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Abstract: The method of regularised stokeslets is widely used to model microscale biological propul-
sion. The method is usually implemented with only the single-layer potential, the double-layer
potential being neglected, despite this formulation often not being justified a priori due to nonrigid
surface deformation. We describe a meshless approach enabling the inclusion of the double layer
which is applied to several Stokes flow problems in which neglect of the double layer is not strictly
valid: the drag on a spherical droplet with partial-slip boundary condition, swimming velocity
and rate of working of a force-free spherical squirmer, and trajectory, swimmer-generated flow and
rate of working of undulatory swimmers of varying slenderness. The resistance problem is solved
accurately with modest discretisation on a notebook computer with the inclusion of the double layer
ranging from no-slip to free-slip limits; the neglect of the double-layer potential results in up to
24% error, confirming the importance of the double layer in applications such as nanofluidics, in
which partial slip may occur. The squirming swimmer problem is also solved for both velocity and
rate of working to within a small percent error when the double-layer potential is included, but
the error in the rate of working is above 250% when the double layer is neglected. The undulating
swimmer problem by contrast produces a very similar value of the velocity and rate of working for
both slender and nonslender swimmers, whether or not the double layer is included, which may be
due to the deformation’s ‘locally rigid body’ nature, providing empirical evidence that its neglect
may be reasonable in many problems of interest. The inclusion of the double layer enables us to
confirm robustly that slenderness provides major advantages in efficient motility despite minimal
qualitative changes to the flow field and force distribution.

Keywords: Stokes flow; propulsion; swimming; regularised stokeslets; double-layer; squirmer;
undulating swimmer

MSC: 76Z10; 76D07

1. Introduction

In our contribution to this Special Issue, we discuss the double-layer potential in the
regularised stokeslet boundary integral equation, focussing on the circumstances in which
it can be formally eliminated before describing a method for its ‘meshless’ implementa-
tion in the manner of the almost ubiquitous single-layer regularised stokeslet method.
This approach is then applied to three representative resistance and swimming problems
in microscale biological fluid mechanics in which the double-layer potential may be im-
portant. In the Introduction below, we give a brief overview of the context of the work
before describing the mathematical background to the method of regularised stokeslets
and its computational implementation, also discussing the nearest-neighbor approach that
is used in this manuscript. In Materials and Methods and supporting Appendices, we
describe our implementation of the double-layer potential with a meshless point cloud and
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its application to the problems considered herein. In Results, we discuss the convergence
and efficiency of the method and demonstrate the calculation of flow fields, swimming
velocity/trajectory, and rate of working, focussing on the effect of including or neglecting
the double-layer term in situations in which this is not formally justified. Finally in the
Discussion, the findings are summarised, and potential future applications and areas of
further methodological development are considered.

1.1. Literature Review

Microscale biological flow is typically dominated by viscous forces relative to inertia;
in the absence of non-Newtonian effects, the fluid dynamics may be approximated by the
Stokes flow equations,

−∇p + µ∇2u = 0, ∇ · u = 0, (1)

where u = u(x, t) is fluid velocity, p = p(x, t) is pressure, and µ is dynamic viscosity. In sys-
tems associated with microscale propulsion and pumping, e.g., by cilia and flagella, these
equations are typically accompanied by the no-slip, no-penetration boundary condition
u(X, t) = Ẋ(t), for points X(t) on the boundary. Due to the Stokes flow equations being
linear and having no explicit time dependence, mathematical complexity in microscale
biological flow arises from the shape and movement of the boundaries, for example, the
movement of the cell body through the fluid, beating of cilia and flagella, and peristaltic
contractions of bounding walls.

Prior to 2001, the majority of modeling studies either used local force-drag approxi-
mations [1], slender body theory [2,3], perhaps accompanied by image systems [4], or the
standard boundary element method [5–7]. The latter approach is distinguished by both
accuracy and efficiency; however, the learning curve in their application is steep due to both
the need to compute singular integrals and requirement to generate a ‘true surface mesh’,
i.e., a set of surface points which are assigned to the elements of a surface partitioning.
Methods based on volumetric discretisations (e.g., finite difference/element/volume meth-
ods) have typically been less popular in the field due to the relatively high computational
cost associated with constructing and moving a body-fitted volumetric mesh. A significant
exception is the immersed boundary method [8–10], which exploits a regular discretisation
and moreover enables the solution of the nonlinear equations arising from finite Reynolds
number and viscoelasticity—although much of the application of this method in microscale
flow has been for 2D flow problems rather than fully 3D.

Since 2001, the Method of Regularised Stokeslets, proposed by R. Cortez [11] and
further developed in three dimensions [12,13], has become a popular approach for these
systems due to its ease of implementation, particularly in its original ‘Nyström’ form, which
discretises the boundary integral equation using a single quadrature rule, then applies
collocation at each quadrature point. The method removes the need for a volumetric mesh
as well as the requirements to generate a true surface mesh or evaluate weakly singular
integrals, as would be needed by the standard boundary element method. In practical terms,
it is necessary only to generate a list of points covering the surfaces in the flow, for example,
the bodies and flagella of swimming cells, beating cilia, and epithelial surfaces. The problem
of computing drag on a body undergoing prescribed motion (resistance problem) is then
reduced to inverting a linear system to find a vector of unknown stokeslet strengths (forces)
at each discretisation point. The problem of computing translation and rotation of a body
due to movements prescribed only in a frame moving with the body (swimming problem) can
be expressed similarly as inverting a linear system for the force augmented with additional
unknowns for the velocity and angular velocity and additional constraints on the total
force and moment [14].

Recent examples of the success of the method of regularised stokeslets implemented
via a Nyström discretisation include: elucidating the role of bacteria flagellar polymor-
phism in bundling/unbundling and hence run-and-tumble behaviour [15], estimation of
hydrodynamic forces triggering protist contraction [16], simulating the dynamics of elon-
gated fibres in shear [17,18], modeling of flows due to sperm-templated microrobots [19],
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and modelling eukaryotic flagella synchronisation [20]. Other key examples over the last
two decades include applications to cilia-driven flows [13], flows due to confinement of
flagellated bacteria [21], modeling patchy deposition in filtration of bacteria [22], sperm
motility [23–25], explaining and quantifying the ‘wiggling’ trajectories of multiflagellated
bacteria [26], assessing Stokes flow theory of helical propulsion against experiment [27],
and modeling sperm interaction with epithelium [28]. The above gives a necessarily in-
complete sample but—along with the other articles in this Special Issue—should indicate
the breadth of application and impact of the method. These studies employed a mixture of
geometric representations for swimmers and other biological entities, including particles,
lines, and most commonly, surface discretisations, the latter emphasising the continuing
relevance of the boundary integral equation framework.

The significant advantage of the regularised stokeslet method in implementational
ease does, however, come at an additional computational cost. This issue was clear in
the initial analysis of the method in three dimensions [12], which derived both the linear
dependence of the regularisation error on the regularisation parameter ε and inverse de-
pendence of the quadrature error on this parameter (in Reference [12], the quadrature error
was given as O(ε−3), although this can be improved to O(ε−1) [29]). The reduction of the
regularisation error therefore necessitates the use of more quadrature points, and within
a Nyström discretisation, more degrees of freedom for the unknown force distribution
and hence a larger (dense) linear system. Several strategies have been developed to address
this. Smith [30] applied a combination of constant panel boundary elements, and slender
body theory–style line integrals to the method of regularised stokeslets, removing the
dependence of the force discretisation error and hence linear system size on the regular-
isation parameter, and moreover enabling adaptive quadrature of the stokeslet integral.
Slender body theory and approaches based on regularised stokeslet line integrals have
since been developed in much more depth (to give an example, refs. [31–33]); the boundary
element approach has since found an application to embryonic nodal cilia [34,35], and with
higher order force discretisation, C. elegans swimming [36], phoretic propulsion [37,38],
and bacteria shape evolution [39].

