
fluids

Tutorial

A CFD Tutorial in Julia: Introduction to Compressible Laminar
Boundary-Layer Flows

Furkan Oz * and Kursat Kara

����������
�������

Citation: Oz, F.; Kara, K. A CFD

Tutorial in Julia: Introduction to

Compressible Laminar Boundary-

Layer Flows. Fluids 2021, 6, 400.

https://doi.org/10.3390/fluids

6110400

Academic Editors: Laura A. Miller,

Nicholas Battista, Amy Buchmann

and Antonis Anastasiou

Received: 13 October 2021

Accepted: 2 November 2021

Published: 5 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA;
kursat.kara@okstate.edu
* Correspondence: foz@okstate.edu

Abstract: A boundary-layer is a thin fluid layer near a solid surface, and viscous effects dominate it.
The laminar boundary-layer calculations appear in many aerodynamics problems, including skin
friction drag, flow separation, and aerodynamic heating. A student must understand the flow physics
and the numerical implementation to conduct successful simulations in advanced undergraduate-
and graduate-level fluid dynamics/aerodynamics courses. Numerical simulations require writing
computer codes. Therefore, choosing a fast and user-friendly programming language is essential to
reduce code development and simulation times. Julia is a new programming language that combines
performance and productivity. The present study derived the compressible Blasius equations from
Navier–Stokes equations and numerically solved the resulting equations using the Julia programming
language. The fourth-order Runge–Kutta method is used for the numerical discretization, and
Newton’s iteration method is employed to calculate the missing boundary condition. In addition,
Burgers’, heat, and compressible Blasius equations are solved both in Julia and MATLAB. The runtime
comparison showed that Julia with f or loops is 2.5 to 120 times faster than MATLAB. We also released
the Julia codes on our GitHub page to shorten the learning curve for interested readers.

Keywords: CFD; boundary-layer; compressible flow; Julia; MATLAB; similarity solution

1. Introduction

Until the 19th century, scientists neglected the effects of viscosity in their hydrody-
namic and aerodynamic calculations using potential flow theory. However, this assumption
led to a contradiction between theoretical predictions and experimental measurements of
drag force acting on a moving body, now known as the d’Alembert paradox [1]. Later, a
revolutionary boundary-layer concept is introduced [2,3]. In this concept, the fluid flow
over a surface is divided into two regions by the boundary-layer edge: an area between
the surface and the boundary-layer edge dominated by the viscous effects and a region
outside the boundary-layer edge where the viscous effects can be neglected. It enables a
significant simplification of full Navier–Stokes equations.

The boundary-layer theory was first presented by Prandtl [4] in 1904, and it provides
the solutions of velocity and temperature profiles within the boundary-layer by using
approximations. One can obtain Blasius [5,6], Falkner–Skan [7], and compressible Falkner–
Skan [2,8] solutions by using this approach. Researchers extensively use these solutions
to validate the computational fluid dynamics (CFD) simulations. Moreover, in a CFD
simulation, one can calculate the boundary-layer thickness in advance to estimate the
required grid parameters to resolve the boundary-layer region. Understanding the fun-
damentals of boundary-layer theory is critical for engineers to solve today’s aerodynamic
design challenges.

It may be challenging to fully understand the fundamentals of the boundary-layer
theory in undergraduate- and graduate-level boundary-layer courses. Most of the time,
books skip or briefly mention some steps in the derivation of a system of equations.

Fluids 2021, 6, 400. https://doi.org/10.3390/fluids6110400 https://www.mdpi.com/journal/fluids

https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0002-6583-1724
https://orcid.org/0000-0002-2788-0234
https://doi.org/10.3390/fluids6110400
https://doi.org/10.3390/fluids6110400
https://doi.org/10.3390/fluids6110400
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fluids6110400
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids6110400?type=check_update&version=2

Fluids 2021, 6, 400 2 of 21

Additionally, instructors are forced to leave the details of derivations to students due to
the limited lecture time. The steps that are skipped may become a challenge for students.
Moreover, the derived equations usually do not have an analytical solution; therefore, they
must be solved using numerical methods. Students or engineers who do not have adequate
experience in the subject may struggle to understand the details of the topics because of
the blanks in the process. A tutorial of step-by-step derivation and implementation in
the computer environment may help students to fill the blanks. Moreover, researchers
from another field may utilize the code and/or the simple explanation of the topic in their
research. For the coding part, there are several available coding languages extensively used
in scientific community, such as Fortran [9], Python [10], C/C++ [11], and MATLAB [12].
However, Julia [13] may be another alternative for students to write high-level, generic
code that resembles mathematical formulas. It is a relatively new, fast, and dynamic coding
language that focuses on productivity. It is trying to fill the gap between high-performance
languages, such as Fortran and C/C++, and user-friendly languages, such as Python and
MATLAB. Students tend to use user-friendly languages for their coursework and simple
problems; however, in the industry, it is crucial to have a fast solver. In this gap, Julia
provides easy syntax, as Python and MATLAB, and a fast performance, as Fortran and
C/C++. This makes Julia a great choice for researchers due to the ability to combine
high-performance with productivity. Although there are some tutorial papers and modules
developed in other languages [14–17], the current number of publications is not enough to
gain a thorough understanding of the Julia language in CFD [18,19].

In this tutorial paper, compressible Blasius equation and energy equation are derived
from scratch and implemented in the Julia environment. The fourth-order Runge–Kutta
method is employed to solve the final differential equations and Newton’s iteration method
is used for the missing boundary condition. Solutions obtained by the code are validated
with Iyer’s [20] BL2D boundary-layer solver which is used in NASA’s well-known com-
pressible boundary-layer stability solver Langley Stability and Transition Analysis Code
(LASTRAC) [21]. The derivation details with the numerical implementation will guide
students to understand the compressible laminar boundary-layer concept better. It will
be easier for them to solve more complex problems with their own codes. Figure 1 illus-
trates the visual abstract of the paper, which gives the main ideas of the present paper.
Additionally, Burger’s, heat, and compressible Blasius equations solution times obtained
by Julia and MATLAB solvers are compared with each other. We make all these codes
available on GitHub to shorten the learning curve. We provide the GitHub link of the codes,
installation instructions, and required packages in Appendix A. Advanced boundary-layer
topics are beyond the scope of this paper, interested readers are referred to additional
references [22–25] for subsonic boundary-layer transition, references [26–34] for super-
sonic/hypersonic boundary-layer transition, and references [35–37] for flow separation.
The other research studies where boundary-layer flow is involved are presented in the
references [38–43].

Fluids 2021, 6, 400 3 of 21

Figure 1. The visual abstract of the present paper which is mainly designed around 3 major points. Major points are
further divided into smaller points which correspond to purposes/ideas of the particular major point. Each major point is
connected to one another, which makes them complete.

2. Compressible Laminar Boundary-Layer

Compressibility effect in the boundary-layer requires additional calculations. Con-
stant density assumption in incompressible speeds is no longer valid for the compressible
boundary-layer. In compressible speeds, temperature and density change within the
boundary-layer. It is crucial to capture the velocity, temperature and density variations in
the boundary-layer to obtain accurate simulation results. One can estimate the number
of element required to resolve the boundary-layer in the CFD simulation by using the
boundary-layer theory. Compressible Blasius is also widely used for CFD validations in
high-speed flows. In this section, compressible Blasius equations will be derived from
scratch and implemented in the Julia environment. The contribution of this paper is
employing the Julia language. The equations used in this paper are already in the litera-
ture [2,44]. The manuscript may enable students to adopt the programming language with
easily and available GitHub codes, which may shorten the learning curve.

2.1. Compressible Blasius Equations

Incompressible Blasius solution is a similarity solution for a flat plate. The assumptions
for the incompressible Blasius equations are given in our previous work [19]; interested
readers can check the details from there. In the compressible region, the temperature effects
must be taken into account for an accurate solution. In the incompressible region, the
temperature and density changes are small enough to be neglected. In the compressible
region, the temperature can increase drastically as a result; density decreases within the
boundary-layer. For example, the temperature on the solid wall can reach 7 times the
freestream temperature in Mach 6 flow over a wedge. If the freestream temperature is
300 K, the wall temperature will be around 2100 K. In order to compare the quantity,

Fluids 2021, 6, 400 4 of 21

the melting point of titanium is around 1941 K [45]. This problem is still a challenge for
aerospace applications in which high Mach numbers are involved.

