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Abstract: Reservoir simulation is to solve a set of fluid flow equations through porous media,
which are partial differential equations from the petroleum engineering industry and described
by Darcy’s law. This paper introduces the model, numerical methods, algorithms and parallel
implementation of a thermal reservoir simulator that is designed for numerical simulations of a
thermal reservoir with multiple components in three-dimensional domain using distributed-memory
parallel computers. Its full mathematical model is introduced with correlations for important
properties and well modeling. Efficient numerical methods (discretization scheme, matrix decoupling
methods, and preconditioners), parallel computing technologies, and implementation details are
presented. The numerical methods applied in this paper are suitable for large-scale thermal reservoir
simulations with dozens of thousands of CPU cores (MPI processes), which are efficient and scalable.
The simulator is designed for giant models with billions or even trillions of grid blocks using
hundreds of thousands of CPUs, which is our main focus. The validation part is compared with CMG
STARS, which is one of the most popular and mature commercial thermal simulators. Numerical
experiments show that our results match commercial simulators, which confirms the correctness
of our methods and implementations. SAGD simulation with 7406 well pairs is also presented to
study the effectiveness of our numerical methods. Scalability testings demonstrate that our simulator
can handle giant models with billions of grid blocks using 100,800 CPU cores and the simulator has
good scalability.

Keywords: thermal model; reservoir simulation; parallel computing; preconditioner

1. Introduction

Reservoir simulations play critical roles in reservoir management, as simulators pro-
vide one way to validate production plans in the early stages and to predict future oil and
gas production. Many simulators have been developed and applied over the past decades,
such as CMG STARS and Eclipse. Those simulators have been widely used in reservoir
management. For example, CMG STARS is the most popular thermal reservoir simulator,
which has been developed for around 40 year. It has been applied worldwide in various
thermal recovery processes, such as in situ combustion, CSS (Cyclic Steam Stimulation)
and SAGD (Steam-Assisted Gravity Drainage). When multiple chemicals are considered
in a model, more physics features are applied, or if the geological model is complex,
a simulator may take very long to complete one simulation. A model may be run dozens
of times to match history and to optimize oil production so the long running time reduces
the productivity of reservoir engineers. Acceleration of simulations is important to oil and
gas industry.

Reservoir simulation is an interdisciplinary research topic, which involves petroleum
modeling, applied mathematics, computational methods, and computer sciences. It has
been studied for decades, and various models and methods have been proposed [1].
Crookston et al. [2] proposed a simple two-dimensional model, which handled three-phase
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flow and vaporization–condensation effects. Grabowski and his collaborators developed a
sequential implicit method for thermal reservoir model [3]. Coats was a pioneer in reservoir
simulations, and he developed models and numerical methods for black oil model, compo-
sitional model and thermal model, including in situ combustion mode [4]. In [4], a general
four-phase multicomponent in situ combustion model was proposed by Coats, which
was improved later by Rubin [5]. Zhu et al. proposed new upscaling methods for their
simulators [6,7]. There are a few popular numerical schemes for thermal and compositional
models, such as variable substitution [4] methods and pseudo-equilibrium ratio (PER)
methods [2]. The variable substitution method changes variables, such as temperature
and saturation, depending on the phase status, while the PER method assumes phases do
not disappear and modifies the K-value calculation formula. Both methods have been em-
ployed in simulator development. Another scheme was also proposed by Mifflin et al. [8],
which utilized global variables, such as pressure, moles, and energy as unknowns. For
the global variable scheme, phase status is computed after obtaining the global variables.
Numerical methods and algorithms were proposed by Barua [9] to improve the nonlinear
system and linear system. A key to reservoir simulations is to develop effective solution
techniques, especially preconditioners. Many preconditioners have been proposed to
accelerate the solution of linear systems, such as constrained pressure residual (CPR) meth-
ods [10,11]; multiple level preconditioners [12]; multi-stage methods [13]; CPR-FP, CPR-
FPF, and CPR-FFPF methods [14]; and FASP (fast auxiliary space preconditioners) [15,16].
Parallel computers have more memory and better performance, which provide excellent
approaches to accelerate reservoir simulations [17–28]. Wang [29,30] implemented a fully
implicit equation-of-state compositional simulator for distributed-memory parallel comput-
ers, and large-scale reservoir models were simulated [31]. Reservoir models with millions
of grid blocks on parallel computers were reported [32]. Killough [33] reviewed the par-
allel reservoir models and parallel computing technologies. Saudi Aramco developed
new-generation massively-parallel reservoir simulator [34–37]. Zhang et al. developed
a scalable general-purpose platform for parallel adaptive finite element methods and
adaptive finite volume methods [38,39], which was applied to reservoir simulations [40].

This paper introduces our work on developing a parallel thermal simulator, including
a mathematical model and numerical methods. The simulator works for three-dimensional
domain and has three phases: water, oil, and gas. The model has one water component,
arbitrary oil components, and arbitrary non-condensable gas components. Here, water is
assumed to stay in the water and gas phases. Oil components have two types: heavy oil
components and light components. The heavy oil components stay in oil phase only but the
light oil components exist in oil phase and gas phase. The distribution of water and light oil
in gas phase is determined by pressure, temperature, K-values and composition of water,
and light oil and non-condensable gas components. This paper gives full mathematical
details of a thermal model, including mass conservation law, energy conservation law,
phase equilibrium calculation, density, viscosity, enthalpy, relative permeability, and well
modeling. Numerical methods are introduced, especially physics-based preconditioning
methods, including decoupling methods and preconditioners. In the numerical experiment
section, our simulator is compared with CMG STARS (a popular commercial reservoir
simulator), and results show that they match very well, from which we can conclude our
implementations are correct. Furthermore, numerical testings show that our numerical
methods are effective. From the scalability testings, we can see that the thermal simulator
has good scalability, and it can compute large-scale thermal reservoir models. A scalable
simulator enables us to run large models and to calculate a model in shorter simulation
time. Furthermore, as we can use hundreds of computation nodes and lots of memory, we
can model physical problems in a much smaller scale, such as nanoscale.

The structure of the paper is as follows. In Section 2, the thermal reservoir model is
introduced and the equations for various properties are presented. In Section 3, numerical
methods and parallel computing approaches are proposed. In Section 4, numerical experi-
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ments are carried out to validate our results against commercial simulator, CMG STARS,
and to show the scalability of the parallel thermal simulator.

2. Mathematical Model

Most simulators share the same theory framework [1,41–44]. For the sake of com-
pleteness, the mathematical model of the thermal simulator is introduced here, and the
models are almost the same as in [1,41–45]. Some content of this section is borrowed
from our previous paper [1,44], CMG STARS [41], and the textbook in [45]. In [1], the
following assumptions were made: water component exists in water and gas phases; all
oil components exist in oil and gas phases, which means all oil components are light oil;
non-condensable gas components exist in gas phase only; and all three phases co-exist
during the entire simulation. Furthermore, the PER method is applied to one light oil
component only, in which the light oil is the one has the largest molecular weight. In this
paper, different assumptions are made: the water component exists in water and gas phases,
heavy oil components exist in oil phase only, light oil components exist in both oil and gas
phases, and non-condensable gas components exist in gas phase. Gas phase appearance
and disappearance are allowed. Depending on the input, arbitrary oil components and
non-condensable gas components are allowed.