Nevertheless, and particularly for systems in which nonslender bodies play a sig-
nificant role, the boundary element discretisation still requires the construction of a true
mesh, making this approach less technically straightforward than the original Nyström
discretisation. Barrero-Gil [40] described a method based on augmenting the discretisation
of the ‘inner’ integral with additional stokeslet points in order to weaken the dependence
of the error on the regularisation parameter. Smith [41] and Gallagher [42] formulated a
method based on a coarse discretisation for force and finer discretisation for quadrature,
with the force being interpolated from the coarse to fine discretisations by nearest-neighbor
interpolation, leading to the nearest-neighbor regularised stokeslet method. This approach,
analysed in Reference [29], removes the dependence of the linear system size on the reg-
ularisation parameter and moreover (for disjoint force and quadrature discretisations)
weakens the dependence of the quadrature error on the regularisation parameter. The re-
sulting method which is quite simple to implement and analyse, possesses the accuracy
and efficiency necessary to model systems with greater than 100 cilia and surrounding
domain [43], and moreover lends itself to implementation through basic linear algebra
operations, exploiting underlying hardware and software parallelisation [44].

Other key areas of methodological development for the method of regularised stokeslets
include the development of image systems for plane boundaries [13,45,46]; extension to
Brinkman/oscillatory Stokes flow [47], triply [48], doubly [49,50] and singly [51] periodic
boundary conditions; the use of radial basis functions to represent force distributions [52];
improvement to the near-field regularisation error [53], far-field regularisation error [54];
Richardson extrapolation in the regularisation parameter [55]; and perhaps most power-
fully, methods based on kernel-independent fast multipole method [56,57] and treecode [58].
Regularisation at the level of the boundary integral equation itself combined with asymp-
totic corrections (a related but different perspective from regularisation of the equation from
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which the fundamental solution is derived) has been shown to provide highly accurate
results for problems including the near contact of droplets without the need for specialised
quadrature [59,60].

An aspect which has received relatively less attention in the regularised stokeslet
literature is the role of the double-layer potential, which strictly is necessary for the bound-
ary integral representation of any problem in which the boundary motion cannot be
decomposed into rigid body motions. Elimination of the double layer is possible in cer-
tain situations, for example, flows around nonrigid volume-conserving bodies; however, a
modification to the single-layer density is required, which complicates the calculation of
the total force and moment (and solution of swimming problems which have nonzero total
force and moment) and may affect the calculation of the rate of working. Notable excep-
tions include Spagnolie and Lauga’s application of the method of regularised stokeslets
with both single- and double-layer potential to model slip-velocity squirmers interacting
with a plane boundary [61] and Montenegro-Johnson, Lauga and colleagues’ work on both
phoretic [37] and undulating [36] swimmers.

Given that many problems of interest, particularly those involving bending flagella,
undulating cell bodies, effective slip flows produced by cilia [62], and nanofluidics ap-
plications [63] cannot strictly be represented by combinations of rigid body motions, we
continue this line of research in the present manuscript. We describe how to implement the
double-layer potential in the context of the nearest-neighbor regularised stokeslet method,
before testing the method for two problems with known analytical solutions: the calculation
of the drag on a translating sphere with free-slip or partial-slip boundary condition and the
calculation of the translational velocity and rate of working of a slip-velocity spherical
squirmer in an infinite fluid. Finally, we apply the method to undulatory slender and
nonslender swimmers (to assess whether slenderness affects the surface deformation in a
way that influences the importance of the double-layer potential) both in infinite fluid and
between plane boundaries and assess the effect of the neglect of the double-layer potential
on the calculation of rate of working.

In the remainder of the Introduction, we briefly recapitulate the regularised stokeslet
boundary integral equation and the circumstances in which the elimination of the double-
layer potential is formally justified, before describing the methodology for meshless dis-
cretisation of the double-layer potential and some example applications.

1.2. Mathematical Background of Regularised Stokeslets and the Double-Layer Potential

The linearity of Equation (1) enables boundary conditions to be satisfied by taking
discrete sums, line or surface integrals of fundamental solutions. The classical (singular)
stokeslet or Oseen tensor is the solution to

−∇p + µ∇2u + δ(x− y)êj = 0, (2)

∇ · u = 0, (3)

where δ is the three dimensional Dirac delta function and êk is the unit basis vector pointing
in the k-direction. Defining,

Pj(x, y) = 2
xj − yj

|x− y|3 , (4)

Sij(x, y) =
δij

|x− y| +
(xi − yi)(xj − yj)

|x− y|3 , (5)

Tijk(x, y) = −
6(xi − yi)(xj − yj)(xk − yk)

|x− y|5 . (6)

the pair of tensors (Sij, Pj) then provide the solutions u = (8πµ)−1(S1j, S2j, S3j) and
p = (8π)−1Pj to Equation (3), with σij = (8πµ)−1Tijk the corresponding stress.
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The regularised stokeslet [11,12] is the exact solution to the Stokes flow equations with
spatially smoothed point force,

−∇p + µ∇2u + φε(x− y)êj = 0, (7)

∇ · u = 0. (8)

where φε(x) is a family of “blob” functions, which approximates δ(x) as ε → 0 and
k = 1, 2, 3. With the most frequently used choice of

φε(x) =
15ε4

8π(|x|2 + ε2)7/2 , (9)

the regularised stokeslet pressure, velocity and stress fields are defined by

Pε
j (x, y) =

xj − yj

(|x− y|2 + ε2)5/2 (2|x− y|2 + 5ε2), (10)

Sε
ij(x, y) =

δij(|x− y|2 + 2ε2) + (xi − yi)(xj − yj)

(|x− y|2 + ε2)3/2 , (11)

Tε
ijk(x, y) = −

6(xi − yi)(xj − yj)(xk − yk)

(|x− y|2 + ε2)5/2 (12)

−
3ε2[(xi − yi)δjk + (xj − yj)δki + (xk − yk)δij]

(|x− y|2 + ε2)5/2 . (13)

Hence,

p = (8π)−1Pε
j , ui = (8πµ)−1Sε

ij, and σik = Tε
ijk = (8π)−1(−Pε

j δik + µ(∂kSε
ij + ∂iSε

kj))

define the pressure, velocity and stress due to the spatially smoothed point force.
The method of regularised stokeslets is then based on formulating a boundary inte-

gral equation formulated in terms of the near-singular fundamental solutions (10)–(13).
Following [12], a ‘regularised stokeslet version’ of the Lorentz reciprocal theorem can be
derived for any Stokes flow (u, p) and point y,

1
8πµ

∂

∂xk

(
Sε

ij(x, y)σik(x)− µui(x)Tε
ijk(x, y)

)
= uj(x)φε(x− y). (14)

In Equation (14) and throughout, repeated i, j, k indices imply summation over {1, 2, 3}.
Equipped with Equation (14), we now consider Stokes flow in the unbounded three-

dimensional space external to a volume D with smooth, orientable surface ∂D. This volume
could represent, for example, a sedimenting rigid body, a droplet or a swimming cell. We
take D to be topologically open, so that its boundary ∂D ⊂ R3 \D. Define BR to be a ball of
radius R sufficiently large to contain D, and consider the region consisting of the boundary
∂D and exterior volume of fluid which is given by ΩR = BR \ D. Integrating over the
volume ΩR, we have for any point y either exterior to D or on its surface,

1
8πµ

∫∫∫
ΩR

∂

∂xk

(
Sε

ij(x, y)σik(x)− µui(x)Tε
ijk(x, y)

)
dVx =

∫∫∫
ΩR

uj(x)φε(x− y)dVx. (15)

Denoting the outward pointing unit normal to ΩR by n (inward pointing to D on ∂D),
applying the Divergence Theorem, and finally taking the limit as R→ ∞ then yields the
(exact) boundary integral equation
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− 1
8πµ

∫∫
∂D

Sε
ij(x, y) fi(x)dSx −

1
8π

∫∫
∂D

ui(x)Tε
ijk(x, y)nk(x)dSx

=
∫∫∫

R3\D
uj(x)φε(x− y)dVx, (16)

where fi := −σiknk is the traction, i.e., the force per unit area exerted on the body by
the fluid. For the standard singular boundary integral equation, the right-hand side of
Equation (16) would involve a Dirac delta function, thereby evaluting precisely to c(y)uj(y),
where c(y) = 1 if y is interior to the fluid region R3 \ D. In the case that y ∈ D, then this
coefficient is adjusted based on the solid angle exterior pointing into the fluid at y; in the
usual case that the surface is smooth, then c(y) = 1/2.

