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Abstract: A numerical analysis of unsteady fluid and heat transport of compressible Helium–Xenon
binary gas through a rectangular porous channel subjected to a transverse magnetic field is herein pre-
sented. The binary gas mixture consists of Helium (He) and Xenon (Xe). In addition, the compressible
gas properties are temperature-dependent. The set of governing equations are nondimensionalized
via appropriate dimensionless parameters. The dimensionless equations involve a number of di-
mensionless groups employed for detailed parametric study. Consequently, the set of equations is
discretized using a compact finite difference scheme and solved by using the 3rd-order Runge–Kutta
method. The model’s computed results are compared with data from past literature, and very favor-
able agreement is achieved. The results show that the magnetic field, compressibility and variable
fluid properties profoundly affect heat and fluid transport. Variations of density with temperature as
well as pressure result in an asymmetric mass flow profile. Furthermore, the friction coefficient is
greater for the upper wall than for the lower wall due to larger velocity gradients along the top wall.
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1. Introduction

Magnetrohydrodynamics, known as MHD, is the combined field of fluid dynamics
and electromagnetic effects. Theoretically, when electrically conducting fluids (such as
noble gases and plasmas) flow through a magnetic field, electrons in both the fluid and
the magnetic field induce an electric current in the direction perpendicular to the flow and
magnetic field. The electric current then interacts with the magnetic field, which results in
the “Lorentz force” being exerted on the fluid particles. In addition to the induced force,
magnetic induction causes resistive heat, termed Joule or Ohmic heating. Magnetic fields
can be utilized for a purpose of controlling flows, which are termed MHD flows. MHD
applications include use as thrusters, pumps, accelerators and cross-field generators [1–4].
These MHD devices play a major role, for example, in enhancing the efficiency of jet
engines [2]. In another example, plasma can be detained within the torus shape of a
tokamak by magnetic force in order to control the generation of nuclear fusion power [5].

The magnetic field applied to flows in porous domains covers a wide area of applica-
tion including geothermal energy, metallurgy and nuclear science [6,7]. In the solidification
of alloys, a magnetic field is used to adjust the flow pattern in the porous mushy zone [8].
MHD flows of liquid metal in a capillary porous system (CPS) were investigated as a
means to obtain better control of head load and surface erosion on the plasma facing
components (PFCs) [5,9]. For enhancement of heat transfer, there have been a number of
studies which investigated nanofluids subjected to magnetic fields [10–14]. Furthermore,
magnetic fields have been applied to blood flows for clinical purposes. Pulsatile flows of
blood that were considered electrically conducting through porous media were numerically
investigated [15,16].

Fluids 2021, 6, 392. https://doi.org/10.3390/fluids6110392 https://www.mdpi.com/journal/fluids

https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://doi.org/10.3390/fluids6110392
https://doi.org/10.3390/fluids6110392
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fluids6110392
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids6110392?type=check_update&version=2


Fluids 2021, 6, 392 2 of 14

Thermal behavior of the flow of an electrically conducting fluid through a magnetic
field over a stretching sheet embedded in a non-Darcian medium was numerically analyzed,
accounting for radiation and heat generation and absorption [17]. The unsteady problem
of the laminar fully-developed flow and heat transfer of an electrically-conducting and
heat-generating or absorbing fluid with variable properties through a porous channel in
the presence of uniform magnetic and electric fields was studied through a parametric
study [18]. Later, El-Amin took the combined effects of Ohmic (or Joule) heating and
viscous dissipation into consideration to investigate MHD forced convection over a non-
isothermal horizontal cylinder in a fluid saturated porous medium [19].

The effects of flow, medium permeability and fractional parameters were analyzed
for the flow of eclectically conducting fractional fluid through a porous channel. The exact
solution was derived by applying the Caputo–Fabrizo time fractional derivative to find the
exact solution. The momentum equation was solved using the joint Laplace and Fourier
transform [20].

However, the study of compressibility effects on MHD porous flows has been very
limited [21–24]. The influences of magnetic induction and rotation on the thermosolutal
instability of a rotating flow in a porous medium was investigated [21]; the fluid was
considered compressible, as its fluid density varied with temperature pressure and con-
centration. Additionally, each temperature pressure and concentration was a function
of elevation. The thermal instability of a Rivlin–Ericksen rotating fluid with suspended
particles flowing through a porous medium subjected to a magnetic effect was studied [22];
the fluid density varied with both temperature and pressure. In these works [21–24], the
representative model for electrically conducting fluid was assumed with constant proper-
ties. MHD compressible liquid which flowed through a porous plate was examined [24];
it was found that a differential equation for the density could be linear if gravitational
effects were neglected. The recent work on compressible MHD flow through a porous
medium has been conducted numerically [25]. In this work, the computed results were
nondimensionalized via post processing. Although the overall effect of magnetic-flow
interaction on thermal and flow processes was interesting, the Hartman number which
represented the magnetic effect was the only parameter examined. Moreover, employing
the properties of air in calculations might not reflect the true situation with accuracy.