2.1. Darcy’s Law

The fluid is assumed to be Darcy flow, and the Darcy’s law is applied to model
the velocity of a fluid phase, which defines the relation among permeability, viscosity,
saturation, pressure difference, gravity, and temperature. The thermal model has three
phases, water phase (w), oil phase (o), and gas phase (g) [1,45]:

~uw = − krw

µw
~k(∇pw − γw∇z)

~uo = −
kro

µo
~k(∇po − γo∇z)

~ug = −
krg

µg
~k
(
∇pg − γg∇z

)
.

(1)

Here, ~uα is velocity, krα is relative permeability, µα is viscosity,~k is permeability, pα is
pressure, and z is depth.

2.2. Mass Conservation Equations

For a multi-phase multicomponent reservoir model, we use xc,α, nc,α, and nα to denote
the mole fraction of a component in the α-phase, the mole number of a component in the
phase, and the total mole number of the phase, respectively [1,45]. Then, the mole fraction
of a component in a phase is defined as

xc,α =
nc,α

nα
. (2)

If only water exists in the water phase, xw = 1. If the gas phase exists, it may contains
water, light oil, and non-condensable gas components. Here, y is employed to note gas
mole fraction,

Σ
Nc,g
c yc = 1, (3)

where Nc,g is total chemicals in gas phase. Moreover, if the oil phase exists, x is employed
to note oil mole fraction,

ΣNc,o
c xc = 1, (4)

where Nc,o is total chemicals in oil phase.
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A component c may exist in several phases, so its mass at a reservoir is summation of
masses in all phases, which is written as below [45]:

∂

∂t

(
φΣNα

α ραSαxc,α

)
= −∇ ·

(
ΣNα

α ραSα~uα

)
+ ΣNα

α qα,well xc,α, (5)

where ρα is density and qα,well is well rate.
The water, oil, and gas saturation have the following constraint:

Sw + So + Sg = 1. (6)

2.3. Energy Conservation Equation

The energy conservation equation for a thermal reservoir model [45] is described as

∂

∂t
(
φ(ρwSwUw + ρoSoUo + ρgSgUg) + (1− φ)Ur

)
= ∇ · (KT∇T)−∇ ·

(
ρwHw~uw + ρo Ho~uo + ρg Hg~ug

)
+ (qw,well Hw + qo,well Ho + qg,well Hg)−Qloss,

(7)

where U denotes the internal energy and H is enthalpy. This equation considers fluid
energy, rock heat energy, heat conduct, heat loss, and energy changes through wells. The
heat conduction is noted by KT , the bulk thermal conductivity, which is a combination of
liquid and rock, where a linear mixing rule is applied [41],

KT = φ
[
SwKw + SoKo + SgKg

]
+ (1− φ)Kr. (8)

In the equation, Kw, Ko, Kg, Kr denote thermal conductivities for water phase, oil
phase, gas phase, and rock, respectively. This rule is also called simple mixing rule (CMG
STARS) [41]. A more complicated model is also available [41].

Note that there are different ways to model rock internal energy: (1 − φ)Ur.
In the above equation, the porosity, φ, is a function of pressure and temperature, and
Ur is a function of temperature, so the rock internal energy is a function of pressure and
temperature. This method assumes the volume of a grid block does not change but (1− φ)
changes depending on pressure and temperature. Another way is to assume the rock
volume, (1− φ), does not change, even if φ changes during the simulation. This method
preserves the rock energy and mass. The second method is applied as the default method
by us and CMG STARS [41]. A heat loss term is modeled by the semi-analytical method
developed by Vinsome et al. [46].

2.4. Capillary Pressure

Capillary pressure Pc is the pressure difference between two phases, which are usually
functions of saturation [45]:

pw = po − pcow(Sw), pg = po + pcog(Sg), (9)

from which we can see if we know the oil phase pressure, water saturation, and gas
saturation, the water phase pressure and the gas phase pressure can be computed.

2.5. Phase Equilibrium Constraints

The K-value (or an equilibrium ratio) is defined as the ratio of the mole fractions of a
component in two phases (gas phase vs. water phase and gas phase vs. oil phase in this paper):

Kc,α1,α2 =
xc,α1

xc,α2

. (10)



Fluids 2021, 6, 395 5 of 31

Here, a K-value of water component and light oil component is a function of pressure
and temperature, which is calculated using the following method:

K =

(
kv1

p
+ kv2 p + kv3

)
exp

(
kv4

T − kv5

)
. (11)

The K-value is valid only if the gas phase exists. Furthermore, each chemical has
different parameters. The five parameters are user input.

In our thermal model, the calculations of K-values are modified, where the PER
(Pseudo-Equilibrium Ratios) method [2,47] is applied for water and light oil,

K∗W = K∗W(p, T) =
(

Sw

Sw + ε

)
KW(p, T), (12)

K∗O,i = K∗O,i(p, T) =
(

So

So + ε

)
KO,i(p, T). (13)

In calculations of pseudo K-values, ε is a small number of the order of 0.0001. The
water phase and oil phase exist through the entire simulation. However, the gas phase
is allowed to disappear. The gas phase mole fraction for the oil components and water
component are functions of p, T, Sw, Sg.

2.6. Phase Changes

Gas phase is allowed to reappear and disappear, which has to be checked and deter-
mined in each Newton iteration. The K-value only validates when gas phase exists.

When gas phase exists, its saturation, Sg, is positive. If a non-positive gas saturation is
detected, then gas phase disappears. Sg is set to 0.

When gas phase does not exist, Sg is 0. If the following relationship is detected:

Σiyi > 1, (14)

then gas phase reappears. A small gas saturation is set, such as 10−3. A cell type boolean
variable is applied to store the gas phase status.

2.7. Compressibility Factor of Real Gas

The gas phase mole density is calculated as

ρg = ρg(p, T, Sw, So, xi, yi) =
p

Z · R · T ,

where Z is calculated by EOS equation.
In the thermal model, the Redlich–Kwong EOS [48] is used to calculate the Z factor.

A = A(p, T) = 0.427480
(

p
pcrit

)(
Tcrit

T

)2.5
, (15)

B = B(p, T) = 0.086640
(

p
pcrit

)(
Tcrit

T

)
, (16)

where p is pressure, T is temperature, pcrit is critial pressure, and Tcrit is critical temperature.
These represent the user input for a gas component, which is determined by a lab.

In addition, the following mixing method is applied:

a = ∑
i

yiTcrit,i

√
Tcrit,i

pcrit,i
, (17)

b = ∑
i

yi
Tcrit,i

pcrit,i
, (18)
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Tcrit =

(
a2

b

) 2
3

, (19)

pcrit =
Tcrit

b
. (20)

Then, after we have the coefficients A and B, the compressibility factor of real gas
satisfies the equation [41]

Z3 − Z2 + (A− B− B2)Z− AB = 0. (21)

This cubic equation has three roots, in which the biggest real root is chosen [45].
The Z factor is a function of p, T, Sg, Sw, xi, and yi.

2.8. Density

The water component and oil components have the same equation:

ρ = ρ(p, T) = ρre f exp(cp(p− pre f )− ct1(T − Tre f ) (22)

− ct2

2
(T2 − T2

re f ) + cpt(p− pre f )(T − Tre f )) (23)

where ρre f is the reference density of a component at the reference temperature, Tre f , and
pressure, and pre f , cp, ct1, ct2, and cpt are parameters. The density of oil phase, ρo, which
is mixture of multiple oil components, is calculated as

1
ρo

=
nco

∑
i

xi
ρo,i

. (24)

2.9. Viscosity

There are a few ways to calculate viscosity, such as table input and analytical correla-
tions. For the table input method, interpolations are required to calculate the viscosity of a
component or a phase at a given temperature. In the following, an analytical method is
introduced for oil, water, and gas.