In the regularised case, the right-hand side of Equation (16) can only be written
approximately in terms of uj(y) and an error which is linear in ε in the vicinity of ∂D
and quadratic otherwise. Given that calculations typically involve boundary collocation,
we use the worst case of linear error throughout, yielding the regularised approximate
boundary integral equation, valid for y ∈ R3 \ D, i.e., on the boundary ∂D or exterior to D,

− 1
8πµ

∫∫
∂D

Sε
ij(x, y) fi(x)dSx︸ ︷︷ ︸

SLPε
j (y; f ;∂D)

− 1
8π

∫∫
∂D

ui(x)Tε
ijk(x, y)nk(x)dSx︸ ︷︷ ︸

DLPε
j (y;u;∂D)

= c(y)uj(y)

+ O(κ̄(y)ε), (17)

where κ̄(y) is the mean curvature of ∂D at y. The dependency on curvature is specific
to the full equation with double layer not eliminated and associated approximation of∫∫∫

R3\D ujφεdV, as opposed to
∫∫∫

R3 ujφεdV (see Reference [38], which extends the analy-
sis of Cortez et al. [12]).

The left-hand sides of Equations (16) and (17) consist of two terms: a surface integral
of regularised stokeslets Sε

ij multiplying the traction, referred to (by analogy with electric
potential theory) as the single-layer potential (SLP), and a surface integral of the regularised
stokeslet stress Tε

ijknk multiplying the surface velocity, referred to as the double-layer potential
(DLP). A similar equation can be derived for situations involving completely or partially
bounded Stokes flow (Appendix A).

The ‘more nearly singular’ (O(ε−2) as x→ y) behaviour of the stress tensor Tε
ijk has

motivated most studies using the method of regularised stokeslets to eliminate this term,
leaving a single-layer equation. There are (at least) two situations in which this elimination
can be mathematically justified through identical arguments to singular boundary integral
theory—one of which involves an important caveat.

Suppose that D is undergoing rigid body motion, equivalent to the flow throughout the
interior and surface D ∪ ∂D being given by ui(x) = Ui + εijkΩjxk where U is velocity and Ω

is angular velocity. Then, the double-layer potential can be simplified as (Appendix B),

DLPε
j (y; u; ∂D) =

∫∫∫
D

uj(x)φε(x− y)dVx, for all y ∈ R3 \ D. (18)

Substituting into Equation (16), we then have, for y on the surface of, or exterior to
the body,

−SLPε
j (y; f ; ∂D) =

∫∫∫
D

ujφε(x− y)dVx +
∫∫∫

R3\D
uj(x)φε(x− y)dVx,

=
∫∫∫

R3
uj(x)φε(x− y)dVx for all y ∈ R3 \ D. (19)

The right-hand side can then be approximated [12] by uj(y) + O(ε) (note the lack of
dependence on κ̄ in this case).
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By similar arguments, Equation (18) can also be approximated, up to the regularisation
error,

DLPε
j (y; u; ∂D) = c(y)uj(y) + O(κ̄(y)ε), for y ∈ ∂D. (20)

This identity, which is an approximate form of a well-established result for the stan-
dard boundary integral equation [64], is useful for solving the swimming problem with the
double-layer potential.

The second situation in which the double-layer potential may be eliminated refers
to bodies which are not necessarily rigid but which do not change volume—for example,
flexible swimming cells or certain models of ciliates involving a surface tangential slip
velocity, i.e., ∫∫

∂D
ui(x)ni(x)dSx = 0. (21)

This condition implies the existence of a (unique) solution to the Stokes flow equations
in the region interior to D, with velocity u∗i (x) and stress tensor σ∗ij(x) satisfying u∗i (y) =
ui(y) for all y ∈ D (a ‘fictitious solution’). Applying Equations (14) and (16) leads to
(Appendix C) the single-layer approximate boundary integral equation,

− SLPε
j (y; q; ∂D) = uj(y), all y ∈ ∂D, (22)

where for brevity here and below the regularisation error associated with the approximation
of the right-hand side by uj(y) is omitted but implied.

The key issue for practical application is that Equation (22) is not formulated in terms
of the physical traction f , which may present difficulties if the total force and moment must
be determined or are part of the specification of the problem. For example, the resistance
problem involves specifying uj(y) for y ∈ ∂D and determining the force and moment,

F :=
∫∫

∂D
f (x)dSx, M :=

∫∫
∂D

x ∧ f (x)dSx. (23)

If the adjusted density q but not the physical traction f is known, then neither F
norM can be determined directly; therefore, the resistance problem cannot in general be
solved from Equation (22) accurately if the body is not undergoing a rigid body motion.
This issue is exhibited in Section 3.1.

The swimming problem involves specifying the force and moment F andM, along
with the surface velocity relative to a body frame moving with an unknown rigid body
motion U + Ω ∧ x and then determining the surface traction f along with U and Ω.
Again, the fact that Equation (A6) involves only q is problematic. In the particular case
F = 0 =M, the characteristic of inertialess and neutrally buoyant swimming, the fictitious
flow stress can be shown to result in zero total force and moment (Appendix D), and hence,
the conditions in terms of the adjusted single-layer density,∫∫

∂D
q(x)dSx = 0,

∫∫
∂D

x ∧ q(x)dSx = 0, (24)

are equivalent to the conditions in terms of the physical density f ,∫∫
∂D

f (x)dSx = 0,
∫∫

∂D
x ∧ f (x)dSx = 0, (25)

The zero-force and moment, volume conserving swimming problem can therefore
be formulated in terms of the single-layer potential only, giving (up to numerical error)
equivalent results for the swimming velocity U and angular velocity Ω—although quanti-
ties derived from f such as the rate of working

∫∫
∂D u · f dS may not in general be given

accurately by the equivalent calculation from q. This issue is evident in the model of the
squirming swimmer (Results Section 3.2).
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1.3. Numerical Discretisation

The final aspect to introduce is the spatial discretisation of the force and quadrature as
typically implemented for the Nyström or nearest-neighbor discretisations. First, consider
the resistance problem, i.e., the calculation of the total force and moment due to rigid body
motion uj(y) = Uj + εjk`Ωky`. From Equation (19), we have (subject to regularisation
error),

− SLPj(y; f ; ∂D) = Uj + ε jk`Ωky` for all y ∈ ∂D. (26)

The Nyström discretisation involves approximating the integral in the single-layer po-
tential by a quadrature rule with abscissae {x[1], . . . , x[N]} and weights {w[1], . . . , w[N]}.
Then, if the surface metric is dS(x[n]), the area associated to each node is given by
A[n] := w[n]dS(x[n]), and hence, Equation (26) has discrete approximation,

− 1
8πµ

N

∑
n=1

Sε
ij(x[n], x[m]) fi(x[n])A[n] = Uj + ε jk`Ωkx`[m], for all m = 1, . . . N. (27)

Denoting Fi[n] := − fk(x[n])A[n] then yields a system of 3N equations in the 3N
unknowns Fi[1], . . . , Fi[N]. The simplicity of Equation (27) and absence of the need for
a true mesh with local geometry, or indeed singular quadratures, constitute significant
practical advantages over the standard boundary integral method.

Nevertheless, this simplicity comes at the cost of the matrix system size depending on
the regularisation parameter. Recall that Equation (19) possesses an error which is linear
in the regularisation parameter. Moreover, it can be shown that the quadrature error of
Equation (27) is O(h2/ε), where h is the quadrature spacing [29]. Therefore, reducing ε
with the aim of reducing the regularisation error then demands a finer spatial discretisation
in order to control the quadrature error. The size of the resulting linear system then grows,
rapidly escalating the computational cost. As discussed above, the strategies to address
this issue include improving the order of the regularisation error [53,55] and boundary
elements/regularised stokeslet segments [30,33].

The approach we focus on is nearest-neighbor interpolation, which preserves the
simple meshless nature of the method of regularised stokeslets while significantly improv-
ing efficiency and accuracy. This method [41,42] utilises coarse force and fine quadrature
discretisations, with nearest-neighbor interpolation being used to project from the fine-to-
coarse discretisation. This approach removes the coupling between the system size and
regularisation parameter, and for nonoverlapping force/quadrature sets, it also removes
the dependence of the quadrature error on the regularisation parameter. Moreover, the
method can be implemented in terms of basic linear algebra operations to exploit associated
hardware and software optimisations [44].