The present article investigates the unsteady flow and heat transfer of a compressible
Helium–Xenon binary gaseous mixture subjected to a magnetic field in a two-dimensional
plane. Helium (He)–Xenon (Xe) gaseous mixture is generally adopted as a working fluid in
a closed cycle MHD power generation system to avoid using an alkali-metal seed [26,27].
Additionally, the He–Xe mixture is utilized as a coolant in nuclear reactors due to its high
heat transfer coefficient [28,29]. The thermal and mechanical properties of the gaseous
mixture are considered temperature-dependent. Density of the mixture gas is allowed
to change with temperature as well as pressure. The system of dimensionless governing
equations is one of the important dimensionless parameters that effectively facilitate
parametric analysis. The numerical results are validated using the previously published
literature. To our best knowledge, such a study is not found in the existing literature.

2. Problem Formulation and Methodology

Figure 1 shows the physical geometry of the problem. A rectangular porous channel
with the size of 0.0001 m × 0.0002 m is placed in an x-y coordinate. The binary gaseous
mixture of Xe and He with equal component proportion is considered. The gas flows
through an inlet section with the mass flow rate given by Equation (1):

ρuin = ρu0

(
cos

πy
d

)2
(1)

where u0 is the peak velocity at the inflow boundary, which will be used as a reference
value for the non-dimensionalization process.
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Figure 1. Schematic representation of the physical geometry of the problem.

An isothermal condition is imposed on the lateral walls. The top wall has a higher
temperature than the bottom wall. The outflow boundary is nonreflecting [30]. The
magnetic field propagates from the lower wall to the upper wall across the domain.

2.1. Mathematical Model

The set of governing equations is modeled to describe the non-isothermal flow of elec-
trically conducting fluid through a porous media including mass conservation momentum
and energy equations. The Darcy-Brinkman-Forchheimer equation is used to model flow
through a porous media [31–33]. In its conservative form, it is written for two-dimensional
flow as

δ

δt
[U] +

δ

δx
[EI − Ev] +

δ

δy
[FI − FV ] = [H] (2)

where U, E, F and H are column vectors containing flux variables, as follows:

[U] =


ρ

ρu
ρv
ρet

 (3)

[EI ] =


ρu

ρu2 + p
ρuv

u(ρet + p)

 ; [FI ] =


ρv

ρuv
ρv2 + p

v(ρet + p)

 (4)

[EV ] =


0

σxx
τxy

−uσxx − vτxy − qx

 ; [FI ] =


0

τxy
σyy

uτxy − vσyy −−qy

 (5)

[H] =


0

− u
K

(
µ + ρ

√
u2 + v2

)
− σB2

0u

− v
K

(
µ + ρ

√
u2 + v2

)
σB2

0u2

 (6)

The stress tensor can be expanded in terms of velocity and viscosity, as follows:

σxx = −2
3

µ

(
∇ ·

→
V
)
+ 2µ

∂u
∂x

(7)

σyy = −2
3

µ

(
∇ ·

→
V
)
+ 2µ

∂v
∂y

(8)
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τxy = µ

(
∂u
∂y

+
∂v
∂x

)
(9)

The dynamic viscosity and thermal conductivity of the binary gas mixture data are
taken from [34] and plotted as a function of temperature in Figure 2.
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temperature.

Subsequently, the temperature dependencies of viscosity (µ) and thermal conductivity
(k) are modeled using a linear regression approach and given by

µ(T) = 6.72696× 10−8T + 5.47652× 10−6 (10)

k(T) = 7.75447× 10−5T + 1.40533× 10−2 (11)

In a fluid-saturated porous domain, the effective thermal conductivity keff is considered
as

ke f f (T) = φk(T) + (1− φ)ks, (12)

where porosity φ and the Thermal Conductivity of Solid Matrix ks are taken to be constant
at 0.75 and 0.6, respectively.

Considering the compressibility effect, quantities including velocity, temperature,
density and pressure, must be satisfied with respect to the total energy and ideal gas law
relationships:

ρet =
1
2

(
ρu2 + ρv2

)
+

p
γ− 1

(13)

p = ρRT (14)

2.2. Nondimensionalization Process

The governing equations are rendered non-dimensional using the adopted non-
dimensional variables. The existing dimensional variables, which are peak inlet velocity,
channel width, initial fluid temperature and density, are used as the reference variables.
Definitions of the non-dimensional variables are shown in Table 1.
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Table 1. Definition of the non-dimensional variables.