The viscosity of oil component in oil phase and water component in water phase has
the same formula, which is a function of temperature,

µ = avisc exp
(

bvisc
T

)
, (25)

where avisc and bvisc are parameters. The viscosity of oil phase is computed by a mixing rule,

ln(µo) =
nc,o

∑
i

x[i] ln(µOi (T)). (26)

The viscosity of a component in gas phase is calculated as

µ = µ(T) = avg · Tbvg, (27)

where avg and bvg are parameters. The gas phase viscosity is calculated as

µg = µg(p, T, Sw, Sg, xi, yi) =
∑

nc,g
i µg,i · yi

√
Mi

∑
nc,g
i yi

√
Mi

, (28)

where Mi is molecular weight of i-th component.
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2.10. Porosity

Porosity is the ratio of the pore volume to the bulk volume, which changes as pressure
and temperature change. A total compressibility of porosity [45] is defined as

φc = φc(p, T) = cpor(p− pre f )− ctpor(T − Tre f ) + cptpor(p− pre f )(T − Tre f ), (29)

which defines a function of pressure and temperature. There are two ways to model
porosity, linear, and exponential. Linear model is described as

φ = φ(p, T) = φre f · (1 + φc), (30)

and exponential model is described as

φ = φ(p, T) = φre f · eφc . (31)

The linear model is applied by default.

2.11. Relative Permeabilities

There are two ways for calculating relative permeabilities: The first one is to use
analytical correlations, and the second one is to use input tables. The water phase relative
permeability, krw, is a function of Sw (and/or temperature):

krw = krw(Sw). (32)

The gas phase relative permeability, krg, is a function of Sg (and/or temperature):

krg = krg(Sg). (33)

Sometime temperature is considered, a set of relative permeabilities are provided for
each temperature. Furthermore, a reservoir model may have several rock types, and each
rock type has one set of relative permeabilities.

Several models are available [49–52] to calculate oil phase relative permeability, kro.
In this paper, the Stone’s model II method [53] is applied, which is defined as

kro = kro(Sw, Sg) = krocw

[(
krow(Sw)

krocw
+ krw(Sw)

)(
krog(Sg)

krocw
+ krg(Sg)

)
− krw(Sw)− krg(Sg)

]
, (34)

where krocw is the oil–water relative permeability to oil at connate water saturation, krog is the
oil–gas relative permeability to oil, and krow is the oil–water relative permeability to oil.

2.12. Energy

There are a few ways to model enthalpy (energy), such as a gas-based model and
a liquid-based model. Here, the gas-based model is introduced. The enthalpy of a gas
component is calculated as follows [41]:

Hg,i = Hg,i(T) =
∫ T

Tre f

(
cpg1i + cpg2i · t + cpg3i · t2 + cpg4i · t3 + cpg5i · t4

)
dt, (35)

cpg1i, cpg2i, cpg3i, cpg4i, and cpg5i are constants for component i. The gas phase enthalpy
can be calculated by a weighted mean with gas mole fractions yi:

Hg =
Nc,g

∑
i

yi Hg,i. (36)
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For the oil and water components, vaporization is considered, which can be calculated by

Hv,i =

{
hvri · (Tcrit,i − T)evi , T < Tcrit,i;

0, T >= Tcrit,i;
(37)

However, if an oil component is heavy oil, which stays as liquid (oil phase), the
vaporization energy is zero. The enthalpy of a liquid component is calculated as

Hi = Hg,i − Hv,i. (38)

where Hg,i is the enthalpy of component i in the gas phase. The water phase enthalpy is

Hw = Hg,w − Hv,w. (39)

The enthalpy of oil phase is

Ho =
nc,o

∑
i

xi(Hg,Oi − Hv,Oi ). (40)

The internal energy for oil, gas, and water phases [41] are calculated as

Uα = Uα(T) = Hα − p/ρα, α = w, o, g (41)

For rock, a similar formula is used:

Ur = Ur(T) = cpr,1(T − Tre f ) +
cpr,2

2
(T2 − T2

re f ). (42)

The internal energy for rock has a unit of energy per unit volume, while others have
energy per mole. As mentioned above, there are two ways to calculate the volume of rock.
The following equation defines relationship among bulk volume Vb, rock volume Vr, and
pore volume Vp,

Vb = Vr + Vp, (43)

where Vp is calculated by porosity correlations and Vr is used when calculating the internal
energy of rock. The first one assumes the volume of rock (non-null) does not change, which
is noted as constant rock. It assumes that Vr is constant, which preserves rock mass and
heat, and Vb changes as Vr changes. The second one assumes that the volume of the grid
block does not change, which is noted as constant bulk. It means Vb is constant and Vr
(Vr = Vb −Vp) changes as Vp changes. The default method is the first one, rock constant.

2.13. Well Modeling

Peaceman’s model is adopted for well modeling. A well may have different directions,
such as vertical and horizontal, and it may have many perforations, each of which belongs
to a grid cell (block). Each perforation has its own properties, such as well index, rates, and
mobility. Each well has its own properties, such as well rates and bottom hole pressure.
For a perforation, its well rate for phase α, Qα, is calculated by the following formula [54]:

Qα,well = WI
ραkrα

µα
(pb − pα − γαg(zbh − z)), (44)

where WI is the well index and mobility, krα
µα

, is explicit or implicit. Explicit means its value
is from the last time step, while implicit means its value is from the last Newton iteration.
Well rate can also be calculated using a third method, unweighted method,

Qα,well = WI(pb − pα − γαg(zbh − z)), (45)
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where WI is user input value. A well index defines the relationship among a well bottom
hole pressure, a flow rate, and a grid block pressure. pb is the bottom hole pressure defined
at the reference depth z, zbh is the depth of the perforation in grid cell, and pα is the phase
pressure in grid block m. Well index can be read from modeling file and it can also be
calculated using analytical method. For a vertical well, it can be defined as

WI =
2πh3

√
k11k22

ln( re
rw
) + s

∗ frac ∗ ff, (46)

where re is equivalent radius, frac is well fraction, and ff is completion factor. Horizontal
well is defined similarly. We should mention that well modeling is the most complicated
part in reservoir simulations and various operation constraints can be defined, such as
fixed bottom hole pressure, fix liquid, and gas rate constraints and thermal constraints.

2.13.1. Fixed Bottom Hole Pressure

When the fixed bottom hole pressure condition is applied to a well, the well equation
is written as

pb = c, (47)

where c is pressure and is a constant. The bottom hole pressure is defined at a reference
depth or a grid block. If neither is provided, the grid block containing the first perforation
serves as the reference grid block.

2.13.2. Fixed Rates

Fixed rate constraints are commonly used, including fixed oil rate, fixed water rate,
fixed gas rate, and fixed liquid rate (oil and water). The rate can be reservoir rate or
surface rate. The volume of a fluid in reservoir condition can be obtained easily. However,
the volume of a fluid in surface condition requires a flash calculation to determine the
distribution in oil, water, and gas phases. There are two ways to separate phase: segregated
method and PT-flash method. The segregated method is easy but the PT-flash is tricky. The
segregated method is the default. For phase α, its fixed rate constraint is described by the
following equation:

∑
m
(Qα,well)m = c, (48)

where c is a constant rate and known. The fixed liquid rate is written as

∑
m
(Qw,well)m + ∑

m
(Qo,well)m = c, (49)

The fixed total fluid rate is written as

∑
m
(Qw,well)m + ∑

m
(Qo,well)m + ∑

m

(
Qg,well

)
m
= c, (50)

2.14. Boundary Conditions

A no-flow boundary condition is applied to fluid, which is coupled with each mass
conservation equation. For the energy conservation equation, heat loss to underburden and
overburden is considered, which is modeled by a semi-analytical method [46]. Each well
may have multiple constraints, which is user input. They are determined and switched
dynamically during the simulations.

