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Abstract: We perform high-resolution numerical simulations of three-dimensional dynamics of an
elongated bubble in a microchannel at moderate Reynolds numbers up to 1800. For this purpose,
we use the coupled Brinkman penalization and volume of fluid methods implemented in the open-
source framework Basilisk. The new results are validated with available experimental data and
compared with previous numerical and theoretical predictions. We extend existing results to regimes
with significant inertia, which are characterized by intense deformations of the bubble, including
cases with azimuthal symmetry breaking. Various dynamical features are analyzed in terms of
their spatiotemporal characteristics, such as frequencies and wavelengths of the bubble surface
undulations and vortical structures in the flow.

Keywords: Taylor bubble; Taylor flow; microfluidics; symmetry breaking; vortex identification;
direct numerical simulation; incompressible multiphase flow; Brinkman penalization; volume of
fluid method; adaptive mesh refinement; Basilisk

1. Introduction

Understanding the flow of viscous liquid containing gas bubbles is a classical and
challenging problem in multiphase fluid dynamics. It has attracted much attention in
the literature because of its importance in numerous applications in areas such as the
miniaturization of technologies [1–4], enhanced oil recovery [5], biomedical research [6–9],
cooling of microcircuits [10–12], chemical microreactors [13–15], and numerous others.

In this work, we use supercomputer simulations to investigate the dynamics of an
elongated air bubble in viscous flow in a water-filled microchannel, the so-called Taylor
flow. Particular attention is paid to the regimes with substantial inertia when the bubble
motion is strongly time-dependent and is associated with the loss of axial symmetry.

The main object of interest in the study of Taylor flow is the thickness and the shape
of the thin layer between the bubble and the tube wall, and the bubble velocity relative to
the bulk flow velocity. The film plays a crucial role in many processes that are important
for technological applications. It strongly affects the heat transfer from the walls to the
bulk liquid [16]. If there is a mass transfer between the bubble and the bulk fluid, it is also
dependent sensitively on the film thickness [17]. It becomes therefore very important to
understand the precise shape and dynamics of the thin film, and computational studies of
Taylor flow must be careful to resolve the film with a fine-enough mesh [18]. Other features
of the flow which are of interest from a practical point of view are the vortical structures
within and around the bubble. The reason is that strong vorticity helps mixing of matter
and enhances heat transfer processes between the tube wall and the bulk fluid.

Fundamental studies of the Taylor bubble began with the work of Taylor [19], who mea-
sured the bubble velocity (more precisely, the relative excess velocity (Ub −Umean)/Umean,
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where Ub is the bubble velocity, Umean is the mean flow velocity in the carrier fluid) as a func-
tion of the capillary number Ca = µUb/σ for 0 < Ca < 2, where µ is the dynamic viscosity
of the bulk fluid and σ is the surface tension coefficient. The dependence was shown to
follow Ca1/2 at very small values of Ca (note that this dependence has been corrected later by
Bretherton [20] to follow Ca2/3) and to deviate substantially from this form at any reasonably
large Ca. Taylor’s data have subsequently been correlated by a different dependence in [21],
where the authors also proposed the relation for the film thickness h relative to the capillary
radius r given by h/r = 1.34 Ca2/3 /(1 + 3.35 Ca2/3). Further empirical extensions of this
correlation to include the effects of inertia can be found in [22].

Experimental measurements of the film thickness in the Taylor flow have been carried
out in [21–23]. The measurements require significant spatial resolution (hundreds of
nanometers) and, at high flow speeds, additionally require good temporal resolution due
to the large frequency of oscillations (several kilohertz) of the bubble shape. We note that,
if the film thickness becomes too small, even locally during the oscillations, it may result in
the rupture of the film [24]. Simulations of this phenomenon require modifications of the
underlying model to include the effects of disjoining pressure and contact angles, which is
outside the scope of our work.

The first theoretical analysis of the Taylor flow was carried out by Bretherton [20].
He assumed axially symmetric steady-state flow and, using the standard assumptions
of lubrication theory, calculated the relative excess velocity as a function of the capillary
number. The relationship between the film thickness and the capillary number was found
to be h/r = 1.34 Ca2/3. This prediction was used as the leading term in the empirical
expression of [21] at small Ca.

In recent work [25], a more general theory of the steady-state axially symmetric shape
of the bubble that includes the effects of inertia as well as of viscosity and surface tension
was developed. This work substantially extends the prior results [19–22]. New theoretical
predictions are in good agreement with the experiments, and as we show in the sections
below, their predictions are also in good agreement with our numerical simulations in
parameter regimes corresponding to the steady or quasi-steady dynamics of the bubble.