The compressible Blasius equations can be derived from the compressible Navier–
Stokes equations, which can be expressed in two spatial dimensions as:

∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρv)

∂y
=0 (1)

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
=− ∂p

∂x
+

∂

∂x

[
2µ

∂u
∂x

+ λ

(
∂u
∂x

+
∂v
∂y

)]
+

∂

∂y

[
µ

(
∂u
∂y

+
∂v
∂x

)]
(2)

ρ

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

)
=− ∂p

∂y
+

∂

∂x

[
µ

(
∂v
∂x

+
∂u
∂y

)]
+

∂

∂y

[
2µ

∂v
∂y

+ λ

(
∂u
∂x

+
∂v
∂y

)]
(3)

ρcp

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

)
=− u

∂p
∂x
− v

∂p
∂y

+
∂

∂x

(
k

∂T
∂x

)
+

∂

∂y

(
k

∂T
∂y

)
+ Φ, (4)

where ρ is the density, u and v are the velocities in x- and y- directions, p is the pressure, µ
is the dynamic viscosity, λ is the second viscosity coefficient, k is the thermal conductivity,
T is the temperature, cp is the specific heat at constant pressure, and Φ is the dissipation
function, which can be written as:

Φ = µ

[
2
(

∂u
∂x

)2
+ 2
(

∂v
∂y

)2
+

(
∂u
∂x

+
∂v
∂y

)2
]
+ λ

(
∂u
∂x

+
∂v
∂y

)2
. (5)

In order to obtain the boundary-layer equations, dimensional analysis is required to
neglect the variables that have smaller orders than others. The flat plate boundary-layer
development is illustrated in Figure 2. In this flow, u velocity is related to freestream
velocity and the order of magnitude is one. The x is related to plate length, so its order
of magnitude is also one. The y distance is related to boundary-layer thickness, so it
is in the order of δ which is the boundary-layer thickness. The density, ρ, is related to
freestream density so its order of magnitude is also one. The magnitude of the v velocity
can be calculated from the continuity equation, Equation (1). In order to get zero from
this equation, all variables must be in the same order so v is in the order of δ as a result
of this, ∂(ρv)

∂y = O(1). When the magnitude analysis is completed in the same manner, the
boundary-layer equations can be obtained. It has to be noted that dynamic viscosity is
in the order of δ2, pressure and temperature are in the order of one. The specific heat at
constant pressure is in the order of one. The second viscosity coefficient, λ, can be taken as
−2/3µ because of Stokes’ hypothesis. Once the order of magnitude is obtained for each of
the terms, some of the terms can be neglected because δ� 1. The final system of equations
in steady-state condition (∂

∂t = 0) will be:

∂(ρu)
∂x

+
∂(ρv)

∂y
=0 (6)

ρ

(
u

∂u
∂x

+ v
∂u
∂y

)
=− ∂p

∂x
+

∂

∂y

(
µ

∂u
∂y

)
(7)

∂p
∂y

=0 (8)

ρcp

(
u

∂T
∂x

+ v
∂T
∂y

)
=− u

∂p
∂x

+
∂

∂y

(
k

∂T
∂y

)
+ µ

(
∂u
∂y

)2
. (9)

Fluids 2021, 6, 400 5 of 21

Figure 2. Schematic description of the flow over a flat plate. The red dashed line corresponds to boundary-layer edge.
The boundary-layer velocity profile is illustrated with a blue line. The black dot corresponds to the boundary-layer edge
at that station. The density, temperature, and velocity at the boundary-layer edge are ρe, Te, and ue, respectively. The
boundary-layer thickness is defined with δ(x), which is the function of x.

Equation (7) can be expressed at the boundary-layer edge as:

ρue
∂ue

∂x
= −∂pe

∂x
. (10)

The variables are changing from the solid surface up to the boundary-layer edge. At
the boundary-layer edge, they reach to freestream value for the corresponding variable
and remain constant. The velocity change in the y-direction at the boundary-layer edge
is zero (∂u

∂y |y=δ = 0), because it is constant at boundary-layer edge. Equation (8) indicates
that the pressure gradient in the y-direction is zero, so pressure at the boundary-layer edge
equals the pressure within the boundary-layer (pe = p). Equation (10) becomes:

ρue
∂ue

∂x
= −∂p

∂x
. (11)

The velocity at the boundary-layer edge is equal to freestream velocity, which is
constant in x-direction for a flat plate. In other words, edge velocity gradient in x-direction
is zero (∂ue

∂x = 0). If the equation of state is used to obtain the ratio of density and
temperature as:

p =ρRT (12)

pe =ρeRTe, (13)

where R is the gas constant. It is known that p = pe, so ρT = ρeTe. The final system of
equations is:

∂(ρu)
∂x

+
∂(ρv)

∂y
=0 (14)

ρ

(
u

∂u
∂x

+ v
∂u
∂y

)
=

∂

∂y

(
µ

∂u
∂y

)
(15)

∂p
∂y

=0 (16)

ρcp

(
u

∂T
∂x

+ v
∂T
∂y

)
=

∂

∂y

(
k

∂T
∂y

)
+ µ

(
∂u
∂y

)2
, (17)

where Te
T = ρ

ρe
. At this point, a similarity parameter can be introduced to the system to

obtain a similarity solution [46]. The similarity parameter, η, can be defined as:

η =
ueρe√

2s

∫ y

0

Te

T
dy, (18)

Fluids 2021, 6, 400 6 of 21

where s = µeρeuex. Let’s assume that the stream function is

ψ =
√

2s f (η). (19)

The u and v velocities can be calculated from the stream function as:

u =
1
ρ

∂ψ

∂y
, v = −1

ρ

∂ψ

∂x
(20)

In this step, the variables in Equation (15), u, v, ∂u
∂x , ∂u

∂y , and ∂
∂y

(
µ ∂u

∂y

)
can be calculated.

The first derivative of η with respect to y and the first derivative of s with respect to x will
be required for the chain rule.

s =µeρeuex (21)
ds
dx

=µeρeue (22)

η =
ueρe√

2s

∫ y

0

Te

T
dy (23)

∂η

∂y
=

ueρ√
2s

. (24)

It is better to note that, in ∂η
∂y calculation, Te

T = ρ
ρe

relation is used. The u velocity can
be calculated as:

u =
1
ρ

∂ψ

∂y
(25)

=
1
ρ

∂ψ

∂η

∂η

∂y
(26)

=
1
ρ

(√
2s

d f
dη

)
ueρ√

2s
(27)

= f ′ue (28)

The same procedure can be applied for v velocity as:

v =− 1
ρ

∂ψ

∂x
(29)

=− 1
ρ

(
∂ψ

∂s
∂s
∂x

+
∂ψ

∂η

∂η

∂x

)
(30)

=− 1
ρ

[(
1

2
√

2s
2 f
)
(µeρeue) +

(√
2s f ′

)(∂η

∂x

)]
(31)

=− 1
ρ

[(
1√
2s

f µeρeue

)
+

(√
2s f ′

∂η

∂x

)]
. (32)

Fluids 2021, 6, 400 7 of 21

Once u velocity is obtained, the derivatives with respect to x and y can be calculated as:

∂u
∂y

=
∂u
∂η

∂η

∂y
(33)

=
u2

e ρ√
2s

f ′′ (34)

∂

∂y

(
µ

∂u
∂y

)
=

∂

∂η

(
µ

∂u
∂y

)
∂η

∂y
(35)

=
∂

∂η

(
µ

u2
e ρ√
2s

f ′′
)

ueρ√
2s

(36)

=
∂

∂η

(
µρ f ′′

)u3
e ρ

2s
(37)

∂u
∂x

=
∂u
∂η

∂η

∂x
(38)

=
∂(ue f ′)

∂η

∂η

∂x
(39)

=ue f ′′
∂η

∂x
. (40)

All terms in Equation (15) are known. If the above terms are substituted into Equation (15)
and the necessary simplifications are done, the final equation will be:

∂

∂η

(
f ′′

ρ

ρe

µ

µe

)
+ f f ′′ = 0. (41)

It has to be noted that if ρ = ρe and µ = µe, in other words, if the flow is incompressible,
Equation (41) becomes an incompressible Blasius equation (f ′′′ + f f ′′ = 0). Equation (41)
can be further simplified as:

ρ

ρe

µ

µe
f ′′′ + f ′′

∂

∂η

(
ρ

ρe

µ

µe

)
+ f ′′ f =0 (42)

f ′′′ +
ρ̄

µ̄

∂

∂η

(
µ̄

ρ̄

)
f ′′ +

ρ̄

µ̄
f f ′′ =0, (43)

where µ̄ = µ
µe

and ρ̄ = ρe
ρ = T

Te
. The momentum equation of the compressible Blasius

equations is obtained in Equation (42). The energy equation of the compressible Blasius
equations can be obtained with the same procedure. First of all, ∂T

∂x , ∂T
∂y , and ∂

∂y

(
k ∂T

∂y

)
have

to be calculated. These terms can be calculated as:

∂T
∂x

=
∂T
∂η

∂η

∂x
(44)

=Teρ̄′
∂η

∂x
(45)

∂T
∂x

=
∂T
∂η

∂η

∂y
(46)

=Teρ̄′
ueρ√

2s
(47)

∂

∂y

(
k

∂T
∂y

)
=

∂

∂η

(
k

∂T
∂y

)
∂η

∂y
(48)

=
∂

∂η

(
kTeρ̄′

ueρ√
2s

)
ueρ√

2s
(49)

=
Teu2

e ρ

2s
∂(kρρ̄)

∂η
. (50)

Fluids 2021, 6, 400 8 of 21

When these terms are substituted into Equation (17), the new equation will be:

ρcp(ue f ′)
(

Teρ′
∂η

∂x

)
+ ρcp

−1
ρ

(
1√
2s

f µeρeue +
√

2s f ′
∂η

∂x

)(
Teρ̄′

ueρ√
2s

)
=

Teu2
e ρ

2s
∂(kρρ̄′)

∂η
+ µ

(
ρu2

e√
2s

f ′′
)2

. (51)

Equation (51) can be simplified by dividing it with ρµcp, substituting Prandtl number
into the equation where Prandtl number Pr =

cpµ
k and multiplying with Prρ̄

µ̄ . The final
equation will be:

ρ̄′′ +
ρ̄

µ̄
ρ̄′

∂

∂η

(
µ̄

ρ̄

)
+

Pr
µ̄

ρ̄ f ρ̄′ + (γ− 1)PrM2
e f ′′2 = 0, (52)

where cp = γ
γ−1 R, M = ue

ae
, and ae =

√
γRTe. In the final system of equations, the µ̄ can be

calculated from Sutherland Viscosity Law [47]. The dimensional viscosity function is:

µ =
c1T3/2

T + c2
, (53)

where c1 = 1.458× 10−6 kg
ms
√

K
and c2 = 110.4 K. The µ̄ is:

µ̄ =
c1T3/2

T + c2

Te + c2

c1T3/2
e

(54)

=

(
T
Te

)3/2 1 + c2
Te

T
Te

+ c2
Te

(55)

=ρ̄3/2 1 + c2
Te

ρ̄ + c2
Te

. (56)

The derivative of the viscosity is also required. The derivative terms can be calculated as:

∂

∂η

(
µ̄

ρ̄

)
=

(
1 +

c2

Te

) ρ̄

2ρ̄1/2

ρ̄ + c2
Te

− ρ̄′ρ̄3/2(
ρ̄ + c2

Te

)2

. (57)

The final system of equations is:

f ′′′ +
ρ̄

µ̄

∂

∂η

(
µ̄

ρ̄

)
f ′′ +

ρ̄

µ̄
f f ′′ =0 (58)

ρ̄′′ + ρ̄′
ρ̄

µ̄

∂

∂η

(
µ̄

ρ̄

)
+ Pr

ρ̄

µ̄
f ρ̄′ + (γ− 1)PrM2

e f ′′2 =0. (59)

It has to be emphasized that ρ̄ is a function of η and the final system of equations is
coupled, so they have to be solved together. The boundary conditions of the system for an
adiabatic system are:

η −→ ∞ f ′ = 1 (60)

η = 0 f = f ′ = 0 (61)

η −→ ∞ ρ̄ = 1 (62)

η = 0 ρ̄′ = 0. (63)

Fluids 2021, 6, 400 9 of 21

The boundary condition for the isothermal wall depends on the wall temperature.
For example, if the wall temperature equals the boundary-layer edge temperature, it will
be ρ̄ = 1, and it will be replaced with the last boundary condition of the system. In the
adiabatic boundary condition, the derivative of the temperature with respect to wall-normal
direction will be 0. During the numerical procedures, the difference will be emphasized
one more time.

2.2. Numerical Procedure

In this section, the compressible Blasius equation will be solved with the fourth-order
Runge–Kutta method [48] and Newton’s iteration method [49]. Different methods can be
used for this problem; however, we used Runge–Kutta and Newton’s method because
of their extensive usage in the literature and accuracy. To start the numerical procedure,
high-order differential equations can be reduced to the first-order differential equations as:

f =y1 (64)

f ′ =y2 (65)

f ′′ =y3 (66)

ρ̄ =y4 (67)

ρ̄′ =y5 (68)

if Equations (64)–(68) are substituted into Equations (58) and (59), the final version of these
equations can be written as:

f ′′′ =− y3

(
y5

2y4
− y5

y4 +
c2
Te

)
− y1y3

(
y4 +

c2
Te√

y4(1 +
c2
Te
)

)
(69)

ρ̄′′ =− y2
5

(
1

2y4
− 1

y4 +
c2
Te

)
− Pr

y1y5√
y4

y4 +
c2
Te

1 + c2
Te

− (γ− 1)PrM2
e y2

3. (70)

The final system of equations can be written in the matrix form as:


y1
y2
y3
y4
y5


′

=



y2
y3

−y3

(
y5

2y4
− y5

y4+
c2
Te

)
− y1y3

(
y4+

c2
Te√

y4(1+
c2
Te)

)
y5

−y2
5

(
1

2y4
− 1

y4+
c2
Te

)
− Pr y1y5√

y4

y4+
c2
Te

1+ c2
Te
− (γ− 1)PrM2

e y2
3


. (71)

The adiabatic boundary conditions for the system are:

f (η = 0) =0⇒ y1(η = 0) = 0 (72)

f ′(η = 0) =0⇒ y2(η = 0) = 0 (73)

ρ̄′(η = 0) =0⇒ y5(η = 0) = 0 (74)

f ′(η → ∞) =1⇒ y2(η → ∞) = 1 (75)

ρ̄(η → ∞) =1⇒ y4(η → ∞) = 1. (76)

Fluids 2021, 6, 400 10 of 21

The isothermal boundary conditions for the system are:

f (η = 0) =0 ⇒ y1(η = 0) = 0 (77)

f ′(η = 0) =0 ⇒ y2(η = 0) = 0 (78)

ρ̄(η = 0) =Tw/T∞ ⇒ y4(η = 0) = Tw/T∞ (79)

f ′(η −→ ∞) =1 ⇒ y2(η −→ ∞) = 1 (80)

ρ̄(η −→ ∞) =1 ⇒ y4(η −→ ∞) = 1. (81)

The functions can be introduced in Julia as shown in Listing 1, where cµ is the second
coefficient of the Sutherland Viscosity Law, T∞ is the temperature at the boundary-layer
edge, M∞ is the Mach number at the boundary-layer edge, γ is the specific heat ratio, Pr
is the Prandtl number and y1, y2, y3, y4, and y5 are the terms given in Equations (64)–(66),
Equation (67), and Equation (68). In the functions given in Listing 1, only 2 parameters
are dimensional, which are cµ and T∞. In this tutorial paper, Kelvin is the unit of both
parameters. If the temperature unit is required to be different, such as Fahrenheit or
Rankine, the units of cµ and T∞ must be transformed into the new unit accordingly.