2.15. Initial Conditions

A few initial methods are supported. The easiest one is to use explicit initial conditions,
such as pressure, temperature, mole fraction, and saturation. Another one uses the gravity
average, in which the pressure is calculated by depth difference to reference depth (grid
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block). The saturation, mole fractions, and temperature can be computed or be given by
user input.

3. Numerical Methods

In our previous previous work, a few reservoir simulators and their numerical meth-
ods have been reported [14,55,56]. The simulators share similar methods, such as time
discretization scheme, spatial discretization scheme, decoupling method, linear solver, and
preconditioners [14]. For the sake of completeness, the numerical methods are introduced
in this section. There are two main sets of unknowns: natural variables and overall vari-
ables. The natural variables use pressure, temperature, saturation, and mole fractions. The
overall variables use pressure, temperature, and overall mole fractions. Phase changes
have to be checked in each nonlinear iteration and time step if we use natural variables.
When liquid and gas phases co-exist, temperature and pressure are not independent, and
only one variable is required, such as pressure or temperature. Some researchers applied
the variable substitution trick to switch unknowns and to save computation. To overall
variables, phase status is determined after obtaining solutions. In this paper, a fully implicit
method is employed, which is friendly to large time step and to accuracy. However, it is
possible to apply some techniques to speed simulation, such as adaptive methods.

In this paper, one additional equation is adopted, when enables us to treat pressure and
temperature as independent variables through the entire simulation, which only introduces
a little more computation but simplifies the numerical treatment and linear systems.

3.1. Spatial Discretization

The natural variables are applied as unknowns, which are also called Type A variables,
including pressure, temperature, saturations, and mole fractions (oil components in oil
phase and non-condensable gas in gas phase). The variables do not change during the
simulation. However, depending on the gas phase status, one constrained equation is
switched. If gas phase exist, the following equation is applied:

∑
i

yi = 1. (51)

If gas phase does not exist, the following equation is switched:

Sg = 0. (52)

The status of gas phase has to be checked block by block in each Newton iteration.
When fluids move in a reservoir, there may be fluid exchange in two neighboring

grid blocks, which is described by transmissibility. Assuming d (d = x, y, z) is a space
direction and A be the area of a face in the d direction, the transmissibility Kα,d for phase
α (α = o, w, g) is defined as

Tα,d =
KA
∆d
× Krα

µα
ρα, (53)

where ∆d is the grid block length in the d direction, K is the absolute permeability, Krα is the
relative permeability of phase α, µα is the viscosity of phase α, and ρα is the mole density of
phase α. The transmissibility is defined on each face of a grid block. If a face is an internal
face shared shared by two grid blocks, its value is the same for these two blocks. If the
face is a boundary face, the transmissibility is zero, as the no-flow boundary condition is
applied. Different weighting schemes must be applied to average different properties at an
interface. The left part, KA

∆d , is geometric properties, and the harmonic averaging method
is applied. The right part, Krα

µα
ρα, relies on fluid properties, and the upstream averaging

method is applied [45]. The upstream finite difference method is employed to discretize
the model.
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3.2. Linear Solver

The Jacobian matrix from Newton method is highly ill-conditioned, and the Krylov
subspace solvers are applied to solve the linear system Ax = b. The key to an effective
solution method is to choose a proper preconditioner M, which should be easy to setup
and effective. In our previous work, a family of scalable CPR-type methods [14] has
been developed for reservoir simulations, which have been applied to black oil model,
compositional, in situ combustion, and the general thermal model in this paper. The
unknowns are numbered grid block by grid block and the resulted matrix in each iteration
is block-wise,

A =


A11 · · · · · · A1n
A21 A22 · · · A2n
· · · · · · · · · · · ·
An1 An2 · · · Ann

, (54)

where each sub-matrix Aij is a square matrix. In-house distributed-memory matrix, vector,
and their operations have been developed, such as adding entries, assembling, getting
sub-matrix (for CPR-type preconditioners), factorization, sparse BLAS, and point-wise and
block-wise matrices. Base on these operations, internal parallel solvers, such as GMRES,
LGMRES, CG, and BICGSTAB, and preconditioners, such as RAS, AMG, CPR-FP, CPR-PF,
CPR-FPF, ILU(k), and ILUT, have been implemented.

3.3. Decoupling Methods

A proper decoupling method is critical to the success of the CPR-type preconditioners.
In general, the decoupling method is applied before applying the CPR-type preconditioners,
which converts the original linear system to an equivalent linear system,

(D−1 A)x = D−1b. (55)

Several decoupling methods have been proposed, such as Quasi-IMPES, True-IMPES [57],
Alternate Block Factorization (ABF) [58], full row sum (FRS), and dynamic row sum
(DRS) [59] methods. The idea of ABF method is simple, which is defined as

Dab f = diag(A11, A22, · · · , Ann). (56)

It converts the block diagonal part to identity matrix. This method requires to calculate
the inverse of each diagonal part, and the matrix–matrix multiplications are performed for
each sub-matrix. The FRS decoupling method is described as

D−1
f rs = diag(D1, D2, · · · , Dn), (57)

where,

Di =


1 1 · · · 1
0 1 · · · 0
· · · · · · · · · · · ·
0 · · · 1 0
0 0 0 1

. (58)

The diagonal part and the first row are 1 and all other locations are 0, which means to
add the all rows to the first row. The DFS decoupling method is a simplified version of the
FRS method, and details can be read in [59].

The Guass–Jordan elimination (Gauss elimination; GJE) method [1] has been used to
solve linear systems. Its idea is to convert [D|A|b] to an equivalent linear system

[
I|Ã|b̃

]
by Gauss–Jordan elimination method, and the b̃ is the final solution. In this paper, it
is adopted as a decoupling method and is applied grid block by grid block to turn the
diagonal matrices to identity matrix. Pivoting technique is used and only row reordering is
involved. Since the decoupling is processed block by block, no communication is required,
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which is friendly to parallel computing. The GJE decoupling is more efficient than the ABF
method. These decoupling methods are naturally parallel, and they have ideal scalability
for parallel computing.

When the CPR-type preconditioners are applied to reservoir simulations, it is impor-
tant to keep the pressure matrix positive definite. The FRS method helps to enhance this
property, from which the CPR-type preconditioners can benefit. In the first stage, FRS
or DRS methods are applied; then, ABF or GJE methods are used as the second stage.
In this case, two-stage decoupling methods are developed, which are noted as FRS + ABF,
FRS + GJE, DRS + ABF, and DRS + GJE.

3.4. Preconditioners

Several scalable CPR-type preconditioners have been proposed [14], such as CPR-FP,
CPR-PF, CPR-FPF, and CPR-FFPF methods. According to our practices, the CPF-FPF method,
which is a three-stage preconditioner, is effective for black oil model and thermal model. The
first step is to solve an approximate solution using restricted additive Schwarz (RAS) method,
the third step is to solve the sub-problem by algebraic multi-grid method (AMG), the fifth step
is to get an approximate solution again using restricted additive Schwarz method, and the
second step and the forth step are to calculate residual.