The basis for the nearest-neighbor method is the use of two point cloud discretisations,
one coarse set {x[1], . . . , x[N]} which is sufficient to capture the variation of the traction,
and which dictates the size of the linear system, and another finer quadrature discretisation
set {X[1], . . . , X[Q]}, which has sufficient resolution to capture the rapidly varying kernel
Sε

ij(x, y) for y in the vicinity of x. The slowly varying force per unit area at a quadrature
point f (X[q]) is approximated by its value at the nearest point on the coarse force set
f (x[n̂]); defining ν[q, n̂] = 1 and ν[q, n] = 0 for n 6= n̂, and a similar approximation is made
for the surface metric dS. Hence, the discrete problem takes the slightly modified form,

uj(x[m]) =
1

8πµ

N

∑
n=1

(
Q

∑
q=1

Sε
ij(X[q], x[m])ν[q, n]

)
Fi[n], (28)

where Fi[n] := − fi(x[n])dS(x[n]) can be interpreted as the force on each quadrature
point neighbouring x[n]. The error analysis of this method is given in Reference [29] and
discussed further in Reference [55]; the most important aspects are that with quadrature
spacing hq, the quadrature error is O(h2

q/ε) at collocation points which are contained in the
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quadrature set, and O(h3
q/δ2) at collocation points which have minimum distance δ from

the quadrature set (hence, no asymptotic dependence as ε → 0); the force discretisation
error and hence linear system size have no intrinsic dependence on ε. In the following
section, we focus on the discretisation of the double-layer potential within this framework.

2. Materials and Methods

The additional complications to including the double-layer potential in the method of
regularised stokeslets are:

1. Evaluation of the higher order near-singularity (Tε
ijk = O(1/ε2) for |x− y| → 0).

2. The need to calculate the surface normal n(y) without a true mesh/local geometry.
3. The fact that the surface metric dS(y) must be calculated explicitly for the implemen-

tation of the double-layer term, as opposed to being absorbed into the force density,
as is the case for the single-layer term.

Issue 1. is straightforward to solve, using (the regularised version of) a well-known
technique from the boundary element literature. Equation (18) with the specific choice of
rigid body motion Uj = δjk, Ωj = 0 and y ∈ ∂D yields (up to regularisation error),

1
8π

∫∫
∂D

Tε
ijk(x, y)nk(y)dSx =

∫∫∫
D

δijφε(x− y)dVx = δijc(y), for y ∈ ∂D. (29)

Recall that if ∂D is smooth in the neighborhood of y then c(y) = 1/2. This identity
is a mathematical fact about the double-layer potential that can be exploited to construct
an approximation for the inner quadrature even when the surface motion is not rigid,
as follows: splitting the surface integral into an inner component on ∂Dδ(y) = {x ∈ ∂D :
|x− y| < δ} sufficiently small that the variation in the velocity is negligible, and by an
outer component on ∂D \ ∂Dδ(y), we may approximate the double-layer potential by,

DLPε
j (y; u; ∂D) =

1
8π

∫∫
∂Dδ(y)

ui(x)Tε
ijk(x, y)nk(x)dSx

+
1

8π

∫∫
∂D\∂Dδ(y)

ui(x)Tε
ijk(x, y)nk(x)dSx,

≈ 1
8π

ui(y)
∫∫

∂Dδ(y)
Tε

ijk(x, y)nk(x)dSx (30)

+
1

8π

∫∫
∂D\∂Dδ(y)

ui(x)Tε
ijk(x, y)nk(x)dSx

≈ ui(y)
(

δij

2
− 1

8π

∫∫
∂D\∂Dδ(y)

Tε
ijk(x, y)nk(x)dSx

)
+

1
8π

∫∫
∂D\∂Dδ(x)

ui(x)Tε
ijk(x, y)nk(y)dSx.

Consider the application of the Nyström discretisation, with collocation at y = x[m].
Taking δ as the radius of the part of the surface belonging to x[m], the double-layer operator
evaluated at a collocation point can then be approximated by,

DLPε
j (x[m]; u[·]; ∂D) =

(
δij

2
− 1

8π

N

∑
n=1,n 6=m

Tε
ijk(x[n], x[m])nk(x[n])A[n]

)
ui(x[m])

+
1

8π

N

∑
n=1,n 6=m

Tε
ijk(x[n], x[m])nk(x[n])A[n]uj(x[n]), (31)

where A[n] is the surface metric at x[n] (this term may also be multiplied by a quadrature
weight if a higher-order quadrature rule is used).
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Via the nearest-neighbor discretisation, the double-layer operator can be approximated by,

DLPε
j (x[m]; u[·]; ∂D)

=

(
δij

2
− 1

8π

N

∑
n=1

(
Q

∑
q=1,q 6=m

Tε
ijk(X[q], x[m])ν[q, n]

)
nk(X[q])A[q]

)
uj(x[m]) (32)

+
1

8π

N

∑
n=1

(
Q

∑
q=1,q 6=m

Tε
ijk(X[q], x[m])ν[q, n]nk(X[q])A[q]

)
uj(x[n]).

If evaluating the double-layer potential at any point y 6∈ ∂D, then the simpler approxi-
mation

DLPε
j (x[m]; u[·]; ∂D) =

1
8πµ

N

∑
n=1

Q

∑
q=1

Tε
ijk(X[q], x[m])ν[q, n]nk(X[q])A[q]uj(x[n]) (33)

may be used. We briefly note that in the MATLAB® implementation accompanying this
paper, the identity Tε

ijk(x, y) = −Tε
ijk(y, x) is used, such that matrix rows correspond to

collocation points and matrix columns to quadrature points.
Issues 2 and 3 require an approximate reconstruction of the local geometry from the

quadrature discretisation. Below, we describe a method to accomplish this using principal
component analysis, implemented via the accompanying MATLAB® (Mathworks, Natick,
MA, USA) code that can be applied to any point cloud discretisation.

Given a quadrature discretisation {X[1], . . . , X[Q]}, and any point y ∈ B, the dis-
crete neighborhood of the closest J points to y is denoted NJ(y; B) = {X[q1], . . . , X[qJ ]}.
The choice J = 9 has been found to work in practice and is used for the results in this paper
(Figure 1). Performing principal component analysis on the set {(X[q1]− y), . . . , (X[qJ ]−
y)} yields a triplet of eigenvalues λ1 > λ2 > λ3 and corresponding orthogonal directions
v1, v2, v3, with the first two vectors approximating the tangent space of B at y and the
third vector the normal. These vectors are normalised to produce an approximate local
basis triple. To ensure that the normal direction is consistently inward pointing, at the
discretisation stage, one or more points in the interior of the volume bounded by B are
supplied. Utilising the nearest interior point, the sense of v3 can be determined and, hence,
the inward-pointing normal n(y) = ±v3.

Finally, it is necessary to approximate the surface metric. For a given point X[q], in
the quadrature discretisation, the nearest (nonself) point X[q̄] can be found, generating
a basis vector for the tangent space Xa[q] := X[q̄]− X[q]. Vectors from X[q] to the other
neighboring points are constructed and then projected onto Xa[q]. Finding the neighbor
X[q̌] with the minimum component along this direction, the vector Xb[q] := X[q̌]− X[q]
almost certainly contains a significant component orthogonal to Xa[q]. The surface metric
and normal can then be approximated using a similar formula to the boundary element
method [65],

A[q] ≈ |Xa[q] ∧ Xb[q]|, (34)

n[q] ≈ Xa[q] ∧ Xb[q]
|Xa[q] ∧ Xb[q]|

. (35)

The accuracy of this method in approximating the surface area of a sphere for various
values of point spacing h is shown in Figure 1, showing approximately linear convergence
for each of J = 4, 6, 9.
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J = 4
J = 6
J = 9
J = 12
J = 16

Figure 1. Relative error versus point spacing associated with the calculation of the total surface area
of the sphere via the expression for the metric given in Equation (34), for five choices of local sample
size J = 4, 6, 9, 12, 16.

2.1. Problem 1: Drag on a Translating Sphere with No-Slip, Partial-Slip, or Free-Slip
Boundary Conditions

Consider the problem of calculating the drag force F =
∫∫

B f (x)dSx on a sphere B
translating with unit velocity U = (1, 0, 0)T , with three choices of boundary condition,

N no-slip, no-penetration, i.e., u(x) = U · n for all x ∈ B.
P partial-slip, no-penetration, i.e., u(x) · n(x) = U · n and λ(I − n(x)n(x)) · f (x) = µ(I −

n(x)n(x)) · (u(x)−U) for all x ∈ B.
F free-slip, no-penetration, i.e., u(x) · n(x) = U · n and (I − n(x)n(x)) · f (x) = 0 for all

x ∈ B.