The presence of a thin liquid layer between the bubble and the capillary wall makes
the Taylor bubble a multiscale phenomenon, which poses a challenge not only for the
theory and experiment but also for numerical simulations. The details of the computational
difficulties depend on the relative role of the viscosity, capillarity, and inertia. First, when
the inertial effects are significant, the bubble shape undergoes substantial deformations
that evolve in a highly complex manner, resulting sometimes in the bubble breakup into
smaller bubbles that shed from the back side. Second, the thin liquid layer between
the bubble and the walls undergoes strong wavy deformations. These deformations
must be resolved in numerical simulations, which is nearly impossible without adaptive
meshes. Third, accurate calculation of the complex deforming surface of the bubble requires
proper numerical techniques for capturing interface evolution. Finally, due to the extreme
multiscale nature of the phenomenon, substantial computational resources are required to
simulate the bubble dynamics, especially at high Reynolds numbers when inertial effects
are significant.

In previous simulations of the Taylor flow [23,26,27], the commercial software Ansys
Fluent and open-source OpenFOAM were used. They both use the volume of fluid (VOF)
method to track the free interface. The authors were able to predict the bubble shape in
various regimes ranging from steady states at small Reynolds numbers to axially symmetric
unsteady oscillations at moderate Reynolds numbers. In some cases, their simulations
indicated breaking of the axial symmetry [26], but such regimes have not been explored
in detail. It must be pointed out that the efficiency of a numerical algorithm is influenced
by the structure of the computational mesh used, whether it is fixed or adaptive. Since
the Taylor bubble is in constant motion and can deform substantially, we must require
that the mesh used is refined near the bubble, especially in the thin film near the wall.
The problem of mesh adaptation becomes quite serious if the length of the microchannel
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is much longer than the smallest scale of the flow, that of the thin film. In our case, the
channel length is up to 30 times larger than the channel diameter and 2200 times larger
than the film thickness. In [23,26,27], a fixed grid was used, while [28,29] used adaptive
meshes. In recent work [30], the authors carry out three-dimensional simulations of the
Taylor flow accounting for the presence of surfactants. Again, a uniform Cartesian mesh
was used. The inertial effects considered were relatively small such that strongly unsteady
or non-axisymmetric structures were not observed.

Our analysis focuses on high-resolution three-dimensional simulations of the Taylor
flow. The simulations are carried out using the numerical algorithm we proposed in [31],
which is implemented in the open-source software Basilisk [32]. It allows for highly
accurate simulations using effective mesh adaptation to resolve all multiscale features of
the flow, especially the thin-film flow between the bubble and the wall. Our choice of
geometry and flow conditions follows [23] for the purpose of validation and comparison
with their experiments and simulations. We compare our results also with the numerical
results of other researchers for a wide range of capillary and Reynolds numbers.

In addition to the cases with relatively small Reynolds numbers when the bubble shape
remains quasi-steady and axisymmetric, we also investigated highly unstable regimes cor-
responding to large Reynolds numbers at which the bubble deformations are substantial
and the film thickness oscillates at high frequencies undergoing strong undulatory mo-
tion. The frequency analysis of both the thickness and various characteristic points of
the bubble is performed using the Fourier spectral analysis, which allows us to identify
characteristic frequencies of the flow. At relatively large Reynolds numbers, we also iden-
tified a symmetry-breaking transition from the axisymmetric oscillations to asymmetric
oscillations and analyzed the nature of the resultant shapes and the physical origin of the
observed features.

The remainder of the paper is organized as follows. In Section 2, we explain the prob-
lem setting, formulate the main questions, introduce the governing equations, and briefly
describe the numerical method used for solving the governing equations. Sections 4 and 5
contain the results of three-dimensional numerical simulations for a range of conditions
corresponding both to axially symmetric and asymmetric shapes of the bubble. In these
sections, comparisons with the experiments and prior work are presented, and the ob-
served dynamics are explained in terms of the oscillation characteristics of the bubble and
of the thin film between the bubble and the tube wall. In Section 5, we also illustrate the
flow around the bubble visualizing the vortical structures constructed using one of the
techniques of vortex identification. Concluding remarks are given in Section 6.

2. The Problem Formulation

We consider the situation depicted schematically in Figure 1. A cylindrical tube of
diameter d contains a viscous fluid flowing from left to right with mean velocity Umean.
The fluid contains a bubble of a sufficiently large size such that it has an elongated shape
filling most of the cross section of the tube and forming a thin film of thickness h near the
tube wall. The densities and dynamic viscosities of the fluid and bubble are ρ1, µ1 and
ρ2, µ2, respectively.