It is well-known that the RAS method is scalable for parallel computing. Parallel
AMG method is also scalable. The default overlap of the RAS method is 1. If it’s 0, then
it is equivalent to block Jacobi method. When there are too many MPI processes, we
may increase the overlap to maintain convergence of the preconditioner, such as 2 and 3.
However, more communications are introduced in the setup phase of the RAS method,
which needs to construct a local sub-problem by requesting more entries of the distributed
matrix from other MPI processes. The sub-problem in each MPI process (CPU core) from
RAS method is solved by ILUT by default, which can also be solved by ILU(k) or block
ILU(k) [14]. The size of the lower triangular matrix and the upper triangular matrix can
be reduced by dropping small entries or using smaller p for ILUT and k for ILUK, and
the convergence of ILU methods should be well balanced. The recommended level (k) for
ILUK is 1. The AMG is from Hypre [60].

We should mention here that the RAS method requires very few communications.
In each solution phase, it requires some off-process component information of the right-
hand side. After this, no communication is required. In parallel computing, the RAS
method has ideal scalability. If overlap 0 is applied, there is no communication during the
solution phase. The AMG method also has good scalability. In addition, the decoupling
methods are local, which means there is no communication. We can see that the solution
methods here are designed for parallel computing and good scalability is ensured.

3.5. Parallel Computing

The key to scalability is to partition the given grid in a proper way. The partitioning
method should minimize the total communications and maximal communication per
MPI. Furthermore, each sub-grid should be connected with a few other sub-grids. In our
simulator, two methods are supported. The first one is a graph partitioning method, which
sees each grid as a dual graph. The dual graph models communication patterns. When
the grid is partitioned, we make sure the cut edges are minimized, which makes sure
communications are minimized. The package ParMETIS provides excellent partitioning
speed and quality. The second method is to use geometry-based method. In our simulator,
an in-house Hilbert space-filling curve method is implemented, which maps all grid blocks
to (0, 1). Then, the interval is partitioned into m sub-intervals, and each interval is assigned
to one MPI process. Grid blocks belong to the same interval belong to the same MPI process.

The grid partition determines the grid distribution and communication pattern, which
is the key to scalability. Furthermore, each MPI forms its own part of the Jacobian system.
The grid partition also determines the scalability of RAS method and its convergence.
Assuming that non-overlapped RAS is chosen, then each MPI extracts a diagonal matrix
from its local Jacobian system. If overlapped RAS is applied, then neighbors of each local
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diagonal matrix is determined by the matrix structure, which is from the grid partition.
We can see that the grid partition is the key to simulator scalability and solver scalability.

If we keep the grid unchanged, then each sub-grid keeps the same, which means
the communication pattern does not change. The pattern can be saved and attached
to the grid. When communications are required, each sub-grid knows where to send
data, where to receive data, and how much data should be exchanged. By storing the
communication pattern, the communication operations are easy to perform. When we
compute sparse matrix vector multiplication, a similar communication pattern can be
computed and attached to a matrix.

In parallel simulation, a large data file may be read and written to initialize the
reservoir and to save results. In our simulator, the MPI-IO is applied to read and write in
parallel. The simplest way to do this is to save a grid data in one file, such as pressure and
saturation. The read and write operations are easy to implement. Another way is to save
data in multiple column format. For example, the first column is pressure, the second one
is density, and the third one is temperature. It is easy for MPI-IO to handle the formatted
data file. In our implementation, we assume each column has a length of 20 letters, so we
can compute the offset in relative easy way, where the offset is required by MPI-IO.

4. Numerical Studies

Numerical experiments are presented here, which occupy a few sections. The first
section validates our results against CMG STARS, which is the most widely applied thermal
simulator. The purpose is to prove the correctness of our numerical methods, models,
and implementation. The second section studies numerical performance of our methods.
The third section tests the scalability of our thermal simulator using some giant models.
In the following sections, each MPI runs on one core, and the number of MPI processes
is the same as the number of CPU cores. A better way is each MPI runs on one CPU and
multiple threads run on the multi-cores. In our simulator, the OpenMP is disabled by
default. The reason we disable OpenMP is that efficient usage of OpenMP requires us to
change a lot of codes, especially that the solver needs major re-factorization, which is our
future work.

4.1. Validation

This section has two validation models. The first one has water heavy oil. The second
one has water, heavy oil, light oil, and non-condensable gas (NCG). They are created
to validate if our results match commercial simulator when equivalent models are used,
where CMG STARS is employed. The CMG STARS is the most popular thermal simulator.

4.1.1. Heavy Oil

Example 1. This model has water and one heavy oil component. The heavy oil component stays in
oil phase only. It has three vertical wells: one injection well at (1,1) and two production wells at
(9, 1) and (5, 5). Tables 1 and 2 show the oil–water relative permeability curve and liquid–gas
relative permeability curve. Here, the capillary pressures are ignored. Table 3 presents chemical
properties. Table 4 shows well data, including well index and operations. Table 5 gives initial
conditions. The simulation period is 365 days and the initial time step is 10−3 day. The model is
small, and its grid dimension is 9× 5× 4. The grid size is 29.17 f t× 29.17 f t× 10 f t. The standard
Newton method is applied to solve the nonlinear system, in which the termination tolerance is
10−6 and the maximal iterations are 10. The linear solver is BICGSTAB and the preconditioner is
CPR-FPF, in which the tolerance is 0.0001 and the maximal iterations are 100. The GJE decoupling
method is applied to the linear systems. All wells apply the implicit modeling. Each perforation of
the production wells is heated at 106 Btu/day. Figures 1–8 show bottom hole pressure and liquid
rates, which are compared with CMG STARS.
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Table 1. Oil–water relative permeability for Example 1.

Sw krw krow

0.45 0.0 0.4
0.47 0.000056 0.361
0.50 0.000552 0.30625
0.55 0.00312 0.225
0.60 0.00861 0.15625
0.65 0.01768 0.1
0.70 0.03088 0.05625
0.75 0.04871 0.025
0.77 0.05724 0.016
0.80 0.07162 0.00625
0.82 0.08229 0.00225
0.85 0.1 0.0

Table 2. Liquid–gas relative permeability for Example 1.

Sl krg krog

0.45 0.2 0.0
0.55 0.14202 0.0
0.57 0.13123 0.00079
0.60 0.11560 0.00494
0.62 0.10555 0.00968
0.65 0.09106 0.01975
0.67 0.08181 0.02844
0.70 0.06856 0.04444
0.72 0.06017 0.05709
0.75 0.04829 0.07901
0.77 0.04087 0.09560
0.80 0.03054 0.12346
0.83 0.02127 0.15486
0.85 0.01574 0.17778
0.87 0.01080 0.20227
0.90 0.00467 0.24198
0.92 0.00165 0.27042
0.94 0.0 0.30044
1.0 0.0 0.4

Table 3. Property data for Example 1.

Properties HO

M (lb/lbmole) 600
ρre f (lbmole/ft3) 0.10113
cp (1/psi) 5× 10−6

ct1 (1/◦F) 3.8× 10−4

cpg1 (Btu/(◦F · lbmol)) 300
avisc (cp) 2
bvisc (◦F) 5728.2

Properties Water

M (lb/lbmole) 18.02
pcrit (psi) 3206.2
Tcrit (

◦F) 705.4
ρre f (lbmole/ft3) 3.464
cp (1/psi) 3.999× 10−6

ct1 (1/◦F) 4× 10−4

cpg1 (Btu/(◦F · lbmol)) 7.613
hvr (Btu/(◦Fev · lbmol)) 1657.0
ev 0.38
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Table 3. Cont.