Listing 1. Implementation of system of equations in Julia environment. There are five functions
which correspond to five first-order ordinary differential equations.� �
1 function Y1(y2)
2 return y2
3 end
4

5 function Y2(y3)
6 return y3
7 end
8

9 function Y3(y1, y3, y4, y5, cµ, T∞)
10 return

−y3 ∗ ((y5/(2 ∗ (y4)))− (y5/(y4 + cµ/T∞)))− y1 ∗ y3 ∗ ((y4 + cµ/T∞)/(sqrt(y4) ∗ (1 + cµ/T∞)))
11 end
12

13 function Y4(y5)
14 return y5
15 end
16

17 function Y5(y1, y3, y4, y5, cµ, T∞, M∞, Pr, γ)
18 return −y5^2*((0.5/y4)− (1/(y4 + cµ/T∞)))− Pr ∗ y1 ∗ y5/sqrt(y4)∗
19 (y4 + cµ/T∞)/(1 + cµ/T∞)− (γ− 1) ∗ Pr ∗M∞^2*y3^2
20 end� �

In this paper, implementation of the Runge–Kutta method will be provided. The
derivation of the Runge–Kutta method and how it calculates the function value at the
next step can be checked from Reference [49]. The implementation of the Runge–Kutta
method for the compressible Blasius problem can be seen in Listing 2, where N is the
number of elements. It has to be emphasized that the number of node points is N + 1,
which means that terms must be calculated until (N + 1)th node. The first point is the
boundary condition, so there will be N number of calculations.

The initialization and the boundary conditions can be introduced as shown in Listing 3, where
adi is a flag for the adiabatic or isothermal condition selection and Tw is the dimensionless
wall temperature. It is nondimensionalized with Te, so if the temperature at the boundary-
layer edge, Te, is 300 K and the wall temperature is required to be 150 K, Tw must be entered
as 0.5. Another important point about Listing 3 is the indices. In the derived formulations,
indices start from 0. However, in both Julia and MATLAB, indices start from 1. This is the
reason why indices are starting from 1 in Listing 3 boundary conditions part.

Fluids 2021, 6, 400 11 of 21

Listing 2. Implementation of Runge-Kutta method in Julia environment. It requires four slope calculation to estimate the
function value in the next node value.� �

1 function RK(N, ∆η, y1, y2, y3, y4, y5, cµ, T∞, Pr, γ, M∞)
2 for i = 1 : N
3 #First Step
4 k11 = Y1(y2[i])
5 k21 = Y2(y3[i])
6 k31 = Y3(y1[i], y3[i], y4[i], y5[i], cµ, T∞)
7 k41 = Y4(y5[i])
8 k51 = Y5(y1[i], y3[i], y4[i], y5[i], cµ, T∞, M∞, Pr, γ)
9

10 #Second Step
11 k12 = Y1(y2[i] + 0.5 ∗ ∆η ∗ k21)
12 k22 = Y2(y3[i] + 0.5 ∗ ∆η ∗ k31)
13 k32 = Y3(y1[i] + 0.5 ∗ ∆η ∗ k11, y3[i] + 0.5 ∗ ∆η ∗ k31, y4[i] + 0.5 ∗ ∆η ∗ k41, y5[i] + 0.5 ∗ ∆η ∗ k51, cµ, T∞)
14 k42 = Y4(y5[i] + 0.5 ∗ ∆η ∗ k51)
15 k52 = Y5(y1[i] + 0.5 ∗ ∆η ∗ k11, y3[i] + 0.5 ∗ ∆η ∗ k31, y4[i] + 0.5 ∗ ∆η ∗ k41, y5[i] + 0.5 ∗ ∆η ∗ k51, cµ, T∞, M∞, Pr, γ)
16

17 #Third Step
18 k13 = Y1(y2[i] + 0.5 ∗ ∆η ∗ k22)
19 k23 = Y2(y3[i] + 0.5 ∗ ∆η ∗ k32)
20 k33 = Y3(y1[i] + 0.5 ∗ ∆η ∗ k12, y3[i] + 0.5 ∗ ∆η ∗ k32, y4[i] + 0.5 ∗ ∆η ∗ k42, y5[i] + 0.5 ∗ ∆η ∗ k52, cµ, T∞)
21 k43 = Y4(y5[i] + 0.5 ∗ ∆η ∗ k52)
22 k53 = Y5(y1[i] + 0.5 ∗ ∆η ∗ k12, y3[i] + 0.5 ∗ ∆η ∗ k32, y4[i] + 0.5 ∗ ∆η ∗ k42, y5[i] + 0.5 ∗ ∆η ∗ k52, cµ, T∞, M∞, Pr, γ)
23

24 #Fourth Step
25 k14 = Y1(y2[i] + ∆η ∗ k23)
26 k24 = Y2(y3[i] + ∆η ∗ k33)
27 k34 = Y3(y1[i] + ∆η ∗ k13, y3[i] + ∆η ∗ k33, y4[i] + ∆η ∗ k43, y5[i] + ∆η ∗ k53, cµ, T∞)
28 k44 = Y4(y5[i] + ∆η ∗ k53)
29 k54 = Y5(y1[i] + ∆η ∗ k13, y3[i] + ∆η ∗ k33, y4[i] + ∆η ∗ k43, y5[i] + ∆η ∗ k53, cµ, T∞, M∞, Pr, γ)
30

31 #Next Point Calculation
32 y5[i + 1] = y5[i] + (1/6) ∗ (k51 + 2 ∗ k52 + 2 ∗ k53 + k54) ∗ ∆η
33 y4[i + 1] = y4[i] + (1/6) ∗ (k41 + 2 ∗ k42 + 2 ∗ k43 + k44) ∗ ∆η
34 y3[i + 1] = y3[i] + (1/6) ∗ (k31 + 2 ∗ k32 + 2 ∗ k33 + k34) ∗ ∆η
35 y2[i + 1] = y2[i] + (1/6) ∗ (k21 + 2 ∗ k22 + 2 ∗ k23 + k24) ∗ ∆η
36 y1[i + 1] = y1[i] + (1/6) ∗ (k11 + 2 ∗ k12 + 2 ∗ k13 + k14) ∗ ∆η
37 end
38 return y1, y2, y3, y4, y5
39 end� �

In the system of equations, there are five equations and five boundary conditions;
however, two boundary conditions are located at the end of the domain. In order to start
the calculation, all values at the η = 0 should be given. α0 and β0 in the Listing 3 are the
initial guesses for the missing boundary conditions. They can be any value. Once they
are introduced to the system, compressible Blasius equations can be solved. When the
equations are solved with guessed initial conditions, the solution vector must satisfy the
boundary conditions at the end of the domain. However, it will not converge at the first
try because the guessed boundary conditions are not correct. To overcome this problem,
different methods can be used, such as the shooting method, bisection method, or Newton’s
iteration method. In this paper, Newton’s iteration method will be used because it is fast
and it is not hard to implement. In order to use it, the algorithm needs to run with the
initial guesses one time. Once the y2 (corresponds to u) and y4 (corresponds to T) at the
end of the domain are obtained, an arbitrary small number can be added to one of the
initial guesses. The algorithm can be run one more time with the new boundary condition
guesses. After that, the same small number can be added to the other initial guess and
the algorithm can be run one more time. After running the algorithm 3 times, there will
be 3 different y2–y4 pairs. It has to be noted that when the small number is added to the
second boundary condition (in the third run), other boundary conditions should be equal
to the value in the first run. In other words, after adding a small value in the second run,
it should be subtracted in the third run. The main purpose of running three times is to

Fluids 2021, 6, 400 12 of 21

determine the more accurate boundary condition guess. The new boundary conditions can
be calculated with:

α = α + dα (82)

β = β + dβ, (83)

where α and β are the initially guessed boundary conditions. dα and dβ are required for
the new boundary conditions. These values can be approximated from the Taylor series
expansion of the y2 and y4, which can be shown as:

y2,new =y2,old +
∂y2

∂α
dα +

∂y2

∂β
dβ + O(dα2, dβ2) (84)

y4,new =y4,old +
∂y4

∂α
dα +

∂y4

∂β
dβ + O(dα2, dβ2). (85)

y2,new and y4,new must be 1 due to the boundary conditions. The new system of
equations for the dα and dβ will be:[∂y2