Problems [N] and [F] can be viewed as special cases of problem [P] in the limits as the
slip length λ→ 0 and λ→ ∞, respectively. The solution to problem [N] is well known as
the Stokes law, F = 6πaU where a is the radius of the sphere, and the solution to problem
[F] is F = 4πaU [66]. Problem [P] has a solution [63],

F = 6πa
1 + 2λ/a
1 + 3λ/a

, (36)

which approaches the limits for [N] and [F] as λ→ 0, ∞, respectively.
The resistance problem can be formulated as a second kind Fredholm integral equation

by moving the double-layer potential in Equation (17) across to the right-hand side,

−SLPε
j (y; f ; ∂D) = DLPj(y; u; ∂D) + c(y)uj(y). (37)

For problem [N], the velocity ui(y) = δj1 on ∂D, and so, we formulate the following
problem for the traction f ,

−SLPε
j (y; f ; ∂D) = DLPε

j (y; (1, 0, 0); ∂D) +
δj1

2
= δj1, (38)

for all y ∈ ∂D, the last line following by Equation (20).
For problem [F], only the normal component of surface velocity is known, i.e., ui(x)ni(x) =

δi1ni(x) = n1(x); the system is completed by the requirement that the unknown traction



Fluids 2021, 6, 411 12 of 30

satisfies the free-slip condition fit1
i = 0 = fit2

i . Hence, we have the augmented system (with all
unknowns on the left-hand side),

−SLPε
j (y; f ; ∂D)−

uj(y)
2
−DLPε

j (y; u; ∂D) = 0,

uj(y)nj(y) = n1(y),

f j(y)tα
j (y) = 0, α = 1, 2, (39)

for all y ∈ ∂D. Equation (39) involves solving for both f and u on the surface; the single
and double-layer potentials are discretised as in Equation (32).

Equation (39) can be generalised to provide the following formulation of problem P:

−SLPε
j (y; f ; ∂D)−

uj(y)
2
−DLPε

j (y; u; ∂D) = 0,

uj(y)nj(y) = n1(y),

λ f j(y)tα
j (y) = uj(y)tα

j (y), α = 1, 2, (40)

for all y ∈ ∂D. A key step in the numerical implementation is to utilise the metric dS(X[q])
and nearest-neighbor matrix ν[q, n] in order to relate the Fj[n] (force) unknowns of the
discrete system to the f j(y) (force per unit area) variable of the continuous problem. For
the purposes of comparison, we also evaluate the effect of (without formal justification)
eliminating the double-layer potential, replacing the double-layer term of Equation (40) by
uj(y)/2.

Once the discrete surface force solution F[n] := − f (x[n])A[n] and surface veloc-
ity Us[n] := u(x[n]) have been found for n = 1, . . . , N through numerical solution of
Equation (39), the total drag on the sphere is calculated numerically from the weighted sum,

F =
N

∑
n=1

Q

∑
q=1

ν[q, n]F[n]; (41)

the velocity field at any point y in the fluid exterior to D is calculated from the discrete
surface force and velocity solutions via

uj(y) =
1

8πµ

N

∑
n=1

Q

∑
q=1

Sε
ij(x[n], y)Fi[n]ν[q, n]

− 1
8πµ

N

∑
n=1

Q

∑
q=1

Us
i [q]T

ε
ijk(X[q], y)nk(X[q])dS(X[q]). (42)

2.2. Slip-Velocity Squirmer

The slip-velocity spherical squirmer is one of the canonical models of zero Reynolds
number propulsion [62,67,68]; this model provides a coarse-grained representation of
microorganisms which produce a surface flow due to the action of many beating cilia. By
scaling coordinates so that the radius of the squirmer is 1, we denote the angle relative to
the north pole of the squirmer as Θ(y) (so that 0 6 Θ(y) 6 π) for |y| = 1; we also define
tΘ to be the basis vector in the tangent space pointing toward the north pole. Taking a
single squirming mode, the velocity boundary condition in a frame of reference moving
with the squirmer is,

(uj(y))bfnj(y) = 0, (δij − ni(y)nj(y))(uj(y))bf = sin Θ(y)tΘ
i (y), for all |y| = 1, (43)
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where the superscript ‘bf’ denotes a frame of reference in which the swimmer is stationary,
referred to as the body frame. If the squirmer frame of reference has translational velocity U
and angular velocity Ω about the origin, then

uj(y) = Uj + ε jk`Ωky` + (uj(y))bf. (44)

Because
∫∫

∂D ujnjdS = 0, the double-layer potential can be eliminated in a similar
manner to Equation (26) to provide a single-layer boundary integral equation in terms of
the adjusted density q,

− SLPε
j (y; q; ∂D)−Uj − ε jk`Ωky` = (uj(y))bf. (45)

The left-hand side of the equation is a linear operator on the unknowns q(x), U, and Ω.
As discussed in Appendix D, to determine the swimming velocity U and angular velocity
about the origin Ω, the force- and moment-free conditions can be expressed in terms of q,
as given in Equation (24). Equations (24) and (43)–(45) therefore provide a complete model
from which the swimming velocity can be determined, although the physical density f
and, hence, derived quantities such as the rate of working are not available.

Alternatively, equipped with the double-layer implementation, we may avoid the
elimination of the double layer and work directly with the physical traction f . Again by
making use of (20), the integral equation is replaced by,

− SLPε
j (y; q; ∂D)−

(
Uj + εjk`Ωky`

)
=

(uj(y))bf

2
+ DLPε

j

(
y; ubf; ∂D

)
for all y ∈ ∂D. (46)

Equations (25), (43), (44) and (46) form a complete model for the squirming swimmer
in terms of the physical traction f . Once the traction is computed, the rate of working is
given by the integral,

W f =
∫∫

∂D
uj(y) f j(y)dSy. (47)

An analogous quantity Wq can be computed from the adjusted density for the purpose
of comparison.

The numerical model can be compared directly to the analytical results of Blake [62].
For a single squirming mode,

(uΘ)
bf(y) =

3
2

sin Θ, (48)

the exact swimming velocity and rate of working are given by,

U = (0, 0, 1), W f = 12πµ. (49)

2.3. Undulating Swimmer

The undulating swimmer, resembling a worm or headless eukaryotic flagellum, is
described by an origin X0(t) (in this case, the front tip of the swimmer) and body frame
B(t) = (b1(t), b2(t), b3(t)), where bj = (b1j, b2j, b3j)

T are orthogonal unit vectors. Then, a
point ybf in body frame coordinates has laboratory frame coordinates,

yi(t) = X0
i (t) + bi`ybf

` . (50)

By denoting the translational velocity U = Ẋ0 and angular velocity Ω such that
ḃj = Ω ∧ bj, the kinematics of the swimmer can be expressed by,

ui(y) = Ui + εijkΩj(y` − X0
` ) + bi`ẏbf

i . (51)

The prescribed waveform swimming problem involves specifying a time-varying function
ybf

i (t) at each material point on the surface of the swimmer, hence prescribing the body
frame velocity ẏbf

i . At any instant in time, given the current position X0 and orientation B,
the aim is to solve for (U, Ω, f ).
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To model an undulatory swimmer in an unbounded fluid, the single-layer boundary
integral equation in terms of the adjusted density q is

− SLPε
j (y; q; ∂D)−

(
Uj + ε jk`Ωk(y` − X0

` )
)
= bi`ẏbf

i . (52)

Alternatively, working with the full boundary integral model in terms of the physical
traction f , we have,

− SLPε
j (y; f ; ∂D)−

(
Uj + ε jk`Ωk(y` − X0

` )
)
=

bj`ẏbf
`

2
+ DLPε

j

(
y,B · ẋbf; ∂D

)
. (53)

The notation ẋbf in the final term is chosen intentionally to denote a variable of
integration (as opposed to the free variable ẏbf). Equation (53) can be adapted to include
the effect of stationary boundaries; details are given in Appendix E.