Properties Water

avg (cp/◦F) 1.13× 10−5

bvg 1.075
avisc (cp) 0.0047352
bvisc (◦F) 2728.2
kv1 (psi) 1.7202× 106

kv2 (1/psi) 0
kv3 0
kv4 (◦F) −6869.59
kv5 (◦F) −376.64

Table 4. Well data for Example 1.

Well Conditions

Injector water (bbl/day) 100
wi (ft ·md) 104

tinjw (◦F) 450
steam quality 0.0

Producer 1 bhp (psi) 17
wi (ft ·md) 104

Producer 2 bhp (psi) 17
wi (ft ·md) 104

Table 5. Initial condition data for Example 1.

Initial Condition

kx,y,z (md) 313, 424, 535
φ 0.3
φc 5× 10−4

p (psi) 4000
T (◦F) 125
Sw,o,g 0.45, 0.55, 0.
x 0.6, 0.4
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Figure 1. Example 1, injection well, bottom hole pressure (psi).
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Figure 2. Example 1, injection well, water injection rate (bbl/day).
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Figure 3. Example 1, water production rate (bbl/day), first production well.
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Figure 4. Example 1, water production rate (bbl/day), second production well.
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Figure 5. Example 1, total water production rate (bbl/day).
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Figure 6. Example 1, oil production rate (bbl/day), first production well.
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Figure 7. Example 1, oil production rate (bbl/day), second production well.
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Figure 8. Example 1, total oil production rate (bbl/day).

Figure 1 is the bottom hole pressure of the injection well. In this figure, the results
from our simulator are marked as “THM” and the results from CMG STARS are marked as
“CMG STARS”. From now on, all results are marked the same way. From Figure 1, we can
see that the bottom hole pressures from two simulator match exactly. In the beginning, the
bottom hole pressures change dramatically. Figure 2 is the water rate of the injection well.
The model has an injection rate of 100 bbl/day. Figure 2 shows that both simulators have
the correct injection rates and the error is small.

Figures 3–5 show the water production rate of the first production well, the water
production rate of the second production well, and the total water production rate of all
production wells. All three figures show that our simulator has the same results as CMG
STARS in the early stage. However, as each simulator has its own internal numerical
tunings, the curves have slight differences, which are totally acceptable in real production.
Figures 6–8 are the oil production rate of the first production well, the oil production rate of
the second production well, and the total oil production rate of all production wells. Again,
we can see that our results match CMG STARS. In this example, we can conclude that our
results match CMG STARS very well, which confirms our methods and implementation
are correct.

4.1.2. Light Oil and Non-Condensable Gas

Example 2. This model has water, one heavy oil component, one light oil component, and
two non-condensable gas (NCG) components. The water and heavy oil component have the
same properties as Example 1. Tables 6 and 7 provide data for light oil component and NCG.
Tables 8 and 9 present well data and initial conditions. It has five vertical wells: one injection
well in the center (5, 5), and four production wells in four corners, (1, 1), (1, 9), (9, 1),
and (9, 9). The grid dimension is 9 × 9 × 4, and the grid size is 29.17 f t × 29.17 f t × 10 f t.
The standard Newton method is applied to solve the nonlinear system, in which the termination
tolerance is 0.0001 and the maximal iterations are 10. The linear solver is BICGSTAB and the
preconditioner is CPR-FPF, in which the tolerance is 0.0001 and the maximal iterations are
100. The GJE decoupling method is applied to the linear systems. All wells apply the implicit
modeling. Figures 9–15 present bottom hole pressure for injection well and fluid rates, including
water rate, oil rate, and gas rate. As each production well has similar results, only results from
the first production well are reported. All results are compared with CMG STARS.
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Table 6. Light oil property data for Example 2.

Properties Light Oil

M (lb/lbmole) 250
pcrit (psi) 225
Tcrit (

◦F) 800
ρre f (lbmole/ft3) 0.2092
cp (1/psi) 5× 10−6

ct1 (1/◦F) 3.8× 10−4

cpg1 (Btu/(◦F · lbmol)) 247.5
hvr (Btu/(◦Fev · lbmol)) 657.0
ev 0.38
avg (cp/◦F) 5× 10−5

bvg 0.9
avisc (cp) 0.287352
bvisc (◦F) 3728.2
kv1 (psi) 7.9114× 104

kv2 (1/psi) 0
kv3 0
kv4 (◦F) −1583.71
kv5 (◦F) −446.78

Table 7. NCG property data for Example 2.

Properties N2 Isert

M (lb/lbmole) 28 40.8
pcrit (psi) 730 500
Tcrit (

◦F) −181 −232

cpg1 (Btu/(◦F · lbmol)) 6.713 7.44
cpg2 (Btu/(◦F2 · lbmol)) −4.883× 10−7 −0.0018
cpg3 (Btu/(◦F3 · lbmol)) 1.287× 10−6 1.975× 10−6

cpg4 (Btu/(◦F4 · lbmol)) −4.36× 10−10 −4.78× 10−10

avg (cp/◦F) 2.1960× 10−4 2.1267× 10−4

bvg 0.721 0.702

Table 8. Well data for Example 2.

Well Conditions

Injector water (bbl/day) 100
wi (ft ·md) 104

tinjw (◦F) 450
steam quality 0.3

Producer 1 bhp (psi) 17
wi (ft ·md) 2× 104

Producer 2 bhp (psi) 17
wi (ft ·md) 3× 104

Producer 3 bhp (psi) 17
wi (ft ·md) 4× 104

Producer 4 bhp (psi) 17
wi (ft ·md) 5× 104
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Table 9. Initial data for Example 2.

Initial Condition

kx,y,z (md) 313, 424, 535
φ 0.3
φc 5× 10−4

p (psi) 4000
T (◦F) 125
Sw,o,g 0.4, 0.5, 0.1
x 0.6, 0.4
y 0.2, 0.7
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Figure 9. Example 2: injection well, bottom hole pressure (psi).
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Figure 10. Example 2: water production rate (bbl/day), first production well.
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Figure 11. Example 2: total water production rate (bbl/day).
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Figure 12. Example 2: oil production rate (bbl/day), first production well.
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Figure 13. Example 2: total oil production rate (bbl/day).
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Figure 14. Example 2: gas production rate (ft3/day), first production well.
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Figure 15. Example 2: total gas production rate (ft3/day).

Example 1 has only one oil component, which stays in oil phase only, while this
example has light oil component and non-condensable gas components. Example 1 has
no gas production. Furthermore, under reservoir conditions, gas may or may not appear.
The physics of this example is more complicated. Figure 9 is the bottom hole pressure of
the injection well, and from the curves, we can see that our results match the CMG STARS
simulator. Figures 10 and 11 are water production rate of the first production well and the
total water production rate of all production wells. Again, a good match can be observed.
Figures 12 and 13 are the oil production rate of the first production well and the total oil
production rate of all production wells. Figures 14 and 15 are the gas production rate of
the first production well and the total gas production rate of all production wells. These
figures show that our results match CMG STARS very well, which confirms our methods
and implementation are correct.

4.2. Numerical Performance

Example 3. This example tests a SAGD model with 25 well pairs, which includes one water component,
one heavy component, one light component, and two inert gase components, and their properties are
the same as Example 2. The grid dimension is 100× 100× 6 and gird size is 10 f t× 10 f t× 1 f t.
The simulation time is 200 days and the maximal time step is 10 days. The Newton tolerance is 10−3 and
its maximal iterations are 15. The linear solver is BICGSTAB, its tolerance is also 10−3 and its maximal
iterations are 60. GJE is the decoupling method. All injectors operate at 3 bbl/day water injection with
steam quality of 0.2 and temperature of 450 F. All producers operate at bottom hole pressure of 2000 psi
and steam trap temperature difference of 20 F. summaries of our simulator are shown in Table 10. As the
model is small, only one computing node is employed.