∂α
∂y2
∂β

∂y4
∂α

∂y4
∂β

][
dα
dβ

]
=

[
1− y2,old
1− y4,old

]
. (86)

The partial differentials can be approximated with the finite difference as:

∂y2

∂α
=

y2(α + ∆)− y2(α)

∆
=

y2,new,1 − y2,old

∆
(87)

∂y4

∂α
=

y4(α + ∆)− y4(α)

∆
=

y4,new,1 − y4,old

∆
(88)

∂y2

∂β
=

y2(β + ∆)− y2(β)

∆
=

y2,new,2 − y2,old

∆
(89)

∂y4

∂β
=

y4(β + ∆)− y4(β)

∆
=

y4,new,2 − y4,old

∆
, (90)

where y2,old and y4,old are the values obtained from the first run, y2,new,1 and y4,new,1 are the
values obtained from the second run, and y2,new,2 and y4,new,2 are the values obtained from
the third run. Once everything is calculated, the system of equations in Equation (86) can
be used to calculate dα and dβ. The implementation of the explained method in Julia can
be seen in Listing 4.

Fluids 2021, 6, 400 13 of 21

Listing 3. Initialization of the variables and implementation of boundary conditions in Julia en-
vironment. The boundary conditions for adiabatic and isothermal conditions are different than
each other.� �
1 # Initializing the solution vectors
2 y1 = zeros(N + 1) # f
3 y2 = zeros(N + 1) # f ′
4 y3 = zeros(N + 1) # f ′′
5 y4 = zeros(N + 1) # ρ(η)
6 y5 = zeros(N + 1) # ρ(η)′

7 η = [i ∗ ∆η for i = 0 : N]
8 adi = 1 # adi=1 (Adiabatic) adi=0 (Isothermal)
9

10 if adi == 1
11 # Adibatic Boundary Conditions
12 y1[1] = 0
13 y2[1] = 0
14 y5[1] = 0
15

16 α = 0.1 # Initial Guess
17 β = 3.0 # Initial Guess
18 elseif adi == 0
19 # Isothermal Boundary Conditions
20 y1[1] = 0
21 y2[1] = 0
22 y4[1] = Tw # Dimensionless Wall Temperature
23

24 α = 0.1 # Initial Guess
25 β = 3.0 # Initial Guess
26 end� �

The same procedure will run until y2, and y4 at the end of the domain will be 1. It is
important to decide the upper limit of the domain. If it is small, it will force the value at
that point to be 1 where it should not be. It is also important to choose the small number,
∆, smaller than convergence criteria which will finalize the simulation. If ∆ is higher than
the convergence criteria, the simulation might run until it reaches the maximum iteration
number. In the code provided in GitHub, convergence criteria is taken as 1× 10−9 and
the small number is taken as 1× 10−10. The results of the code for M = 4.5 and M = 2.8
are illustrated in Figure 3, where total temperatures are 311 K for both. The freestream
temperature is calculated from isentropic relation and it is 61.584 K for M = 4.5 and
121.11 K for M = 2.8. The results are compared with the Iyer’s [20] BL2D boundary-layer
solver, which is used in NASA’s well-known compressible boundary-layer stability solver
LASTRAC [21].

Fluids 2021, 6, 400 14 of 21

Listing 4. Implementation of Newton’s Iteration Method in Julia environment. It requires three
function calls to estimate the missing boundary condition value. Each estimation will lead to closer
boundary condition guess.� �
1 y3[1] = α # Initial Guess
2 y4[1] = β # Initial Guess
3

4 # First solution for Newton ’s iteration
5 y1, y2, y3, y4, y5 = RK(N, ∆η, y1, y2, y3, y4, y5, cµ, T∞, Pr, γ, M∞)
6

7 # Storing the freestream values for Newton ’s iteration method
8 y2o = y2[N + 1]
9 y4o = y4[N + 1]

10

11 # Small number addition for Newton ’s iteration method
12 y3[1] = α + ∆ # Initial Guess + Small number
13 y4[1] = β # Initial Guess
14

15 # Second solution for Newton ’s iteration
16 y1, y2, y3, y4, y5 = RK(N, ∆η, y1, y2, y3, y4, y5, cµ, T∞, Pr, γ, M∞)
17

18 # Storing the freestream values for Newton ’s iteration method
19 y2n1 = y2[N + 1]
20 y4n1 = y4[N + 1]
21

22 # Small number addition for Newton ’s iteration method
23 y3[1] = α # Initial Guess
24 y4[1] = β + ∆ # Initial Guess + Small number
25

26 # Third solution for Newton ’s iteration
27 y1, y2, y3, y4, y5 = RK(N, ∆η, y1, y2, y3, y4, y5, cµ, T∞, Pr, γ, M∞)
28

29 # Storing the freestream values for Newton ’s iteration method
30 y2n2 = y2[N + 1]
31 y4n2 = y4[N + 1]
32

33 # Calculation of the next initial guess with Newton ’s iteration method
34 p11 = (y2n1 − y2o)/∆
35 p21 = (y4n1 − y4o)/∆
36 p12 = (y2n2 − y2o)/∆
37 p22 = (y4n2 − y4o)/∆
38 r1 = 1− y2o
39 r2 = 1− y4o
40 ∆α = (p22 ∗ r1 − p12 ∗ r2)/(p11 ∗ p22 − p12 ∗ p21)
41 ∆β = (p11 ∗ r2 − p21 ∗ r1)/(p11 ∗ p22 − p12 ∗ p21)
42 α = α + ∆α
43 β = β + ∆β� �

Fluids 2021, 6, 400 15 of 21

(a) (b)

Figure 3. The distribution of the (a) velocity and (b) temperature of the compressible Blasius equation obtained by the given
code and BL2D boundary-layer solver [20] for freestream Mach number 2.8 and 4.5 where freestream temperatures are
121.11 K and 61.584 K, respectively.

3. Comparison of Julia and MATLAB

The design process requires lots of simulations in order to obtain the final and opti-
mized design. It is highly beneficial to have a fast CFD solver. One of the crucial factors
that affects the speed of the solver is the language. The same script may lead to different
central processing unit (CPU) times with different coding languages. Additionally, similar
simulations will be required multiple times. Eventually, the total time spent on simulations
might be drastic with a slow solver.

MATLAB is one of the languages that is widely used. It is one of the favorite coding
language for most of the students because of its user-friendly syntax, easy debugging
feature, and built-in functions. One of the most important drawbacks of this language
is that it is not free. It is also slower than high-performance languages, such as Fortran
and C/C++. Julia is a user-friendly, open-source language that can increase productivity
drastically [13]. Another great feature of Julia is that it is completely free. Julia can call C,
Fortran, and Python libraries. It is great for experienced engineers who think that their
previous code in other coding languages will be useless.

One of the great concerns about language selection is the speed of the code. For
large-scaled projects, most of the time, a fast solver is the most important point. In this
section, the same problem will be solved with Julia and MATLAB codes. The solution times
will be compared with each other. The purpose of this comparison is to provide a rough
estimation about code execution speeds. Three different test cases will be applied for both
languages. The cases are unsteady inviscid Burgers’ equation with the first-order backward
finite difference scheme, heat equation with second-order central finite difference scheme,
and compressible Blasius equation with fourth-order Runge–Kutta and Newton’s iteration
method. Burgers’ and heat equations will be tested with f or loops with file operations,
vectorized operations with file operations, f or loops without file operations, and vectorized
operations without file operations. For the compressible Blasius equation solver, the code
developed for this paper will be used. The test cases will simulate real-life problems by
solving the problem and exporting the solution vector to a text file when the file operations
are included. In real-life problems, most of the time, post-processing is required after the
simulation. In order to do that, saving data into a file is required. If it is a steady problem,
exporting can be done at the end of the simulation, if there are not any other limitations or
additional requirements. On the other hand, if the problem is unsteady, exporting the data

Fluids 2021, 6, 400 16 of 21

in different time steps during the simulations is required. This is the reason why there will
be two different simulations where data will be exported and will not be exported.