As known from experiments, the bubble generally moves with a velocity Ub that
is larger than Umean, with the difference depending on various parameters of the prob-
lem. The bubble dynamics depends on the Reynolds and capillary numbers of the flow,
defined as

Re =
Umeanρ1d

µ1
, Ca =

µ1Ub
σ

, (1)

where σ is the surface tension coefficient, as well as on the density and viscosity ratios of
the fluids, the bubble size, and the tube diameter. Our goal in this work is to investigate
the three-dimensional dynamics of the bubble in various flow conditions corresponding
to a wide range of Re and Ca. The effects of gravity are neglected assuming that the
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tube diameter is small in the sense that the corresponding Bond number is small, i.e.,
Bo = ∆ρgd2/σ� 1, where ∆ρ = ρ1 − ρ2, and g is gravitational acceleration.

h

rb
dρ1, µ1 ρ2, µ2

Vb

Ubu(r)

Y, Z

X

Figure 1. Schematics of the fluid flow with a bubble in a cylindrical tube. The bubble volume is
denoted as Vb, and the radii of the end caps are rb = 0.45d. The velocity profile u(r) is initially
parabolic everywhere, and u(r) = 2Umean(1− 4r2/d2) and is set to be parabolic at the left end of the
tube at all times. In what follows, the film thickness h is nondimensionalized by the tube diameter as
δ = h/d.

One of the primary quantities of interest in this flow is the film thickness relative to
the tube diameter, δ = h/d. When buoyancy and inertial effects are negligible (Bo� 1 and
Re� 1), the flow is in a visco-capillary regime [21] governed by the viscous and capillary
forces, and then, the thickness of the film depends only on Ca. In the lubrication theory of
Bretherton [20], it is found that for a small Ca < 5× 10−3,

δ = 0.67 Ca2/3 . (2)

For larger values of Ca, viscous effects become important and lead to thickening of the film,
which also leads to an increase in the bubble velocity Ub relative to the mean flow velocity
Umean. Aussillous and Quéré [21] proposed an empirical correlation that extended (2) to
larger values of Ca as

δ =
0.67 Ca2/3

1 + 3.35 Ca2/3 . (3)

This relation is determined by fitting against Taylor’s experimental data [19], and hence, it
is referred to as the Taylor law. The correlation (3) is valid for Ca from about 10−4 to about
2. Note that a more general correlation that also includes the dependence on Reynolds and
Weber numbers was obtained in [22]. In comparisons below, we use Expression (3).

With an increase in the Reynolds number, the inertial effects become comparable
with viscous and capillary effects, and the Correlations (2) and (3) become inaccurate.
The influence of inertia on the thickness of the liquid film of an elongated bubble was
studied analytically, numerically, and experimentally in [21,23,25,33]. In [25,33], the non-
monotonic, U-shaped behavior of the film thickness is observed, such that at high Ca ≈ 0.04
the thickness δ decreases up to Re = 100, then increases at Re > 100. Additionally, the
influence of inertia elongates the bubble nose and modifies the bubble tail from the almost
spherical shape to the flat one [23,34]. Near the tail, the thickness can oscillate and the
oscillation amplitude increases with Re, leading to difficulties with measurements of
the thickness.

There is a useful relationship between the film thickness and the bubble velocity that
follows from the basic mass conservation. Assuming steady flow, the mass conservation
leads to

πd2
bUb + π(d2

b − d2)Ufilm = πd2Umean,

where db is the diameter of the bubble and Ufilm is the average velocity of the liquid film. If
the thin liquid film is further assumed stagnant in the visco-capillary regime, i.e., Ufilm ≈ 0,
the dimensionless film thickness δ∗ is related to the flow and bubble velocities as [35]:

δ∗ ≈
1
2

(
1−

√
Umean

Ub

)
. (4)
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This relationship is used further below to estimate the mean thickness of the film and to
compare with other, more direct, measurements of the thickness from the simulation results.

3. Governing Equations and the Numerical Method

Here, we describe the governing equations, the initial and boundary conditions, and
the numerical method used to solve the equations. The numerical method is based on the
algorithm implemented in the open source software Basilisk, and its detailed description is
reported in our recent work [31].

The governing equations are based on the Navier–Stokes equations for incompressible
Newtonian fluids that are modified to handle multiphase flows containing solid boundaries
to treat all phases as a single fluid. The equations are given by

∇ · u = 0, (5)
∂ρu
∂t

+∇ · (ρu⊗ u) = −∇p +∇ · τ + fσ + fB, (6)

∂ϕ

∂t
+ u · ∇ϕ = 0, (7)

where u is the velocity vector, t is time, ρ is density, µ is the dynamic viscosity, p is pressure,
and τ = µ

(
∇u +∇uT) is the viscous stress tensor. The last equation above, (7), describes

the advection of a scalar field ϕ, which is the volume fraction of the carrier fluid 1. This
equation is used to track the fluid interface evolution. In the pure liquid, ϕ = 1, and in the
gas, ϕ = 0. The source terms fσ and fB are the surface tension force (so-called continuum
surface force) and a penalization term due to the presence of solids. Their inclusion in
the Navier–Stokes equations allows for a volume representation of interfacial effects at
fluid–fluid or fluid–solid boundaries [31].

