐎𝐏𝐋  
(Pa) 

𝛕𝐰𝐦𝐚𝐱 𝐇𝐁𝐎𝐏𝐓  
(Pa) 

𝛕𝐰𝐦𝐚𝐱 𝐇𝐊𝐎𝐏𝐓  
(Pa) 

2.5  5.25 5.01 4.76 6.29 
5.0  4.83 4.33 3.27 6.05 
7.5  4.56 3.91 2.61 5.90 



Fluids 2021, 6, 419 17 of 27 
 

10  4.92 3.44 2.21 6.10 

Table 12. Comparison between HB and HK models in terms of angle formed by the wave tip and the bottom line in 
laminar flow condition, by using the rheological parameters resulting from OPL and OPT in both HB and HK models for 
c = 0.25. 𝐭𝐢𝐦𝐞  

(s) 
𝛅𝐇𝐁𝐎𝐏𝐋 
(°) 

𝛅𝐇𝐊𝐎𝐏𝐋 
(°) 

𝛅𝐇𝐁𝐎𝐏𝐓 
(°) 

𝛅𝐇𝐊𝐎𝐏𝐓 
(°) 

2.5  7.7 7.3 2.3 7.7 
5.0  6.4 6.6 1.8 6.3 
7.5  4.6 5.2 1.9 4.1 
10  3.5 3.9 1.9 3.4 

Table 13. Comparison between HB and HK models in terms of angle formed by the wave tip and the bottom line in 
turbulent flow condition, by using the rheological parameters resulting from OPL and OPT in both HB and HK models 
for c = 0.25. 𝐭𝐢𝐦𝐞  

(s) 
𝛅𝐇𝐁𝐎𝐏𝐋 
(°) 

𝛅𝐇𝐊𝐎𝐏𝐋 
(°) 

𝛅𝐇𝐁𝐎𝐏𝐓 
(°) 

𝛅𝐇𝐊𝐎𝐏𝐓 
(°) 

2.5  7.3 6.6 5.5 7.9 
5.0  6 6.4 4.3 6.1 
7.5  4.7 5.4 4.0 4.1 
10  3.5 3.7 3.6 3.4 

7. Conclusions 
The rheology of non-Newtonian fluids, i.e., the relation between the shear stress and 

the deformation velocity within a flow, is a crucial aspect in the fluid dynamic modeling, 
both in laminar and in turbulent conditions. Once the rheological model is chosen, the 
velocity profile can be integrated and uniform flow resistance formula can be also ob-
tained. Then, several theoretical, semiempirical, or empirical models described the influ-
ence of the rheology in turbulent conditions. 

The rheological analysis can be carried out either by means of rheometers based on a 
direct measurement of both the shear stress and the deformation velocity or by head loss 
measurements in uniform flow. The latter technique has been used for years in laminar 
conditions, based on the study of Rabinowitsch (1929) [27] and Mooney (1931) [28]. Re-
cently, Carravetta et al. (2016) [35] proposed a methodology to investigate the rheological 
behavior of a water sediment non-Newtonian mixture by performing experiments in tur-
bulent uniform flow conditions. The possibility of using turbulent flow data can be crucial 
when the mixture has a large tendency for sedimentation, which can be an obstacle for 
testing the fluid in laminar conditions. 

As a rheological model, the Herschel-Bulkley equation [3] has been used for years to 
describe the non-Newtonian behavior of a large number of fluids and mixtures with yield 
stress. Nevertheless, this model presents some well-known inconsistencies at a high shear 
rate. Thus, Hallbom and Klein in 2009 [8] presented a new rheological yield-stress model 
overcoming the Herschel-Bulkley [3] inconsistencies. 

In this study, the two rheological models are compared in terms of capacity of inter-
pretation of both laminar and turbulent head loss in uniform flow conditions. A large set 
of experiments on a yield plastic fluid (i.e., a water–bentonite mixture) was available, and 
the parameter of Hershel-Bulkley [3] and Hallbom and Klein [8] models were fitted over 
the uniform flow data, in both laminar and turbulent conditions. The integration of the 
velocity profile was used to derive the resistance formulas in laminar flow, while the 
Thomas and Wilson model [34] was used to predict the turbulent flow. Then, an optimi-
zation technique was applied to find the optimal values of the rheological parameters 
minimizing the difference between the measured and predicted mean velocity data. The 
results, in terms of errors in the prediction of the flow behavior, show that the Hallbom 



Fluids 2021, 6, 419 18 of 27 
 

and Klein model [8] outperforms the Herschel-Bulkley model [3] to predict the turbulent 
flow when the laminar data are used to characterize the fluid, as well as to predict the 
laminar flow relying on turbulent data. Moreover, the variability of the Hallbom and Klein 
[8] parameters with respect to the concentration is even smaller than the variability of the 
Herschel-Bulkley [3] parameters, demonstrating a higher consistency of the more recently 
proposed rheological model. 