The first case is unsteady, inviscid, Burgers’ equation in one dimension, which can be
represented in the conservative form:

∂u
∂t

=
∂

∂x

(
u2

2

)
. (91)

The equation is solved with a first-order backward finite difference scheme. The
details of the scheme will not be provided because the purpose of the test case is to measure
the speed difference of two similarly developed codes. However, codes that are used
in this paper are available on GitHub. Interested readers can check the implementation
details from the codes. The number of elements in the problem is taken as 2500, 5000, and
10,000. The same simulation will be run with an increasing number of elements to show
the solution time change trend. The execution time will be calculated by BenchmarkTools in
Julia and tic/toc functions in MATLAB. The standard deviation will be calculated manually
by using 10 data points obtained from the runs. The time step is taken as half of the grid
spacing. The domain is limited with [0, π] and the initial conditions for velocity, u(xi, t),
are taken as:

u(xi, 0) = sin(xi). (92)

The solution vector is written to a “.txt” file for every hundredth iteration. The mean
execution times with the standard deviation of the data obtained by Julia and MATLAB
solvers are given in Tables 1 and 2. Table 1 provides the execution times with file operations,
and Table 2 excludes file operations in the calculations. The results show that MATLAB
is slow with file operations. There is approximately 15 times’ difference between Julia
and MATLAB mean execution times with file operations and f or loops, but the speed-up
difference is decreasing to 8 with vectorization. Without file operations, Julia is 3 times
faster than MATLAB with f or loops. However, MATLAB vectorization is faster than Julia.
One interesting point of this test case is that MATLAB execution times are reduced by
vectorization, except for the N = 10,000 case with file operations excluded. Detailed
investigations about this trend indicate that there is a relation between the L1, L2, L3 cache
size of the CPU and the vectorization performance. Tests are completed in 3 different
computers with varying cache sizes. After a certain number of elements, vectorization
starts to increase the mean execution time. The limiting number of elements is related
to cache size. In computers with higher cache sizes, the negative effect of vectorization
started after N = 5000. In computers with lower cache sizes, the negative effect started
after N = 2500. This trend is not observed in Julia language. In Julia, f or loops are highly
optimized and manual vectorization leads to an increase in the mean execution times
because manual vectorization creates temporary arrays during the calculations. Creating
and deleting these temporary arrays require more time than calculation with f or loops. In
MATLAB, results indicate that temporary array usage is faster than f or loops up to certain
array size.

Table 1. Mean execution times and standard deviations of the Burgers’ equation solver written in
MATLAB and Julia by including file operations. The mean execution times are given in second. Ten
data points are used in the calculation of the mean and the standard deviation.

File Op. N = 2500 N = 5000 N = 10,000
Included Julia MATLAB Julia MATLAB Julia MATLAB

f or Loop Mean 0.0360 0.5214 0.1394 1.9817 0.5592 7.8060
STD 0.0010 0.0137 0.0017 0.0210 0.0062 0.0522

Vectorized Mean 0.0643 0.5145 0.2678 1.9471 1.0042 7.7527
STD 0.0139 0.0137 0.0287 0.0107 0.0348 0.0402

Fluids 2021, 6, 400 17 of 21

Table 2. Mean execution times and standard deviations of the Burgers’ equation solver written in
MATLAB and Julia by excluding file operations. The mean execution times are given in second. Ten
data points are used in the calculation of the mean and the standard deviation.

File Op. N = 2500 N = 5000 N = 10,000
Excluded Julia MATLAB Julia MATLAB Julia MATLAB

f or Loop Mean 0.0059 0.0177 0.0233 0.0651 0.0930 0.2562
STD 0.0001 0.0031 0.0011 0.0024 0.0005 0.0138

Vectorized Mean 0.0437 0.0166 0.0866 0.0564 0.4542 0.3091
STD 0.0117 0.0021 0.0215 0.0040 0.0584 0.0138

In the previous test case, the one-dimensional Burgers’ equation is solved. For the
second test case, the two-dimensional heat equation is solved. The two-dimensional heat
equation can be shown as:

∂T
∂t

= α

(
∂2T
∂x2 +

∂2T
∂y2

)
, (93)

where α is a constant which is taken as 0.25∆x. The time step is taken as ∆x. This assures
that the coefficient of the second derivative will satisfy the stability condition. The boundary
conditions of the system are 1 for each side and the initial conditions for the remaining
nodes are 0. The heat equation is solved with the second-order central finite difference with
250× 250, 500× 500, and 1000× 1000 elements. The domain is limited with [0, π]2. The
execution times of the two codes are given in Table 3 with file operations and in Table 4
without file operations. For this problem, the results indicate that Julia file operations are
faster as it is observed in Burgers’ equation solver. Vectorization has a negative effect for all
cases in this problem. For Julia, vectorization increases solution time approximately 8 times
without file operations, and 4 times with file operations. On the other hand, MATLAB
vectorization increases the solution time approximately twice without file operations and
1.2 times with file operations. Julia with f or loops has the fastest solution time for all
cases. It is approximately 2.5 times faster than MATLAB without file operations and
approximately 8 times faster with file operations.

Table 3. Mean execution times and standard deviations of the heat equation solver written in
MATLAB and Julia by including file operations. The mean execution times are given in second. Ten
data points are used in the calculation of the mean and the standard deviation.

File Op. N = 250 × 250 N = 500 × 500 N = 1000 × 1000
Included Julia MATLAB Julia MATLAB Julia MATLAB

f or Loop Mean 0.4604 3.1921 3.3852 22.8472 25.1985 151.5271
STD 0.0160 0.4149 0.0132 0.4356 0.0470 0.5615

Vectorized Mean 1.4524 3.2964 10.0283 28.4063 81.2305 188.5569
STD 0.1622 0.1531 0.4356 1.0269 0.4925 0.9425

Table 4. Mean execution times and standard deviations of the heat equation solver written in
MATLAB and Julia by excluding file operations. The mean execution times are given in second. Ten
data points are used in the calculation of the mean and the standard deviation.

File Op. N = 250 × 250 N = 500 × 500 N = 1000 × 1000
Excluded Julia MATLAB Julia MATLAB Julia MATLAB

f or Loop Mean 0.1538 0.3268 1.1964 3.7574 10.5993 28.5775
STD 0.0038 0.0187 0.0077 0.3274 0.1667 0.1065

Vectorized Mean 0.8056 0.5087 8.5873 9.3634 71.9560 67.5810
STD 0.0706 0.0257 0.0687 0.9880 0.4309 0.8318

Lastly, the derived compressible Blasius equations for the present study will be solved
in both MATLAB and Julia. The difference of that case is to test the function calls because
sometimes dividing the solver into smaller functions may lead to longer solution times.
The problem will be solved with 50,000, 100,000, and 200,000 elements. Table 5 gives the

Fluids 2021, 6, 400 18 of 21

solution times of two codes developed in MATLAB and Julia. In this problem, Julia is
drastically faster than MATLAB, and the time differences are increasing with the problem
size. With 50,000 elements, Julia is approximately 15 times faster than MATLAB, with
100,000 elements, it is 32 times faster, and with 200,000 elements, it is 120 times faster.

Table 5. Mean execution times and standard deviations of the compressible Blasius equations solver
written in MATLAB and Julia. The mean execution times are given in second. Ten data points are
used in the calculation of the mean and the standard deviation.

File Op. N = 50,000 N = 100,000 N = 200,000
Excluded Julia MATLAB Julia MATLAB Julia MATLAB

f or Loop Mean 0.0831 1.2468 0.1631 5.1070 0.3298 39.4378
STD 0.0054 0.0310 0.0057 0.3006 0.0098 0.8308

Although time differences are varying with problems, Julia with f or loops exhibited
better performance than MATLAB in every problem. On the other hand, MATLAB showed
better performance when both of the codes are developed in vectorized form. In general,
MATLAB file operations are slower than Julia. It has to be noted that MATLAB has special
data exporting options which might be faster, such as .mat extensions. In order to con-
duct an exact comparison, regular .txt extension with conventional exporting commands
are used. The main purpose of these time comparisons is to provide an approximate
performance differences between Julia and MATLAB under different conditions. In this
paper, Julia is compared with MATLAB. Interested readers can check Lubin and Dunning’s
paper [50] for other coding language comparisons.