In particular, the continuum surface force is given by [36]

fσ = σκδsn =
ρ

〈ρ〉σκ∇ϕ, (8)

where κ is the surface total curvature, δs is the Dirac distribution used to represent the
interfacial localization of the surface tension, n is the unit normal vector to the interface,
and 〈ρ〉 = (ρ1 + ρ2)/2 is the average density of the two fluid phases.

The presence of solids, either as inclusions or as boundaries (as in the present problem)
is modeled via their representation as porous media with vanishing permeability [37,38].
The Brinkman penalization term

fB = −ρ
χ

η
(u−Us) (9)

is added to the momentum equation as the body force, where χ is the solid volume fraction,
η � 1 is the penalization coefficient, and Us is the local velocity of the solid. In our case, the
solid is a fixed cylinder so that Us = 0. The penalization coefficient is taken as η = (mh)2/ν,
where number m = O(1) [31].

The local averaged density ρ and dynamic viscosity µ of the fluids are calculated via
the volume fraction ϕ(x, t) of fluid 1 and the field χ using interpolation:

ρ = (1− χ)[ρ1 ϕ + ρ2(1− ϕ)] + χρ3, (10)

µ = (1− χ)[µ1 ϕ + µ2(1− ϕ)] + χµ3, (11)

where subscript 3 refers to the solid phase. This definition ensures the following: ρ = ρ3
and µ = µ3 inside solids (χ = 1 and any ϕ); ρ = ρ1 and µ = µ1 inside fluid 1 (χ = 0 and
ϕ = 1); and ρ = ρ2 and µ = µ2 inside fluid 2 (χ = 0 and ϕ = 0). The tube inner wall is
modeled as a perfectly wet surface so that the fictitious volume fraction of fluid 1 inside
the solid is taken as ϕ(x ∈ Ωs, t) = 1.
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The equations above are solved using the open-source software Basilisk [32], which
uses the Cartesian grid with adaptive mesh refinement (AMR) and the volume of fluid
method (VOF). The AMR technique allows us to obtain highly resolved accurate simulation
results for problems involving various interfaces. The fluid volume fraction ϕ is tracked
using the geometric VOF method [39] which is conservative and non-diffusive. It allows
one to simulate multiphase flows with complex topological changes with accurate interface
representation. A detailed analysis of the method can be found in [31].

For the boundary conditions at the inlet, X = 0, we use a prescribed parabolic velocity
profile with a given mean, Umean, and a zero pressure gradient. At the outlet, X = L, the
pressure is set to zero, and the homogeneous Neumann condition on velocity is set. At the
walls, the no-slip condition is set.

As the initial condition, a parabolic velocity profile is taken for the whole fluid domain
including the bubble. The bubble is assumed to be a cylinder with two spherical caps
on the ends with radius rb = 0.45d. The presence of the bubble in the flow makes the
pressure field distinct from that of the usual Poiseuille flow and follows from the governing
equations to conform to the given velocity field and the geometry of the bubble.

4. Simulation Results: Axially Symmetric Motion

In this and the following sections, we consider various regimes of the flow focusing
on the axisymmetric situations first in this section and nonsymmetric cases in the next.

The following geometric parameters and fluid properties are used. The tube diameter
is d = 0.514 mm. The fluids correspond to air in the bubble and water as the carrier
fluid. The water density ρ1 = 997 kg m−3, air density ρ2 = 1.204 kg m−3, water viscosity
µ1 = 0.88 mPa s, air viscosity µ2 = 0.019 mPa s, and surface tension σ = 72.8 mN m−1.
The results are presented in dimensionless form using the diameter of the channel d, the
mean velocity Umean, and the water density ρ1 as scales of the corresponding variables and
parameters. The dimensionless versions of coordinates X, Y, Z and the channel length L
are x, y, z, l, respectively.