Variable Definition

Length x = x
d , y =

y
d

Velocity u = u
umax

, v = v
umax

Temperature T = T
T0

Total Energy et =
et

u2
max

Time t = umax
d

Density ρ =
ρ
ρ0

Pressure [35] p =
p

ρ0u2
max

Thermal Conductivity k = k
k0

Stress σx = d
µ0u0

σx, σy = d
µ0u0

σy, τxy = d
µ0u0

τxy

The non-dimensional set of equations with the dimensionless groups derived is:

δ

δt
[
U
]
+

δ

δx

[
EI −

1
Re0

Ev

]
+

δ

δy

[
FI −

1
Re0

FV

]
=
[
H
]
, (15)

where

[
U
]
=


ρ

ρu
ρv
ρet

 (16)

[
EI
]
=


ρu

ρu2 + p
ρuv

u(ρe + p)

 ;
[
FI
]
=


ρv

ρuv
ρv2 + p

v(ρe + p)

 (17)

[
EV
]
=


0

σx
τxy

uσx+vτxy+qx
(γ−1)Pr0Ma2

0

 ;
[
FV
]
=


0

τyx
σy

uτyx+vσy+qy

(γ−1)Pr0Ma2
0

 (18)

[
H
]
=


0

− 1
Grn

(
µu + Gr f ρu

√
u2 + v2

)
− N0u

− 1
Grn

(
µv + Gr f ρv

√
u2 + v2

)
N0u2

 (19)

The Dimensionless numbers in the above equations are defined in Table 2.

Table 2. Definition of Dimensionless numbers.

Dimensionless Number Definition

Reynold number Re0 =
ρ0umax

µ0

Prandtl number Pr0 =
µ0Cp0

k0

Hartmann number Ha0 = B0d
√

σ
µ0

Stuart number N =Ha2
0

Re0

Mach number Ma0 = umax
c0

Coefficient of Inertia [36] Gr f =
ρ0umax

√
K

µ0

Coefficient of Permeability [36] Grn =
ρ0umaxK

µ0d

Thermal Conductivity C f =
µ du

dy
1
2 ρRe0

Nusselt number Nu = dT
dy
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The dynamic viscosity and thermal conductivity are

µ
(
T
)
= 7.86552× 10−1T + 2.13448× 10−1 (20)

ke f f
(
T
)
= 9.61293× 10−2T + 8.84514× 10−1 (21)

The equation of state and total energy is

p =
ρT

Ma2
0γ

(22)

et =
1
2

(
u2 + v2

)
+

p
ρ(γ− 1)

(23)

2.3. Numerical Procedure and Model Validation

The compact finite difference scheme is used for spatial discretization [37]. The
solution is solved and advanced in time using the 3rd Runge–Kutta method. Each time step
is calculated based on the Courrant-Friedrichs-Lewy condition. The CFL value is given to
be a constant value that should range between 0.3–0.7 depending on the numerical stability.

The independence test was carried out for the non-isothermal MHD flow. The 49 × 149
resolution was found to be optimal, since the changes in averaged velocity and temperature
at the center of the domain were less than 0.5% when finer resolutions were implemented.

The numerical model was validated against previously published work [25]. The
focus in the previous study was to investigate the coupled effects of variable properties
and magnetic force on thermal and flow processes. The comparative results of the steady
state velocities at half of the channel for a varied Hartman number is shown in Figure 3.
Excellent agreement is achieved, as the difference between the two results appears minimal.
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Figure 3. Comparison of the predicted steady-state velocity profiles at the midplane channel at
different Hartman numbers between the present model and the published work [25].

3. Results and Discussion

To investigate the transient effect, the numerical solutions were extracted at four
different times for the Reynolds number Re0 = 2300, Prandtl number Pr0 = 0.44, and Mach
number Ma0 = 0.3.