4. Conclusions

Compressible Blasius equation, which comes from boundary-layer theory, is exten-
sively used by researchers to validate the CFD simulation results. One can estimate the
number of elements required to capture the boundary-layer by using the solution of the
compressible Blasius equation. Although it is crucial to understand the boundary-layer
theory, undergraduate- or graduate-level boundary-layer classes may not be adequate
for a student to fully understand it due to time limitations. A step-by-step tutorial may
help students to understand the theory better. Both compressible and incompressible
boundary-layer problems require numerical solution. Deriving the equations from scratch
and implementing the numerical methods may shorten the learning curve for a student or
an engineer.

In this paper, compressible Blasius equation and energy equation are derived from
scratch. The final system of equations is solved in the Julia environment. For the numeri-
cal implementation, the fourth-order Runge–Kutta and Newton’s iteration methods are
employed. It has to be noted that other methods such as Runge–Kutta–Fehlberg, compact
finite difference, a high-order finite-difference can also be used to solve the final system of
equations. However, authors preferred the Runge–Kutta and Newton’s iteration method
due to their accuracy and wide usage in the literature. Moreover, the authors compared the
Julia and MATLAB solver speed to give an initial impression about performance of Julia.
The results showed that MATLAB is slower than Julia in file operations. Additionally, Julia
is faster than MATLAB with f or loops. On the other hand, Julia vectorization affects the
solution times negatively. However, MATLAB vectorization decreases the solution time for
small-sized problems. When the problem size increases, MATLAB vectorization also has a
negative effect on the solution time. It has to be noted that these test cases are relatively
less demanding cases. In real-life problems, simulations require longer codes with more
complex operations. In longer runs, the time difference in between these two languages
may increase.

Fluids 2021, 6, 400 19 of 21

Author Contributions: Code generation, F.O. and K.K.; validation, F.O. and K.K.; writing—original
draft preparation, F.O.; writing—review and editing, F.O. and K.K.; visualization, F.O. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data used and generated in this study are available in the
GitHub link provided in Appendix A.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Julia setup files can be downloaded from their website (https://julialang.org/downloads/
(accessed on 4 November 2021)). The website also includes instructions on how to install
Julia on Windows, Linux, and MAC operating systems. Some of the useful resources for
learning Julia are listed below:

• https://docs.julialang.org/en/v1/ (accessed on 4 November 2021)
• https://www.coursera.org/learn/julia-programming (accessed on 4 November 2021)
• https://www.youtube.com/user/JuliaLanguage/featured (accessed on 4 November

2021)
• https://www.youtube.com/user/Parallel Computing and Scientific Machine Learn-

ing (accessed on 4 November 2021)
• https://discourse.julialang.org/ (accessed on 4 November 2021)

It is common to use external packages for Julia. In order to do that, Pkg, which is
Julia’s built-in package manager, can be used. Once Julia is opened, Pkg can be activated
with the “]” button in Windows. In Linux, calling “julia” in the terminal will open it. After
that, “Pkg.add(“Pluto”)” will trigger the setup process for that package. In here, we used
Pluto as an example because, in GitHub, our codes are developed in the Pluto environment.
After Pluto is installed, Pluto can be run with “Pluto.run()”. This command will open a
new tab in the browser which you can run your Julia codes. After that, the “using Pluto”
line must be placed to the top of the file. For “Plots” package, the commands will be
“Pkg.add(“Plots”)” and “using Plots”. Since the Plots package does not have a GUI, there is
not a command called “Plots.run()”.

Other than Pluto, JuliaPro, which includes Julia and the Juno IDE (https://juliacomputing.
com/products/juliapro/ (accessed on 4 November 2021)), can be used as an editor and
compiler. This software contains a set of packages for plotting, optimization, machine
learning, database, and much more. Pluto is appropriate for small scripts, while JuliaPro is
better for more complex codes. The GitHub link of the codes used in this paper is:

• https://github.com/frkanz/A-CFD-Tutorial-in-Julia-Compressible-Blasius/tree/main
(accessed on 4 November 2021)

References
1. Anderson, J.D. Fundamentals of Aerodynamics; McGraw-Hill Education: New York, NY, USA, 2010.
2. Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer: Berlin/Heidelberg, Germany, 2016.
3. Anderson, J.D. Ludwig Prandtl’s Boundary Layer. Phys. Today 2005, 58, 42–48. [CrossRef]
4. Prandtl, L. Über Flüssigkeitsbewegung bei sehr kleiner Reibung, Verh 3 int. Math-Kongr, Heidelberg, English Translation. 1904.

Availabel online: http://homepage.ntu.edu.tw/~wttsai/Adv_Fluid/NACA_TM-452.pdf (accessed on 4 November 2021).
5. Blasius, H. Grenzschichten in Flüssigkeiten mit Kleiner Reibung. Z. Math. Phys. 1908, 60, 397–398.
6. Hager, W.H. Blasius: A life in research and education. Exp. Fluids 2003, 34, 566–571. [CrossRef]
7. Cousteix, T.; Cebeci, J. Modeling and Computation of Boundary-Layer Flows; Springer: Berlin/Heidelberg, Germany, 2005.
8. White, F.M.; Corfield, I. Viscous Fluid Flow; McGraw-Hill: New York, NY, USA, 2006; Volume 3.
9. Metcalf, M.; Reid, J.K. Fortran 90/95 Explained; Oxford University Press, Inc.: Oxford, UK, 1999.

https://julialang.org/downloads/
https://docs.julialang.org/en/v1/
https://www.coursera.org/learn/julia-programming
https://www.youtube.com/user/JuliaLanguage/featured
https://www.youtube.com/channel/UCDtsHjkOEMHYPGgpKX8VOPg
https://www.youtube.com/channel/UCDtsHjkOEMHYPGgpKX8VOPg
https://discourse.julialang.org/
https://juliacomputing.com/products/juliapro/
https://juliacomputing.com/products/juliapro/
https://github.com/frkanz/A-CFD-Tutorial-in-Julia-Compressible-Blasius/tree/main
http://doi.org/10.1063/1.2169443
http://homepage.ntu.edu.tw/~wttsai/Adv_Fluid/NACA_TM-452.pdf
http://dx.doi.org/10.1007/s00348-002-0582-9

Fluids 2021, 6, 400 20 of 21

10. Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999, 17, 57–61.
[PubMed]

11. Stroustrup, B. The C++ Programming Language; Pearson Education: London, UK, 2000.
12. MATLAB. Version 7.10. 0 (R2010a); The MathWorks Inc.: Natick, MA, USA, 2010.
13. Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A fresh approach to numerical computing. SIAM Rev. 2017, 59, 65–98.

[CrossRef]
14. Barba, L.; Forsyth, G. CFD Python: the 12 steps to Navier-Stokes equations. J. Open Source Educ. 2018, 2, 21. [CrossRef]
15. Oliphant, T.E. A Guide to NumPy; Trelgol Publishing USA: Natick, MA, USA, 2006; Volume 1.
16. Ketcheson, D.I. Teaching numerical methods with IPython notebooks and inquiry-based learning. In Proceedings of the 13th

Python in Science Conference, Austin, TX, USA, 6–12 July 2014; pp. 19–24.
17. Ketcheson, D.I.; Mandli, K.; Ahmadia, A.J.; Alghamdi, A.; de Luna, M.Q.; Parsani, M.; Knepley, M.G.; Emmett, M. PyClaw:

Accessible, extensible, scalable tools for wave propagation problems. SIAM J. Sci. Comput. 2012, 34, 210–231. [CrossRef]
18. Pawar, S.; San, O. CFD Julia: A learning module structuring an introductory course on computational fluid dynamics. Fluids

2019, 4, 159. [CrossRef]
19. Oz, F.; Kara, K. A CFD Tutorial in Julia: Introduction to Laminar Boundary-Layer Theory. Fluids 2021, 6, 207. [CrossRef]
20. Iyer, V. Computer Program BL2D for Solving Two-Dimensional and Axisymmetric Boundary Layers; NASA NASA-CR-4668; NASA:

Washington, DC, USA, 1995.
21. Chang, C.L. Langley Stability and Transition Analysis Code (LASTRAC) Version 1.2 User Manual; NASA TM-2004-213233; NASA:

Washington, DC, USA, June 2004.
22. Brennan, G.; Gajjar, J.; Hewitt, R. Tollmien–Schlichting wave cancellation via localised heating elements in boundary layers. J.