The waveform of the centreline of the cell is prescribed in the body frame; because
the present study is a proof of principle rather than a biologically focussed analysis of any
specific species, we make use of the activated beat of a sperm flagellum by Dresdner and
Katz [69]

ỹ(x̃, t) = (0.1087x̃ + 0.0543) sin(2πx̃− t). (54)

To construct the centreline of the waveform in the body frame, the waveform (x̃, ỹ)
is translated and rotated so that, the first point of the cell is at yc = 0 and the flagellum is
aligned with the ybf

1 -axis.
The centreline waveform is parameterised as yc(s, t) where s ∈ [0, 1] is the arclength;

the normal n̂(s, t) and binormal b̂(s, t) are then constructed from the centreline tangent
t̂ = ∂syc. The surface of the swimmer is then defined by

ybf(s, θ, t) := yc(s, t) + a(s)(cos(θ)n̂(s, t) + sin(θ)b̂(s, t)), (55)

where the thickness function is defined to be

a(s) := a0

(
1− 0.95

[
e−200s2

+ e−200(1−s)2
])

. (56)

Note that due to the use of the arclength parameterisation, the length of the swimmer
is ensured to be constant throughout.

The trajectory of the swimmer is formulated as a pair of ordinary differential equations
for X0(t), b1(t) and b2(t) (with b3(t) := b1(t) ∧ b2(t)),

Ẋ0(t) = U(t), (57)

ḃα(t) = Ω(t) ∧ bα(t), α = 1, 2. (58)

Equations (57) and (58) combined with the initial position and orientation are solved
with the fourth-order Runge–Kutta method with timestep ∆t = 0.02, the inner problem of
finding the instantaneous rates of change U and Ω through the solution of Equations (25)
and (53).

All computations were carried out on a midspecification notebook computer with
IntelR CoreTM i5-1135G7 CPU and 8 GB RAM.

2.4. Rate of Working

The instantaneous rate of working W∗(t) is calculated as Equation (47) using the
physical traction ∗ = f for the full boundary integral model and the adjusted density ∗ = q
for the single-layer model. This quantity is then averaged over one beat cycle to yield,
W̄∗ :=

∫ 1
0 W∗(t)dt.



Fluids 2021, 6, 411 15 of 30

3. Results

In this section, we present computational experiments with and without the inclusion
of the double-layer potential for: (1) the resistance problems for a sphere with no-slip,
free-slip, and partial-slip boundary conditions, comparing results against known analytical
results; (2) the swimming problem for a squirming sphere, calculating the flow field and
comparing the velocity and rate of working against analytical results; (3) undulatory swim-
ming, examining the effect of slenderness on velocity and rate of working, and examining
the effect of nearby plane boundaries on the flow field.

3.1. Resistance Problem with No-Slip, Free-Slip, and Partial-Slip Boundary Conditions

Figure 2 shows the discretisation and computed velocity fields for the resistance problems
[N] and [F] around a translating sphere. While the flow fields are superficially similar, it can
be seen that in the free-slip case, fluid to the left and right of the sphere is dragged downwards
less strongly. Convergence results are given in Appendix F, Figure A1.

Results for the partial-slip resistance problem as a function of slip length λ are given
in Figure 3, showing very close correspondence to the exact solution over five orders
of magnitude (red dots compared with solid blue line). These results also confirm that
unjustified neglect of the double-layer potential for the resistance problem for nonrigid
boundary conditions results in a significant error, which grows as the slip length increases
(black circles compared with solid blue line) to around 24%.

(a) (b)

Figure 2. Collocation points (orange), quadrature points (blue), and flow field (background colour and white arrows) due
to resistance problems around a unit sphere translating with velocity U = (0, 0,−1) calculated with the nearest neighbor
discretisation: (a) no-slip boundary conditions, solved with single-layer formulation (problem 1N); (b) free-slip boundary
conditions, solved with the fully regularised stokeslet boundary integral formulation.
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Figure 3. Solution to resistance problem [P] as a function of slip length λ, comparing computed
results with the full boundary integral Equation (40), single-layer-only equation, and exact solution
(regularisation parameter ε = 0.01, discretisation parameters 7200 DoF, and hq = 0.0333.

3.2. Slip Velocity Squirmer

The flow field for the slip velocity squirmer is shown in Figure 4a; the source dipole
nature of the exact solution is apparent. The walltime required for difference choices of
nearest-neighbor discretisation (DoF and hq) is shown in Figure 4b. The convergence of
both the swimming velocity U and rate of workingW with quadrature spacing is shown
in Appendix F, Figure A2. With 7200 DoF, a relative error in U below 1% is found with
all values of quadrature spacing used, whereas the relative error in W is rather larger,
with values of 1–3% being achievable with hq 6 0.033. Taking these results together, the
results accurate to within a few percent error for both velocity and rate of working can be
computed within around a minute without specialist computing hardware.

With the single-layer-only formulation in terms of the adjusted density q, the velocity
was accurate to within 1.2% of the exact value with the most refined discretisation (7200 DoF
and hq = 0.0167). The calculation of rate of working in terms of q yielded a value of
Wq = 95.8 as compared with the exact value W = 12π = 37.7, a 254% relative error.

(a) (b)

Figure 4. Slip velocity squirmer calculations. (a) Flow field around the slip velocity spherical squirmer. Shown are:
collocation points (orange) and flow field (background colour and white arrows). Results calculated with 7200 degrees of
freedom and hq = 0.0498. The sphere surface is coloured by slip velocity magnitude in the body frame. (b) Walltime for slip
velocity squirming swimmer computation on a notebook computer and its dependence on force discretisation DoF and
quadrature spacing hq.
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3.3. Undulatory Swimmer

The results in this section utilise a discretisation with 324 DoF, and quadrature spac-
ing hq = 0.00245 for the most slender swimmer and hq = 0.00516 for the least slen-
der; computed instantaneous velocity and angular velocity were found to be within 3%
of results with the force and quadrature discretisations four times finer (Appendix G,
Tables A1 and A2). A discretisation of the swimmer showing the outward pointing normal
vector −n(y, t) is given in Figure 5.

Figures 6 and 7 show the velocity fields (white arrows) and stokeslet distributions
(red arrows) for the slender and nonslender undulating swimmers at five time points
during a beat cycle, along with the trajectory of the leading tip of the swimmer shown
relative to the initial position for scale. The velocity field and force distributions are
qualitatively very similar, despite the significant difference in slenderness, exhibiting the
counter-rotating vortices known since the work of Gray [70]. However, the trajectories
differ very significantly in the magnitude of progression per beat, a 68% reduction from
0.050 body lengths per beat to 0.016 body lengths per beat. Further visualisation of the
three dimensional flow field via sections and instantaneous streamlines is given in Figure 8
(slender) and Figure 9 (nonslender). Each panel shows one of four approximately equally
spaced intervals during the beat cycle, with instantaneous streamlines shown to highlight
the fluid motion. The velocity fields along each plane ((x1, x2), (x1, x3), and (x2, x3)) with
associated quiver plots showing direction are projected onto the sides and bottom of each
panel. There is a strong qualitative similarity between the flow fields generated by the
slender and nonslender swimmers at each step in all three plane sections and at each time
point. The vertical sections in particular evidence radial streamlines, consistent with a
stresslet-type flow field. To demonstrate application of the method to the common situation
of inclusion of nearby solid boundaries (as implemented in Appendix E), Figures 10 and 11
show flow fields with stationary solid plane boundaries measuring 2L× 2L equidistant
0.25L above and below the swimmer, with in both cases vortical behaviour being evident
both above and below the body due to boundary effects.

Finally, we consider the calculation of mean rate of working over a full beat cycle,
as shown in Figure 12. From a methodological perspective, comparing the calculation
with the physical potential W̄ f to the single-layer-only calculation with the adjusted
density W̄q yields a remarkably small discrepancy of only 1.6–2.0%. Focussing on physical
interpretation, as the slenderness ratio varies from 0.02 to 0.06, the mean rate of working
varies almost linearly, increasing by 72% from 0.61 to 1.05. Combined with the dramatic
reduction in swimming velocity, the slender swimmer is much more efficient than the
nonslender swimmer.