Figure 4 shows a mass flow rate that changes with time for cases both without (N = 0)
and with (N = 10) magnetic effect. It is clearly seen that flow through a magnetic field
propagates much more slowly than flow without a magnetic field. For the case where
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N = 10, fluid motion is retarded by an electromagnetic force, the so-called Lorentz force,
exerted on a charge particle.
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Thermal behavior of the two cases was investigated via the time evolution of tempera-
ture contours, illustrated in Figure 5. As can be seen, although temperature stratification
mainly evolves downward from the upper wall, heat is transported primarily in the flow
direction, from the left to the right domain. As evident in Figure 4, the flow is slowed down
with a magnetic effect (N = 10), causing a thicker thermal boundary layer.
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Hereafter, the focus will be on the case of the non-isothermal flow subjected to mag-
netic force (N = 10). Figure 6 shows the change over time of mass flow rates. The values
along the lines crossing at different transverse locations are plotted as well. With respect to
the center line of the channel, it is clear that the profile of the flow rate is not symmetric;
the non-uniform fluid density causes a mass flow rate greater in the bottom domain than
in the upper domain.
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How the fluid density varies can be seen in Figure 7. As seen in this figure, the density
is lower towards the top left corner of the domain, where the temperature is high. The
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areas where the densities are high correspond to the areas where the mass flow rates are
high. This result is consistent with the distribution of mass flow rate shown in Figure 6.
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As briefly mentioned, temperature distributions are depicted throughout the channel
in Figure 8. Additionally, temperatures spread more uniformly downstream. With regard
to the local wall shear stress relative to dynamic pressure, Figure 9a presents the skin
friction coefficient, which changes with the channel distance.
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The skin friction coefficient C f increases significantly as x increases near the channel
entrance, owing to the significant increase in the velocity gradient. The C f value gets larger
for a greater Reynolds number as the velocity gradient gets larger, while the boundary
layer becomes thinner. Further, the friction coefficient is greater for the upper wall than
for the lower wall, indicating a larger velocity gradient at the top wall. This result, which
is not axially symmetric, is found to be consistent with the results shown in the previous
figures. In order to evaluate the heat transfer enhancement via convected thermal energy,
the Nusselt number (Nu) is computed and plotted for different Re0 in Figure 9b; it can be
seen that the Nu decreases downstream due to the thicker thermal boundary layer. The Nu,
however, rises with an increased Re, since the thermal boundary layer is in turn thinner.

Figure 10a,b illustrates the effects of Pr on C f and Nu, respectively. The friction
coefficient C f is increased with decreased Pr due to a higher ratio of momentum diffusivity
to thermal diffusivity. This causes a higher velocity gradient along the walls. However,
this effect on C f can be considered small. On the other hand, Nu is increased with Pr due
to the greater inertial force of fluid flow.

The other important parameter considered is the Stuart number, N, which is the
influence of magnetic force relative to the inertial force. The respective effects of N on C f
and Nu are given in Figure 11a,b. The friction coefficient is found to vary with N near
the channel entrance in the developing region. It is interesting that the trend reverses
beginning at around one-fifth of the total channel length as C f decreases with an increased
N. This means that the wall shear stress dominates near the flow entrance for high values
of magnetic force, but gets lower farther downstream. In Figure 11b, Nu reveals the same
N dependent trend as C f . When N increases, Nu also increases at the entrance region;
however, it in turn decreases downstream towards the fully developed region. In this
case, heat convection is enhanced with a higher magnetic effect near the entrance, but it is
weakened substantially farther towards the channel exit.
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4. Conclusions

In this paper, unsteady flow and heat transfer of compressible helium–xenon binary
gas through a porous channel subjected to a transverse magnetic field has been numerically
investigated. The channel walls are assumed to be non-conducting and maintained at
two different temperatures. The electrically conducting binary gas has variable thermal
conductivity and viscosity which are the functions of temperature. The effects of magnetic
interaction, compressibility and variable fluid properties are examined through parametric
dimensionless groups, namely the Reynolds number (Re0), Prandtl number (Pr0) and
Stuart number (N). The results show that the magnetic field, compressibility and variable
fluid properties considerably affect heat and fluid transport. Variations of density with
temperature and pressure result in an asymmetric mass flow profile. Furthermore, the
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friction coefficient is greater at the upper wall than at the lower wall due to larger velocity
gradients along the top wall. The other findings of this study are as follows:

• The friction coefficient C f increases for a greater Reynolds number, as the velocity
gradient gets larger while the boundary layer becomes thinner. The Nusselt number
(Nu) rises with an increased Re0, caused a thinner thermal boundary layer.

• The friction coefficient C f is increased with a decreased Prandtl number Pr0, due to a
higher ratio of momentum diffusivity to thermal diffusivity. However, this effect on
C f can be considered small. On the other hand, Nu is increased with Pr0, since the
inertial force of fluid flow is larger.

• The friction coefficient C f is found to vary with the Stuart number N near the channel
entrance in the developing region. However, this trend reverses at a certain distance
inside the channel, as C f decreases with an increased N. As N increases, Nu also
increases at the entrance region; however, it in turn decreases downstream towards
the fully developed region.
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