Table 10. Numerical summaries of Example 3.

CPU Cores # Time Steps # Newton # Linear Solver Avg. Linear Time

4 96 (4) 314 5587 17.80 1420.63
8 100 (6) 338 6157 18.22 816.69

16 101 (4) 326 6215 19.06 558.22
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Table 10 provides numerical summaries for time steps (and time cut), total Newton
iterations, total linear solver iterations, average linear iterations per Newton iteration, and
total simulation time at different CPU cores (MPIs). The RAS method solves a smaller
local problem on each CPU core, and the parallel AMG method balances scalability and
convergence rate. As expected, when more CPU cores (MPIs) are used, time steps and
linear iterations increase. Regardless, the results show that our numerical methods are
effective, which can solve a time step in less than 4 Newton iterations and solve a linear
system in less than 20 iterations. When more CPU cores are used, the simulation time is
cut, which shows that parallel computing is a powerful tool for reservoir simulation.

Example 4. This example tests one water component, one heavy component, and one light component.
SAGD process with 756 well pairs is simulated. The grid has a dimension of 60× 220× 85 and size of
20 f t× 10 f t× 1 f t. All wells are horizontal wells along x direction, if the index of y direction of a grid block
equals to 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103,
107, 111, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187,
191, 195, 199, 203, 207, 211, or 215, and the index of z direction equals to 4, 10, 16, 22, 28, 34, 40, 46, 52,
58, 64, 70, 76, or 82, then an injection well is defined. For example, (1:60, 3, 10) defines an injection well
at (3,10) of yz-plane, and its perforations are from 1 to 60. This defines 756 injection wells. A production
well is defined two blocks under an injection well. Therefore, 756 well pairs and total 1512 wells are defined
in the model. All injection wells operate at 10 bbl/day water injection, with a steam quality of 0.2 and
temperature of 450 F. All production wells operate at fixed bottom hole pressure of 100 psi. Each perforation
of an injection well is heated at rate of 105 btu/day. The simulation time is 100 days. Eight CPU cores
(8 MPIs) are employed. The Newton tolerance is 0.0001 and its maximal iterations are 15. The linear solver
is BICGSTAB, its tolerance is also 0.0001, and its maximal iterations are 100. Different preconditioners and
decoupling methods are employed. Table 11 shows numerical summaries.

Table 11. Numerical summary of Example 4.

Preconditioner Decoupling Time Steps # Newton # Linear Solver

CPR-FP NONE NA NA NA
CPR-FP FRS NA NA NA
CPR-FP DRS NA NA NA
CPR-FP ABF NA NA NA
CPR-FP GJE 101 (12) 598 8856
CPR-FP DRS + ABF NA NA NA
CPR-FP DRS + GJE 95 (10) 559 8090
CPR-FP FRS + ABF NA NA NA
CPR-FP FRS + GJE 96 (10) 552 7608

CPR-PF NONE NA NA NA
CPR-PF FRS NA NA NA
CPR-PF DRS NA NA NA
CPR-PF ABF 125 (15) 738 18,680
CPR-PF GJE 105 (10) 585 11,263
CPR-PF DRS + ABF 103 (9) 563 12,642
CPR-PF DRS + GJE 109 (11) 636 12,947
CPR-PF FRS + ABF NA NA NA
CPR-PF FRS + GJE 109 (12) 640 13,050

CPR-FPF NONE NA NA NA
CPR-FPF FRS NA NA NA
CPR-FPF DRS NA NA NA
CPR-FPF ABF NA NA NA
CPR-FPF GJE 97 (10) 566 7887
CPR-FPF DRS + ABF NA NA NA
CPR-FPF DRS + GJE 97 (10) 566 7813
CPR-FPF FRS + ABF NA NA NA
CPR-FPF FRS + GJE 97 (10) 559 7666
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Table 11 presents preconditioners, decoupling methods, total time steps and time cuts,
total Newton iterations, and total linear iteration. Here, NA means the combination fails
to simulate the model. The CPR-FP and the CPR-PF are two-stage CPR preconditioner
and the CPR-FPF is a three-stage CPR preconditioner. From the table, we can see the
simulations fail if no decoupling method is used. Furthermore, FRS or DRS does not work
for thermal reservoir simulations. The ABF decoupling method works very well for black
oil simulation, where temperature does not change. Here, the ABF method fails two cases
out of three cases while the GJE method works for all cases. Even when the ABF method
works with the CPR-PF preconditioner, the GJE decoupling method has much less time
steps, Newton iterations, and linear iterations. It is clear that the GJE decoupling works
much better than the ABF method. For CPR-FP and CPR-FPF preconditioners, two stage
decoupling methods improve the efficiency of Newton method and linear solver. The
results clearly show that a proper decoupling method is critical to the success of linear
solver and CPR-type preconditioners. The GJE decoupling and the FRS+GJE decoupling
work better than the ABF decoupling.

Example 5. This example tests one water component, one heavy component and one light com-
ponent. SAGD process with 7406 well pairs (14,812 wells, 7406 injectors, and 7406 producers)
is simulated. The grid has a dimension of 60× 2200× 85, 11 million grid blocks, and size of
20 f t× 10 f t× 2 f t. All wells are horizontal wells along x direction. All injection wells operate at
5 bbl/day water injection, with a steam quality of 0.2 and temperature of 450 F. All production wells
operate at fixed bottom hole pressure of 300 psi. All wells are modeled by implicit method. The model
file has around 185,000 lines. The simulation time is 100 time steps due to system running time
limit. The initial time step is 10−6 days. 10 nodes and 200 CPU cores (200 MPIs) are employed
on Niagara, Compute Canada. The Newton tolerance is 10−3 and its maximal iterations are 15.
The linear solver is BICGSTAB, its tolerance is also 0.0001 and its maximal iterations are 100. The
maximal changes in a time step for pressure, saturation, mole fraction and temperature are 500 psi,
0.1, 0.1, and 15 F. Numerical summaries are shown by Table 12.

Table 12. Numerical summaries of Example 5.

Preconditioner Decoupling Time Steps # Newton # Linear Solver

CPR-FP GJE 100 284 1245
CPR-FP FRS + GJE 100 267 1194

CPR-PF GJE 100 299 1540
CPR-PF FRS + GJE 100 282 1183

CPR-FPF GJE 100 308 1801
CPR-FPF FRS + GJE 100 298 1255

Table 12 shows that all tests pass. The Newton method converges in around three
iterations, while linear solver converges in four to five iterations in average. For a specific
preconditioner, the FRS + GJE decoupling method is always better than the GJE method.
When two-stage decoupling method FRS + GJE is applied, less Newton iterations and
linear iterations are required.

4.3. Scalability

The parallel computers from Compute Canada are employed. The Niagara supercom-
puter consists of 1500 nodes, and each node has 40 Intel Skylake cores at 2.4 GHz, for a total
of 60,000 cores. Each node has 202 GB (188 GiB) RAM, and EDR Infiniband network is used
to communicate. The Cedar supercomputer has a hybrid architecture, which uses Intel
E5-2683 v4 “Broadwell” at 2.1 Ghz, E5-2650 v4 at 2.2 GHz, Intel E7-4809 v4 “Broadwell” at
2.1 Ghz, and Intel Platinum 8160F “Skylake” at 2.1 Ghz. It has a total of 58,416 CPU cores
for computation, and 584 GPU devices.