The simulations below cover the ranges of Ca ∈ [0.003, 0.034] and of Re ∈ [140, 1800],
which correspond to a wide range of scales for the film thickness, the smallest scale that
must be accurately resolved in the simulations. The level of refinement of the adaptive grid
is chosen to provide sufficient resolution of the film thickness (see Table 1). The bubble size
and the tube length over which the computations are carried out are much larger than the
small scales of the thin-film flow. In our simulations, the ratio L/h reaches 900–2200, so
that extremely wide range of scales are involved in this multiscale problem. All simulations
reported are three dimensional and have been obtained on Skoltech’s Arkuda cluster
that has Intel(R) Xeon(R) CPU E5-2698 v4 (40 cores at 2.2 GHz). To give an idea of the
computational cost, case AW4, for example, required 120,000 CPU hours and took about
25 days on 200 cores.

We first consider the problem of the bubble motion when the capillary number Ca is
relatively small. This allows us, in particular, to verify the bubble shape with experiments
and previous numerical simulations. For this purpose, we take the parameters shown in
Table 1, which correspond to ([23], Appendix: cases 18–22). Various cases in Table 1 will be
referred to as AW1–AW5 below. The capillary number Ca in the table is computed based
on the present simulation results. The smallest mesh size is controlled by the maximum
level of refinement Jmax as l/2Jmax .

Next, we investigate the bubble shape and its oscillation characteristics, its velocity,
and the film thickness for the cases shown in Table 1.

4.1. The Bubble Shape

In Figure 2, the bubble shapes are shown at different times and at various values of Ca.
Our results (black curves) are compared with the experimental data and two-dimensional
axisymmetric numerical simulations from [23], which were obtained using ANSYS Fluent [40]
and OpenFOAM [41]. In [23], the authors used structured orthogonal non-uniform fixed
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grids consisting of 50 cells in the radial direction. The core region was resolved using
40 uniform cells, while the film region was gradually refined using 10 cells and achieved a
maximum aspect ratio of about 30. The same grids were used in OpenFOAM and ANSYS
Fluent, and no appreciable differences were observed.

Table 1. Parameters and flow properties for the first five cases AW1 to AW5. Simulation results (indicated as BPM, for
Brinkman Penalization Method) are compared with the experiments of Khodaparast et al. [23]. Here, Umean is the mean
velocity at the inflow, Ub is the mean velocity of the bubble, δ is the dimensionless averaged thickness, l is the dimensionless
channel length, Jmax is the maximum level of refinement, and Nc is the number of cells for the film resolution that is required
to satisfy Nc ≥ 4.

Names Ca Re Vb [nL]Vb [nL]Vb [nL] Umean [m s−1]Umean [m s−1]Umean [m s−1] l Jmax Nc
Ub [m s−1]Ub [m s−1]Ub [m s−1] δ[−]δ[−]δ[−]

[23] BPM [23] BPM

AW1 0.003 141 0.1751 0.242 20 12 4 0.261 0.255 0.013 0.0173
AW2 0.009 388 0.1715 0.666 20 12 6 0.704 0.744 0.023 0.0279
AW3 0.0103 441 0.2208 0.757 20 12 7 0.815 0.854 0.025 0.031
AW4 0.016 651 0.1882 1.118 20 12 10 1.293 1.325 0.039 0.0453
AW5 0.024 920 0.2179 1.580 30 13 20 1.944 2.005 0.054 0.0716

While axisymmetric simulations are sufficient for the cases in Figure 2a–c, for large
Ca numbers (see Figure 2d), the bubble shape becomes more complex and the differences
between the axisymmetric simulations and experiment become more pronounced. The
results of OpenFOAM simulations in Figure 2b,c and ANSYS Fluent in Figure 2b,d show
noticeable discrepancies with the experiments in terms of the volume (hence the mass) of
the bubble. The likely reasons for these large errors may be first that the meshes used were
too crude and second that the flow was actually not axisymmetric. The present results
agree relatively well with the experiments for all of the cases shown. When using courser
meshes, we could also observe larger errors in the mass conservation.

At the beginning of the simulations, the bubble undergoes some shape oscillations
due to the choice of initial conditions, but they eventually damp, and the bubble reaches a
steady or a quasi-steady state for cases of Figure 2a–c. Importantly, in Figure 2e, the bubble
does not reach a steady state, and the oscillations lead to breaking of the axial symmetry
(see also Figure 8e–h below). Similar symmetry breaking was also seen in ([26], Figure 14).

We also use this example of Figure 2 to demonstrate the grid convergence. Figure 2f
shows the profile of the bubble for case AW3 computed at three different levels of the
mesh refinement: Jmax = 11, 12, 13. This particular case AW3 is chosen because of its
axisymmetric and stationary bubble shape. The profiles are first close to each other for all
of the cases and second converge with the increase in Jmax. Note that, with Jmax = 11, the
film thickness is covered with only 3 mesh cells. With Jmax = 12, 13, the number of cells is
Nc = 7, 14, respectively, which improves the accuracy. We mention that the authors of [42]
recommend taking at least five grid points in the liquid film in the radial direction. While
such a recommendation is always subjective and dependent on the required accuracy, we
indeed find that even with only three cells in the film, the prediction is rather accurate for
case AW3 (see the inset of Figure 2f). For more unsteady and unstable situations, better
refinement may be needed.