Fluid Mech. 2021, 909. [CrossRef]
23. Brennan, G.S.; Gajjar, J.S.; Hewitt, R.E. Cancellation of Tollmien–Schlichting waves with surface heating. J. Eng. Math. 2021,

128, 1–23. [CrossRef]
24. Corelli Grappadelli, M.; Sattler, S.; Scholz, P.; Radespiel, R.; Badrya, C. Experimental investigations of boundary layer transition

on a flat plate with suction. In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 11–15 and 19–21 January 2021; p. 1452.
25. Rigas, G.; Sipp, D.; Colonius, T. Nonlinear input/output analysis: Application to boundary layer transition. J. Fluid Mech. 2021,

911. [CrossRef]
26. Haley, C.; Zhong, X. Supersonic mode in a low-enthalpy hypersonic flow over a cone and wave packet interference. Phys. Fluids

2021, 33, 054104. [CrossRef]
27. Malik, M.R. Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 1990, 86, 376–413. [CrossRef]
28. Fedorov, A. Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 2011, 43, 79–95. [CrossRef]
29. Long, T.; Dong, Y.; Zhao, R.; Wen, C. Mechanism of stabilization of porous coatings on unstable supersonic mode in hypersonic

boundary layers. Phys. Fluids 2021, 33, 054105. [CrossRef]
30. Fong, K.D.; Wang, X.; Zhong, X. Numerical simulation of roughness effect on the stability of a hypersonic boundary layer.

Comput. Fluids 2014, 96, 350–367. [CrossRef]
31. Kara, K.; Balakumar, P.; Kandil, O. Receptivity of hypersonic boundary layers due to acoustic disturbances over blunt cone. In

Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 8–11 January 2007; p. 945.
32. Kara, K.; Balakumar, P.; Kandil, O. Effects of wall cooling on hypersonic boundary layer receptivity over a cone. In Proceedings

of the 38th Fluid Dynamics Conference and Exhibit, Seattle, WA, USA, 23–26 June 2008; p. 3734.
33. Kara, K.; Balakumar, P.; Kandil, O.A. Effects of nose bluntness on hypersonic boundary-layer receptivity and stability over cones.

AIAA J. 2011, 49, 2593–2606. [CrossRef]
34. Oz, F.; Kara, K. Effects of Local Cooling on Hypersonic Boundary-Layer Stability. In AIAA Scitech 2021 Forum; AIAA: Reston, VA,

USA, 2021; p. 0940.
35. Drozdz, A.; Niegodajew, P.; Romanczyk, M.; Sokolenko, V.; Elsner, W. Effective use of the streamwise waviness in the control of

turbulent separation. Exp. Therm. Fluid Sci. 2021, 121. [CrossRef]
36. Iyer, P.S.; Malik, M.R. Wall-modeled LES of flow over a Gaussian bump. In AIAA Scitech 2021 Forum; AIAA: Reston, VA, USA,

2021; p. 1438.
37. Mohammed-Taifour, A.; Weiss, J. Periodic forcing of a large turbulent separation bubble. J. Fluid Mech. 2021, 915. [CrossRef]
38. Hady, F.; Ibrahim, F.; Abdel-Gaied, S.; Eid, M. Effect of heat generation/absorption on natural convective boundary-layer flow

from a vertical cone embedded in a porous medium filled with a non-Newtonian nanofluid. Int. Commun. Heat Mass Transf. 2011,
38, 1414–1420. [CrossRef]

39. Hady, F.M.; Ibrahim, F.S.; Abdel-Gaied, S.M.; Eid, M.R. Radiation effect on viscous flow of a nanofluid and heat transfer over a
nonlinearly stretching sheet. Nanoscale Res. Lett. 2012, 7, 1–13. [CrossRef]

40. Hady, F.; Ibrahim, F.; Abdel-Gaied, S.; Eid, M.R. Boundary-layer non-Newtonian flow over vertical plate in porous medium
saturated with nanofluid. Appl. Math. Mech. 2011, 32, 1577–1586. [CrossRef]

41. Hady, F.; Ibrahim, F.; Abdel-Gaied, S.; Eid, M. Boundary-layer flow in a porous medium of a nanofluid past a vertical cone. In An
Overview of Heat Transfer Phenomena; Kazi, S.N., Ed.; IntechOpen: London, UK, 2012; pp. 91–104.

42. Sohail, M.; Naz, R.; Abdelsalam, S.I. Application of non-Fourier double diffusions theories to the boundary-layer flow of a yield
stress exhibiting fluid model. Phys. Stat. Mech. Appl. 2020, 537, 122753. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/10660911
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.21105/jose.00021
http://dx.doi.org/10.1137/110856976
http://dx.doi.org/10.3390/fluids4030159
http://dx.doi.org/10.3390/fluids6060207
http://dx.doi.org/10.1017/jfm.2020.928
http://dx.doi.org/10.1007/s10665-021-10111-9
http://dx.doi.org/10.1017/jfm.2020.982
http://dx.doi.org/10.1063/5.0048089
http://dx.doi.org/10.1016/0021-9991(90)90106-B
http://dx.doi.org/10.1146/annurev-fluid-122109-160750
http://dx.doi.org/10.1063/5.0048313
http://dx.doi.org/10.1016/j.compfluid.2014.01.009
http://dx.doi.org/10.2514/1.J050032
http://dx.doi.org/10.1016/j.expthermflusci.2020.110291
http://dx.doi.org/10.1017/jfm.2021.77
http://dx.doi.org/10.1016/j.icheatmasstransfer.2011.07.008
http://dx.doi.org/10.1186/1556-276X-7-229
http://dx.doi.org/10.1007/s10483-011-1524-7
http://dx.doi.org/10.1016/j.physa.2019.122753

Fluids 2021, 6, 400 21 of 21

43. Bhatti, M.; Alamri, S.Z.; Ellahi, R.; Abdelsalam, S.I. Intra-uterine particle–fluid motion through a compliant asymmetric tapered
channel with heat transfer. J. Therm. Anal. Calorim. 2020, 144, 2259–2267. [CrossRef]

44. Tannehill, J.C.; Pletcher, R.H.; Anderson, D.A. Computational Fluid Mechanics and Heat Transfer; Taylor & Francis: Bristol, PA, USA, 1997.
45. National Center for Biotechnology Information. PubChem Periodic Table of Elements. 2021. Available online: https://pubchem.

ncbi.nlm.nih.gov/element/Titanium (accessed on 12 October 2021).
46. Howarth, L. Concerning the effect of compressibility on lam inar boundary layers and their separation. Proc. R. Soc. London. Ser.

Math. Phys. Sci. 1948, 194, 16–42.
47. LII, W.S. The viscosity of gases and molecular force. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1893, 36, 507–531.
48. Moin, P. Fundamentals of Engineering Numerical Analysis; Cambridge University Press: Cambridge, UK, 2010.
49. Anderson, J.D.; Degrez, G.; Dick, E.; Grundmann, R. Computational Fluid Dynamics: An Introduction; Springer Science & Business

Media: Berlin, Germany, 2013.
50. Lubin, M.; Dunning, I. Computing in operations research using Julia. INFORMS J. Comput. 2015, 27, 238–248. [CrossRef]

http://dx.doi.org/10.1007/s10973-020-10233-9
https://pubchem.ncbi.nlm.nih.gov/element/Titanium
https://pubchem.ncbi.nlm.nih.gov/element/Titanium
http://dx.doi.org/10.1287/ijoc.2014.0623

	Introduction
	Compressible Laminar Boundary-Layer
	Compressible BlasiusFalkner–Skan Equations
	Numerical Procedure

	Comparison of Julia and MATLAB
	Conclusions
	
	References