Figure 5. Discretisationof the undulating swimmer showing outward pointing unit normal −n(y, t);
the swimmer is constructed from Equations (54)–(56) with radius parameter a0 = 0.06 and plotted at
time t = 0.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Undulating slender swimmer, full boundary integral calculation, with maximum radius a0 = 0.02. (a–e) velocity
field on the swimmer and in the fluid at five approximately equally spaced intervals during the beat cycle. (f) Trajectory
of the leading point over four beat cycles (black solid line) and initial discretisation, with force points shown in red and
quadrature points in black.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Undulating nonslender swimmer, full boundary integral calculation, with maximum radius a0 = 0.06.
(a–e) velocity field on the swimmer and in the fluid at five approximately equally spaced intervals during the beat cycle.
(f) Trajectory of the leading point over four beat cycles (black solid line) and initial discretisation, with force points shown
in red and quadrature points in black.
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(a) (b)

(c) (d)

Figure 8. Undulating slender swimmer, full boundary integral calculation, with maximum radius a0 = 0.02. (a–d) velocity
field in the fluid with instantaneous streamlines at four approximately equally spaced intervals during the beat cycle.

(a) (b)

(c) (d)

Figure 9. Undulatingnonslender swimmer, full boundary integral calculation, with maximum radius a0 = 0.06. (a–d) veloc-
ity field in the fluid with instantaneous streamlines at four approximately equally spaced intervals during the beat cycle.
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(a) (b)

(c) (d)

Figure 10. Undulating slender swimmer between solid boundaries, full boundary integral calculation, with maximum
radius a0 = 0.02. (a–d) instantaneous streamlines in the fluid at four approximately equally spaced intervals during the
beat cycle.

(a) (b)

(c) (d)

Figure 11. Undulating nonslender swimmer between solid boundaries, full boundary integral calculation, with maximum
radius a0 = 0.06. (a–d) instantaneous streamlines in the fluid at four approximately equally spaced intervals during the
beat cycle.
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Figure 12. Calculation of time-averaged rate of working for undulatory swimmers of radius
a0 ∈ [0.02, 0.06] in an infinite fluid, comparing the result with what was computed from the single-
layer density onlyWq, and the full boundary integral equation with physical densityW f .

4. Discussion

This manuscript reviewed the derivation of the method of regularised stokeslets,
focussing on the formal justification, or otherwise, of eliminating the double-layer po-
tential, before describing a method based on principal components analysis to enable
its implementation within the meshless framework of both the original implementation
and the nearest-neighbor method. Two test cases with known analytical solutions were
then evaluated: the resistance problem for a translating sphere with no-slip, free-slip,
and partial-slip boundary conditions, and the problem of finding the swimming velocity
and rate of working for a slip velocity squirmer. By taking the double-layer potential
into account, the resistance problem was solved with excellent accuracy and reasonable
efficiency across five orders of magnitude in slip length; omitting the double-layer potential
results in an error which grows with slip length, asymptoting to 24% in the free-slip limit.
The squirming swimmer problem was solved with high accuracy for swimming velocity
(better than 1% error within around a minute of walltime) although showed a slightly
larger error of 1–3% in the calculation of rate of working. The double-layer term was
confirmed to be critical in the calculation of rate of working, with the error being above
250% when the double layer was neglected.

Finally, the method was assessed in the evaluation of the swimming problem for an
undulating worm-like organism, focussing on the effect of slenderness on progressive
velocity and rate of working. The full boundary integral implementation and single-layer-
only implementations differed in predicted values of rate of working by only 1.6–2.0%,
a value comparable to the regularisation and discretisation errors. Increasing from a peak
radius of 0.02 body lengths to 0.06 body lengths, the progressive velocity was reduced
by around 68%, and the mean rate of working increased by 72%, confirming the major
propulsive advantage of slenderness for undulating swimmers. These results follow a
similar trend to the classic boundary element study of Phan-Thien et al. [6], which showed
that for rotating helical flagella attached to a spheroidal cell body, efficiency increased as the
flagellum is made thinner, relative to the cell body. A similar effect has also been reported
in the context of self-motile ribbons, with wider swimmers moving more slowly than
narrow [71]. Given that the inclusion of the double layer incurs additional computational
cost, determining when it may be eliminated is an important question. In stark contrast
to the squirming swimmer case, the neglect of the double-layer potential resulted in a
rather small discrepancy in mean rate of working, on the order of the numerical error.
The latter finding provides evidence that, while not formally justified, the neglect of the
double-layer potential may be acceptable for undulating swimmers such as worms and
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sperm. We postulate that the character of undulating motion—i.e., the relative rotation of
adjacent segments may mean that the swimmer is behaving in a similar way to a collection
of rigid bodies—and hence, arguments for the formal neglect of the double-layer potential
may transfer approximately; the latter may form a topic for future work. This manuscript
also did not assess the role of the regularisation parameter ε and regularisation error; the
effect of reducing ε, utilizing higher order blobs [53], or Richardson extrapolation [55] in
problems involving the double-layer potential with the aim of reducing the regularisation
error may also form a topic for future investigation.

This study focussed on extending the range of application of the regularised stokeslet
method, so that its convenient implementation can be applied reliably to problems in-
volving slip boundary conditions and moreover assessing the effect of neglecting the
double-layer potential for undulating swimmers. The aim is not to supplant the classical
boundary element method in accuracy or efficiency but rather to provide a relatively simple
and accurate approach that avoids the need to generate a true surface mesh or evaluate
singular quadratures. This ability may be particularly relevant when working with bio-
logical data in which geometry can only be extracted with limited precision, but rapid
analysis is valuable. In addition to applications in microscale biological flow, the ability to
accurately and rapidly model flows and bodies with partial-slip boundary conditions may
be valuable in the field of nanofluidics [72]. On the scales of tens of nanometers, object
surface roughness properties, material hydrophobicity, and a range of other phenomena
entail that the no-slip condition is not appropriate and partial slip provides a more realistic
description of the boundary–fluid interface behaviour [73]. Generally, the simulation tools
used in the nanofluidics community are relatively costly particle-based methods such as
molecular dynamics [74] and dissipative particle dynamics [75]. While inherently deter-
ministic, Stokes flow is generally considered to give a valid mean description of fluid flow
down to the 10 nm scale [76] and thereby provides potential advantages in efficiency.

In summary, the method of regularised stokeslets has proved a highly versatile,
accessible, and effective method in microscale biological fluid dynamics. The double-layer
potential can be included in this method without significant additional implementational
complexity, enabling an accurate solution of velocity field, swimming velocity, and mean
rate of working for problems involving surface slip; for undulating swimmers, our results
provide confidence in the neglect of the double-layer potential.
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Appendix A. Derivation of the Regularised Stokeslet Boundary Integral Equation for
Completely or Partially Bounded Domains

We discuss below the modification of Equation (17) for two situations in which the
flow is partially or completely bounded:

1. Flow which is exterior to a volume D but completely enclosed within a bounded
space C ⊂ R3—for example, a cuboid channel {(x1, x2, x3) ∈ R3 | − a < x1 < a,−b <
x2 < b,−c < x3 < c}, with boundary denoted ∂C;

2. Flow in a region P which is ‘partially bounded’; i.e., there are points in P at arbitrarily
large distances from the origin, but there is also a boundary surface ∂P—a commonly
studied example is a plane boundary {(x1, x2, x3) ∈ R3 | x3 = 0} with the flow region
being {(x1, x2, x3) ∈ R3 | x3 > 0}
The boundary integral equations can then be derived as follows: In case 1 (flow

completely bounded), Equation (15) is replaced by the same pair of volume integrals over
C \ D instead of ΩR. Applying the divergence theorem and again defining n to be the unit
normal pointing out of C \ D and traction, fi = −σiknk we find that,

− 1
8πµ

∫∫
∂C∪∂D

Sε
ij(x, y) fi(x)dSx −

1
8π

∫∫
∂C∪∂D

ui(x)Tε
ijk(x, y)nk(x)dSx

= c(y)uj(y) + O(ε), all y ∈ ∂C ∪ ∂D. (A1)

In case 2 (the flow is partially bounded), Equation (15) is modified by integrating over
ΩR ∩ P, leading to

1
8πµ

∫∫
(∂P∩BR)∪(∂BR∩P)∪∂D

(
Sε

ij(x, y)σik(x)− µui(x)Tε
ijk(x, y)

)
nk(x)dSx

=
∫∫∫

ΩR∩P
uj(x)φε(x− y)dVx. (A2)

Again denoting fi = −σiknk and taking the limit as R → ∞, this yields an identical
equation to the first case (with C replaced by P),

− 1
8πµ

∫∫
∂P∪∂D

Sε
ij(x, y) fi(x)dSx −

1
8πµ

∫∫
∂P∪∂D

ui(x)Tε
ijk(x, y)nk(x)dSx

= c(y)uj(y) + O(ε), all y ∈ ∂P ∪ ∂D. (A3)

In the commonly occurring case that the boundary ∂P is stationary, then uj = 0 on the
boundary, meaning that the double-layer potential in Equation (A3) need only be computed
over ∂D.