In Figure 3, we compare our simulations with a theoretical model of Magnini et al. [25],
where the authors studied steady-state undulations on the surface of the Taylor bubble. The
classical axisymmetric Bretherton model was extended to account for the effects of inertia
and of the curvature of the channel wall. Note that, in [25], the Reynolds number was
defined based on the bubble velocity Re∗ = ρ1Ubd/µ1 rather than the mean velocity. Hence,
there is a difference of factor Re∗ / Re = Ub/Umean with our definition. The comparison
shown in Figure 3 indicates that both the steady-state theory and the present simulations
are in good agreement with each other as well as with experiment.
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Figure 2. (a–e) Comparison of the experimental [23] (blue) and numerical (red: ANSYS Fluent [23], green: OpenFOAM [23],
and black: present work) results of air–water interfaces in the tube with diameter d = 514 µm. The results from [23] are
reproduced with the authors’ permission. (f) Convergence of the bubble profile with the mesh refinement for case AW3.
Three levels of refinement are considered: Jmax = 11, 12, 13. The inset is the zoom-in of the top-left part of the profile.
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Figure 3. Comparison of the profiles of the front (a,b) and back (c) shapes of the bubble computed by the present
method (black), predicted theoretically (orange, calculated following the formulation of [25]) and measured experimentally
(blue, [23]). Relatively stable cases AW3 and AW4 are considered. The results from [23] are reproduced with the permission
of the authors.

4.2. Film Thickness and Its Dynamics

Here, we analyze the dynamics of the film by looking at how its thickness varies in
space and time. Usually, the thickness of the flat region of the film is taken as the film
thickness. However, at the largest capillary numbers, it is not possible to identify this
region. For large capillary numbers, various methods for estimating the film thickness have
been proposed: (1) as an average value in the region far from the nose of the bubble [23],
(2) as the average thickness between the coordinates of the first peak xpeak and the center
of mass of the bubble xcm [26], and (3) as an estimate by (4) [35]. Here, we analyze the
minimum δmin, average δavg, and estimated δ∗ thicknesses, as shown in Table 1 and in
Figure 4 below.

The average thickness at some fixed time is determined from the numerical computa-
tion of coordinates of the first peak at the back of the bubble, xpeak; the center of mass, xcm;
and the bubble volume, Vb∗, between cross sections through these points:

δavg =
1
2
−
(

Vb∗
π(xcm − xpeak)

)1/2

. (12)

Something similar has also been presented in [26]. These cross sections are shown in
Figure 2d as dotted lines.

The average thickness δavg tends smoothly toward stationary values for cases AW1–
AW4 at t ≥ 4 ms (Figure 4a). The minimum thickness oscillates strongly at the beginning
and then attenuates. In case AW5, the average film thickness increases to δavg ≈ 0.072
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and the bubble elongates (Figure 2d). The minimum thickness oscillates around certain
average value, and its amplitude does not decay. The minimum and average thicknesses
are time-averaged to obtain δ̄min, δ̄avg. The estimated thickness is obtained from velocity
values. All of these quantities are presented in Table 2.

Since oscillations of δmin(t) are observed for cases AW2–AW5, to extract dominant
frequencies in the signal, Fourier analysis is performed with a high-pass filter to cut-off
parasitic low frequencies. It is found that, in cases AW2–AW4, there is one dominant
frequency that coincides with the dominant frequency of δavg(t) (see Table 2). The dynam-
ics of case AW5 can be divided into three distinct stages: (1) a transition regime, when
the initial cylindrical bubble deforms to take an elongated shape; (2) axially symmetric
oscillations occur (AW5-a); and (3) the axial symmetry breaks, and a three-dimensional
dynamic structure emerges (AW5-na). AW5 contains both axially symmetric and asym-
metric oscillations, and the first stage contains a series of frequencies, but thereafter, only
one dominant frequency remains. In all cases, it is observed that the dominant frequency
slightly increases with velocity.

In Figure 4c, the dominant frequencies for δmin and δavg of AW4 and AW5 are com-
pared. For AW4, the dominant frequency remains the same for both δ’s, while for AW5, the
spectrum of δavg is shifted to the left. Three dominant frequencies for average thickness in
case AW5-a can be seen: ω = (11, 17, and 28)× 103 s−1, with the third one here being the
sum of the first two. As seen in Figure 4a, there are low-frequency oscillations, which then
transform to a high-frequency signal (AW5-na). Indeed, it is confirmed by the spectrum
in Figure 4c, where the low-frequencies fade and only one dominant frequency remains,
28× 103 s−1. A similar spectrum is observed for δmin. Hence, the consistency in δmin and
δavg spectra is observed.