Finally, a simple case study was considered, modeling the first instance of a dam-
break phenomenon with the aim of highlighting the differences in terms of flow simula-
tion arising from a different rheological modeling of the fluid. The results were presented, 
for both HB and HK rheological models, in terms of fluid depth, mean velocity, shear 
stress, and inclination of the wave tip, by using both the OPL and OPT parameters, in 
laminar and turbulent flow conditions. The high discrepancy between the results of OPT 
for the HB fluid and all other results further proves the well-known inconsistencies of the 
HB model compared to the HK model. The internal consistency of an HK model when 
rheological parameters are obtained by fitting turbulent data (i.e., OPT) allows one to per-
form reliable tests on sediment the mixtures, where experiments in laminar flow condition 
would be instead problematic, due to the sedimentation tendency. 
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Appendix A 
The following figures show the results of OPL (a), OPT (b), OPA (b) with reference 

to the HB model and the HK model, for all values of concentration. Three lines are repre-
sentative of turbulent flow condition, corresponding to the three tested diameters (i.e., D 
= 2.91 mm, D = 18.05 mm, and D = 25.82 mm). In particular, for each plot, the left turbu-
lent line corresponds to the largest diameter. When only two lines are present, these refer 
to the two largest diameters (i.e., D = 25.82 mm and D = 18.05 mm), whereas, in case of 
only one line, this corresponds to the largest diameter (i.e., D = 25.82 mm). 

   
(a) (b)  (c) 

Figure A1. Results of OPL (a), OPT (b), and OPA (c) in HB fluid (c = 0.03). 
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(a) (b) (c) 

Figure A2. Results of OPL (a), OPT (b), and OPA (c) in HK fluid (c = 0.03). 

   
(a) (b) (c) 

Figure A3. Results of OPL (a), OPT (b), and OPA (c) in HB fluid (c = 0.054). 

   
(a) (b) (c) 

Figure A4. Results of OPL (a), OPT (b), and OPA (c) in HK fluid (c = 0.054). 
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(a) (b) (c) 

Figure A5. Results of OPL (a), OPT (b), and OPA (c) in HB fluid (c = 0.075). 

   
(a) (b) (c) 

Figure A6. Results of OPL (a), OPT (b), and OPA (c) in HK fluid (c = 0.075). 

   
(a) (b) (c) 

Figure A7. Results of OPL (a), OPT (b), and OPA (c) in HB fluid (c = 0.089). 
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(a) (b) (c) 

Figure A8. Results of OPL (a), OPT (b), and OPA (c) in HK fluid (c = 0.089). 

   
(a) (b) (c) 

Figure A9. Results of OPL (a), OPT (b), and OPA (c) in HB fluid (c = 0.12). 

   
(a) (b) (c) 

Figure A10. Results of OPL (a), OPT (b), and OPA (c) in HK fluid (c = 0.12). 
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(a) (b) (c) 

Figure A11. Results of OPL (a), OPT (b), and OPA (c) in HB fluid (c = 0.15). 

   
(a) (b) (c) 

Figure A12. Results of OPL (a), OPT (b), and OPA (c) in HK fluid (c = 0.15). 

   
(a) (b) (c) 

Figure A13. Results of OPL (a), OPT (b), and OPA (c) in HB fluid (c = 0.18). 
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(a) (b) (c) 

Figure A14. Results of OPL (a), OPT (b), and OPA (c) in HK fluid (c = 0.18). 

   
(a) (b) (c) 

Figure A15. Results of OPL (a), OPT (b), and OPA (c) in HB fluid (c = 0.21). 

   
(a) (b) (c) 

Figure A16. Results of OPL (a), OPT (b), and OPA (c) in HK fluid (c = 0.21). 
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(a) (b) (c) 

Figure A17. Results of OPL (a), OPT (b), and OPA (c) in HB fluid (c = 0.25). 

   

Figure A18. Results of OPL (a), OPT (b), and OPA (c) in HK fluid (c = 0.25). 

Appendix B 
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Figure A19. Results of HLL method in terms of mean velocity (V) applied to a simple dam-break 
problem by using the rheological parameters obtained by OPL in both HB and HK models for c = 
0.25 in laminar flow condition. 

 
Figure A20. Results of HLL method in terms of mean velocity (V) applied to a simple dam-break 
problem by using the rheological parameters obtained by OPL in both HB and HK models for c = 
0.25 in turbulent flow condition. 

 
Figure A21. Results of HLL method in terms of mean velocity (V) applied to a simple dam-break 
problem by using the rheological parameters obtained by OPT in both HB and HK models for c = 
0.25 in laminar flow condition. 
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Figure A22. Results of HLL method in terms of mean velocity (V) applied to a simple dam-break 
problem by using the rheological parameters obtained by OPT in both HB and HK models for c = 
0.25 in turbulent flow condition. 
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