A Cray XC30 supercomputer is also employed. Each computation node contains two
2.7 GHz, 12-core Intel E5-2697 v2 CPUs, and 64 GB of memory is shared between the two
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processors. The memory bandwidth is ~103 Gb/s. The memory access is nonuniform
access (NUMA): each processor owns a single NUMA region of 32 GB. Accessing its own
region has a lower latency than accessing the other NUMA region. Also, these 24 cores
compete the memory channels. The Aries interconnect connects all computation nodes in a
Dragonfly topology.

Example 6. This example studies a large thermal model with a grid dimension of 360× 400× 1600,
230 million grid blocks. Twelve nodes and up to 192 CPU cores are employed using the Niagara
supercomputer. The Newton method is applied with a tolerance of 10−6 and maximal iterations
of 10. The linear solver is BICGSTAB with a tolerance of 10−5 and maximal iterations of 100.
The preconditioner is the CPR-FPF method. Table 13 presents running time and memory used.
Figure 16 shows the scalability.

Table 13. Summary of Example 6.

CPU Cores Total Time (s) Solver Time (s) Overall Speedup Memory (GB)

24 2448.78 927.92 1.00 (100%) 1945.92
48 1094.55 380.40 2.24 (112%) 1959.28
96 545.20 194.81 4.49 (112%) 1970.83
192 291.88 107.32 8.38 (105%) 1994.25
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Figure 16. Example 6: scalability curve.

Table 13 shows total time, linear solver time, speedup and total memory, from which
we can see that huge amount of memory is required. The simulation is not possible for
desktop computers. The running time and Figure 16 show the simulator, linear solver, and
preconditioner have good scalability.

Example 7. This example studies a large thermal model with a grid dimension of 1080× 2000×
1600, 3.46 billion grid blocks and the resulted linear systems have 17.3 billion unknowns. 360 nodes
are employed using the Cedar supercomputer. The Newton method is applied with a tolerance of
10−10 and maximal iterations of 10. The linear solver is BICGSTAB with a tolerance of 10−10

and maximal iterations of 100. The preconditioner is the CPR-FPF method with GJE decoupling.
Table 14 presents running time and memory used.
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Table 14 shows that the simulator, linear solver, and preconditioner have excellent
scalability. This example proves that our thermal simulator can handle extreme large-scale
models. If more computing resources are available, a larger model can be simulated.
Our linear solver and preconditioner can solve linear systems with dozens of billions of
unknowns. In an ideal case, when the size of MPIs doubles, the simulation time should be
cut by half and the ideal speedup should be 2. This example shows a speedup of 1.65 and
an efficiency of 82.5%, and we believe the reason is that when more CPU cores are used in
one node, these processors compete memory and computing, which reduces the effective
memory communication bandwidth. Therefore, the speedup is reduced.

Table 14. Summary of Example 7.

CPU Cores Total Time (s) Solver Time (s) Overall Speedup Memory (GB)

2880 (360 × 8) 1247.74 996.76 1.00 (100%) 30,101.46
5760 (360 × 16) 757.70 578.32 1.65 (82.5%) 33,490.12

Example 8. This example studies a large thermal model with a grid dimension of 1440× 2000×
1600, 4.6 billion grid blocks and the resulted linear systems have 23 billion unknowns; 1024 nodes
are employed. The Newton method is applied with a tolerance of 0.0001 and maximal iterations of
10. The linear solver is BICGSTAB with a tolerance of 10−3 and maximal iterations of 100. The
preconditioner is the CPR-FPF method with GJE decoupling. Table 15 presents running time and
memory used and Figure 17 shows the scalability.

Table 15 shows overall time, linear solver time, linear solver speedup, overall speedup,
and total memory. When 4096 and 6144 cores are used, the scalabilities are 1.89 and
2.7, respectively, while the best scalabilities should be 2 and 3. In this case, the parallel
efficiencies are 94% and 90%, which are good for parallel numerical simulations. However,
this example shows linear solver has better speedup and parallel efficiency. If special
optimization techniques are applied, such as multi-level load balancing that considers the
architecture of the system and multi-layer communications, the communication volume
and latency will be reduced and scalability can be improved. When 12,288 cores are
employed, each node runs 12 cores and 12 MPIs, and each processor uses its 6 cores. In this
case, memory access may be an important issue, which may reduce the effective memory
bandwidth of each MPI and increase computation time.

Table 15. Summary of Example 8.

CPU Cores Total (s) Solver (s) Solver
Speedup

Overall
Speedup

Memory
(GB)

2048 793.68 594.70 1.00 (100%) 1.00 (100%) 43,090.70
4096 419.45 305.93 1.94 (97.0%) 1.89 (94%) 41,542.27
6144 293.85 213.48 2.78 (92.7%) 2.70 (90%) 45,118.68

12,288 168.97 118.23 5.03 (83.0%) 4.70 (78%) 44,063.20

Example 9. This example studies a simplified problem with a grid dimension of 216 billion grid
blocks. The linear solver is BICGSTAB and the preconditioner is the RAS method. Table 16 presents
running time and memory used for 4096 computation nodes. Table 17 presents running time and
memory used for 4200 computation nodes. Each node uses 2, 4, 6, 12, and 24 cores. Figure 18 is the
speedup curve.
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Table 16. Summary of Example 9.

CPU Cores Total (s) Solver (s) Solver
Speedup

Overall
Speedup

Memory
(GB)

8192 472.64 240.15 1.00 (100%) 1.00 (100%) 252,194.32
16,384 249.68 130.52 1.84 (92.0%) 1.89 (94.5%) 255,154.24
24,576 169.84 88.58 2.71 (90.4%) 2.78 (92.7%) 258,981.60
49,152 96.53 51.97 4.62 (77.0%) 4.89 (81.5%) 269,806.56
98,304 55.77 31.89 7.53 (62.8%) 8.47 (70.6%) 289,981.44

Table 17. Summary of Example 9.

CPU Cores Total (s) Solver (s) Solver
Speedup

Overall
Speedup

Memory
(GB)

8400 456.68 229.65 1.00 (100%) 1.00 (100%) 252,915.14
16,800 237.28 121.62 1.89 (94.4%) 1.92 (96.2%) 255,850.05
25,200 161.45 82.23 2.79 (93%) 2.83 (94.1%) 259,589.53
50,400 93.97 50.54 4.54 (75.7%) 4.86 (80.9%) 270,134.15
100,800 54.16 30.94 7.42 (61.8%) 8.43 (70.2%) 290,869.03
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Tables 16 and 17 show numerical summaries, including CPU cores, total simulation
time, solver time, speedup, and memory usage. The first table uses 4024 computation
nodes, and the second table uses 4200 computation nodes. The tables and curves show our
parallel simulator has good scalability and efficiency. To the best of our knowledge, this is
the largest thermal model, and it uses the most CPU cores for thermal reservoir simulation.

5. Conclusions

This paper introduces a parallel thermal simulator on distributed-memory parallel
computers, where MPI is employed for communications. The simulator is designed to
handle giant models with billions of grid blocks using hundreds of thousands of CPU cores.
Its mathematical models and numerical methods are presented. Numerical experiments
are carried out to verify the methods and implementations, which show that our simulator
can match commercial software and it has excellent scalability, and it can handle extremely
large-scale reservoir models.
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