Table 2. The minimum, δ̄min; time-averaged, δ̄avg; and estimated from (4), thicknesses, δ∗, and
dominant frequencies, ω, for δmin.

Names AW1 AW2 AW3 AW4 AW5-a (Axial) AW5-na (Not Axial)

δ̄min 0.0091 0.0158 0.0168 0.022 0.038 0.028
δ̄avg 0.0134 0.028 0.031 0.052 0.072 0.072
δ∗ 0.013 0.027 0.029 0.041 — 0.056

ω, 103 s−1 — 10.81 12.28 15.64 12.2, 29.85 32.12

To provide some insight into the origin of the observed frequencies, we estimate the
frequencies from the dispersion relation for water waves with dominant capillary effects,

ω2 =
σ

ρ1
k3 tanh Hk, (13)

where ω is the frequency of the waves; k = 2π/λ is their wavenumber, with λ being the
wavelength; and H the fluid depth. We estimate the latter as the film thickness δ for waves
on the film and as H −→ ∞ for oscillations at the back of the bubble.

In Table 2, we show various properties of the bubble oscillation for cases AW1 to
AW5, including the dominant frequencies of the oscillations. Case AW1 does not exhibit
any appreciable sustained oscillations, while for the other cases we observe the following.
Cases AW2–AW4, which are not too unstable, have frequencies of about (10 to 16)× 103 s−1,
while case AW5 has two dominant frequencies of about (12 and 30)× 103 s−1. A possible
explanation of the physical origin of these frequencies may be as follows. At relatively
small Reynolds numbers of cases AW2–AW4, the oscillations of the thin layer are the result
of the forcing due to the strong oscillations of the back of the bubble. They arise in the back
and propagate along the layer damping toward the front of the bubble. Their frequency can
be estimated from (13) using H → ∞ and λ = d = 0.5 mm as ωdisp = 11.5× 103 s−1. This
is close to the numerical values shown in Table 2 in all cases. Two frequencies of case AW5
could be explained as one coming from the same origin as in the previous cases and the
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other arising from the instability of the thin layer itself. The instability may be caused by
the influence of the strong flow of the gas inside the bubble relative to the layer or, again, by
the oscillations at the back of the bubble. If this is indeed the case, the second frequency can
be estimated from the same dispersion relation (13) using H = δavg = 36.5 µm now instead
of infinity. The wavelength of the ripples in Figure 2d can be estimated as λ ≈ 0.25 mm
with the corresponding wavenumber k ≈ 25 mm−1, which gives ωdisp ≈ 27.4× 103 s−1,
which is close to the second dominant frequency ω = 28.1× 103 s−1 of δavg (AW5-na) and
of xcm in Figures 4 and 7, respectively. Hence, the arguments above appear to provide a
plausible mechanism for the observed frequencies.

Therefore, we may conclude that, at relatively small Reynolds numbers, the undula-
tions of the film are purely the result of the oscillations of the bubble tail, while at larger
Reynolds numbers, there is an additional frequency due to the waves on the thin film
arising because of its instability, which is excited either by the tail oscillations or by the
relative motion of the gas in the bubble. The gas motion may excite waves on the film
akin to the wind-driven waves on the free surface of water when the wind speed exceeds
certain critical value. Further and more detailed calculations may be required to confirm
and elucidate the precise mechanisms of the ripple formation on the thin film.

In Figure 5, we compare the dimensionless minimum, average, and estimated thick-
nesses of the film depending on the capillary number Ca with the results of experiments
and numerical simulations [23,26] and an empirical correlation from [21]. The experimental
and empirical results fall between δmin and δavg. Note that the experimental data in [26]
were based on the experiments of [23], with the only difference being in the method of
thickness measurements. Specifically, [23] defined the thickness as that in the uniform
region while [26] defined it as given by (12). For Ca < 0.01, a good agreement is seen
between the results of both numerical simulations and experiments. At larger Ca, the
experimental and all numerical results show systematic deviation from Taylor’s law (3).
The reason is the increased importance of inertial effects even at relatively small capil-
lary numbers, since the Weber number We = ρ1U2

b d/σ > 5 and the Reynolds number
Re = Ubd/ν > 500 are relatively large. In [21], the authors introduced a non-dimensional
number F = Re / Ca = ρ1σd/