Appendix B. Elimination of the Double-Layer Potential for Flow around a Rigid Body

Under the circumstances that D is undergoing rigid body motion with velocity U and
angular velocity Ω about the origin so that u = U + Ω ∧ x, the double-layer potential can
be decomposed as,
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DLPε
j (y; u; ∂D) =

1
8π

∫∫
∂D

(Ui + εi`mΩ`xm)Tε
ijk(x, y)nk(x)dSx

=
1

8π

∫∫∫
D

∂

∂xk

[
(Ui + εi`mΩ`xm)Tε

ijk(x, y)
]
dVx,

=
1

8π

∫∫∫
D
(Ui + εi`mΩ`xm)

∂

∂xk
Tε

ijk(x, y)dVx,+
∫∫∫

D
εi`kΩ`Tε

ijkdVx,

=
1

8π

∫∫∫
D

ui
∂

∂xk
Tε

ijk(x, y)dVx,

=
1

8π

∫∫∫
D

uiδijφε(x− y)dVx =
1

8π

∫∫∫
D

ujφε(x− y)dVx,

for all y ∈ R3 \ D, (A4)

the penultimate line using symmetry of Tε
ijk and antisymmetry of εi`k in the indices i and k,

and the final line following from the definition of the regularised stokeslet stress Tε
ijk.

Appendix C. Elimination of the Double-Layer Potential for Flow around a Volume
Conserving Body

The velocity and stress field pair (u∗i , σ∗ij) satisfying u∗ = u on ∂D is referred to as a
fictitious solution because the interior of the physical object represented by D does not, in
general, consist of fluid. Nevertheless, this mathematical solution satisfies Equation (14),
which can then be integrated over the volume D to yield

1
8πµ

∫∫∫
D

∂

∂xk

(
Sε

ij(x, y)σ∗ik(x)− µu∗i (x)Tε
ijk(x, y)

)
dVx =

∫∫∫
D

u∗j (x)φε(x− y)dVx, (A5)

for all y on the surface of or exterior to D. Applying the divergence theorem, noting u∗i = ui
on ∂D and denoting f ∗i := −σ∗ijnj, then yields

1
8πµ

∫∫
∂D

Sε
ij(x, y) f ∗i (x)dSx +

1
8π

∫∫
∂D

ui(x)Tε
ijk(x, y)nk(x)dSx =

∫∫∫
D

uj(x)φε(x− y)dVx. (A6)

The change in signs relative to Equation (16) is due to the fact that n points out of D
and into R3 \ D. Adding Equations (16) and (A6) gives

− 1
8πµ

∫∫
∂D

Sε
ij(x, y) ( fi(x)− f ∗i (x))︸ ︷︷ ︸

qi(x)

dSx =
∫∫∫

R3
uj(x)φε(x− y)dVx, (A7)

for all y on the surface of or exterior to D. Denoting qi(x) := fi(x) − f ∗i (x) leads to
Equation (22).

Appendix D. Equivalency of the Physical and Adjusted Force and Moment Conditions
for the Force and Moment-Free Volume Conserving Swimming Problem

The discussion below is a modified version of that given for a related boundary integral
problem by Ishimoto and Gaffney [77]. In the particular case F = 0 =M, characteristic
of inertialess and neutrally buoyant swimming and in the absence of externally applied
forces, we have that the stress tensor σ∗ij(x) satisfies the Stokes flow equations with zero
forcing term; therefore,∫∫

∂D
f ∗i (x)dSx =

∫∫
∂D

σ∗ij(x)nj(x)dSx =
∫∫∫

D

∂

∂xj
σ∗ij(x)dVx = 0. (A8)
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The total moment of the fictitious stress is∫∫
∂D

εijkxjσ
∗
k`(x)n`(x)dSx = εijk

∫∫∫
∂D

∂

∂x`

(
xjσ
∗
k`
(
x))dVx

= εijk

∫∫∫
∂D

(
δj`σ

∗
k`(x) + xj

∂σ∗k`
∂x`

)
dVx

= εijk

∫∫∫
∂D

(
σ∗kj(x) + xj

∂σ∗k`
∂x`

)
dVx

= 0, (A9)

the first term being zero due to involving the product of an antisymmetric and symmetric
tensor (in j, k), and the second term being zero due σ∗k` being the stress tensor of a force-free
Stokes flow. Equations (A8) and (A9) show that the zero force and moment conditions are
equivalent whether applied to the physical traction f or adjusted traction q := f − f ∗.

Appendix E. Undulating Swimmer Model in the Presence of a Boundary

In the commonly occurring situation that there are stationary boundaries in the vicinity
of the swimmer, and with the assumption that the distance between the boundary and
swimmer is greater than Rc defined above, the flow equations are modified according to
Equations (A1) and (A3), with u = 0 on the boundary ∂P (or ∂C),

− SLPε
j (y; f ; ∂D)− SLPε

j (y; f ; ∂P)−
(

Uj + ε jk`Ωkybf
`

)
=

bj`ẏbf
`

2
+ DLPε

j

(
y,B · ẋbf; ∂D

)
, for y ∈ ∂D, (A10)

and − SLPε
j (y; f ; ∂D)− SLPε

j (y; f ; ∂P) = DLPε
j

(
y,B · ẋbf; ∂D

)
, for y ∈ ∂P. (A11)

Appendix F. Convergence Tests for the Resistance and Squirming Swimmer Problems

For the resistance problems [N] and [F], comparing the calculated drag against the
known analytical solutions of 6π and 4π, respectively, shows convergence clearly below a
relative error of 1% with 7200 degrees of freedom and hq = 0.02498 (Figure A1). Further
convergence would also require reduction in the regularisation and traction discretisation
error. For the slip velocity swimming problem, results are found to be accurate to within
1% with 7200 degrees of freedom for all quadrature spacings hq 6 0.19. The calculation
of the rate of working is however more error prone, with all results exceeding 1% percent
error; accuracy within 3% is found with hq 6 0.033.

(a) (b)
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10-3

10-2

10-1

Figure A1. Numerical convergence of the resistance problem with quadrature spacing hq at fixed force discretisation
3N = 7200, calculated with the nearest-neighbor discretisation and the full regularised stokeslet boundary integral
formulation with (a) no-slip condition and (b) free-slip condition.
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Figure A2. Numerical convergence of the swimming problem with the free-slip boundary condition, calculated with the
nearest-neighbor discretisation and the full regularised stokeslet boundary integral formulation. (a,b) relative error in U,W
at fixed force degrees of freedom 3N = 7200 and varied quadrature spacing hq.

Appendix G. Convergence Test for the Undulatory Swimming Problem

The convergence of the solution of the swimming problem was tested instantaneously
at the midpoint of the beat cycle, for radii a0 = 0.02, 0.06, and three discretisation refinement
levels, and regularisation parameter ε = 0.01 as shown in Tables A1 and A2. The lowest
level of refinement produces results to within 3% of the highest level of refinement for each
component. These results provide evidence of robustness of instantaneous, and averaged-
instantaneous results to within a few percent, although longer timescale predictions of cell
trajectories may be prone to larger accumulated errors.

Table A1. Convergence of the numerical solution of the swimming problem for three discretisa-
tion levels, for the most slender swimmer with a0 = 0.02.

DoF hq U Ω

324 0.00938 (−0.15495, 0.35808, 0.00000) (0.00106, 0.00016, 0.65005)
1284 0.00484 (−0.15731, 0.35873, 0.00008) (0.00024, 0.00014, 0.64233)
5112 0.00245 (−0.15777, 0.36000, 0.00007) (0.00011, 0.00027, 0.63180)

Table A2. Convergence of the numerical solution of the swimming problem for three discretisa-
tion levels, for the least slender swimmer with a0 = 0.06.

DoF hq U Ω

324 0.01975 (−0.10700, 0.38590, 0.00023) (0.00093, 0.00080, 0.62631)
1284 0.01018 (−0.10424, 0.38616, 0.00004) (0.00004, 0.00008, 0.62500)
5112 0.00516 (−0.10402, 0.38621, 0.00004) (0.00001, 0.00014, 0.62060)
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