(
2µ2

1
)
, which is equal to F = 47, 600 for an air–water system

and tube diameter d = 0.514 mm. According to [21], for low-viscosity liquids and high F
numbers, the relationship δ(Ca) deviates from Taylor’s law, and for the air–water system,
Taylor’s law applies only for Ca < 0.015. The numerical simulations with OpenFOAM
with flexCLV (2D, 3D) [26] and our present results (δmin, δavg) are within the margin of
error of experiments. The thickness calculated numerically using interFOAM in 2D is
slightly larger than that in experiments. The minimum thickness δmin grows substantially
slower in comparison with the experimental results and the empirical correlation. We point
out that the thickness δ∗ obtained using (4) is very close to the results of experiments of
Khodaparast et al. [23] even for large Ca.

4.3. Bubble Velocity and Its Oscillations

The bubbles in a microchannel move faster than the average velocity of the fully de-
veloped flow. Bretherton has shown [20] that, within the lubrication theory approximation
at small Ca, the speed of the bubble Ub exceeds the mean flow speed Umean according to

Ub ≈ (1 + 1.29 Ca2/3)Umean. (14)

Comparisons of our numerical predictions with this relation as well as with the experiments
and previous simulations are shown in Figure 6. The simulations are seen to somewhat
overestimate the velocity in comparison with the experiments in [23]. This is consistent
with the results on the film thickness shown in Figure 5 which shows that the film thickness
in numerical simulations is larger than that in the experiments. Recall, that (4) shows that
the larger thickness corresponds to larger bubble velocity. The interFOAM (2D) shows
the largest discrepancy with the experiment. The Bretherton model (14) is also seen to
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overestimate the velocity. However, note that the Bretherton’s equation is strictly valid
only at small Ca and small Re, such as Ca ≤ 0.005 and Re� 1, as suggested in [25].
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Figure 4. (a) The dimensionless film thicknesses δmin (solid) and δavg (dashed) as functions of time
t. Different cases are marked by the following colors for (a) and (b): AW1( ), AW2( ), AW3
( ), AW4 ( ), and AW5( ). AW2 is similar to AW3 and hence is omitted in (a). (b) The filtered
power spectrum of the minimum thickness, δmin, for cases AW2–AW5. The signals of case AW5 are
split into axial (t = 0.1 to 4.6 ms) and non-axial (t & 4.6 ms) indicated by the circle and square marks,
respectively. (c) The spectrum comparison of δmin and δavg for AW4–AW5 cases.
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Figure 5. Comparison of the dimensionless minimum δmin, average δavg (12), and estimated δ∗ (4)
thicknesses versus the capillary number Ca = µ1Ub/σ with the results of numerical simulations in
OpenFOAM [23,26], experiments [23,26], and empirical correlation of [21]. Note that the experimental
results in [26] are based on [23], but the film thickness δ is estimated using (12). The minimum
thickness, δmin, gives an idea of the range of deviation from the average. The error bar for the present
results is calculated as a standard deviation of the corresponding thickness.

����� ���� ����� ���� �����

�

����

���

����

���

����

SUHVHQW�ZRUN LQWHU)RDP���'�������� IOH[&/9���'��������

IOH[&/9���'�������� .KRGDSDUDVW�HW�DO���H[S�������� %UHWKHUWRQ�������

&D

[26] [26]
[26] [23] [20]

Figure 6. Comparison of the relative excess of the average bubble velocity over the mean flow
velocity, (Ub −Umean)/Umean, versus capillary number Ca = (µ1Ub)/σ in the present work with
the results of the numerical simulations in [26], experiment of [23], and Bretherton’s theory [20].

Finally, we look at the oscillations of various characteristic points of the bubble
(Figure 7) and check if they are consistent with the oscillation characteristics of the film
discussed earlier. The position of the tail xtail, first peak xpeak, and center of mass xcm oscil-
late in time, but the bubble nose xnose moves with practically constant velocity. Therefore,
the first three coordinates are considered relative to xnose and are denoted as ∆xtail, ∆xpeak,
and ∆xcm, correspondingly (Figure 7a). The center of mass ∆xcm reaches a plateau during
the time t ≈ 5 ms. In Figure 7b, it is seen that, at the beginning, there is one dominant
frequency ω = 12× 103 s−1 (solid line). Subsequently, the second independent frequency
of about (28 to 32)× 103 s−1 (dashed line) appears. These frequencies are consistent with
those of the film thickness oscillations in Figure 4c (see also Table 2).



Fluids 2021, 6, 389 14 of 24

1 2 3 4 5 6

1.5

2

2.5

3

3.5
(a)

0 10k 20k 30k 40k 50k 60k
0

0.2

0.4

0.6

0.8

1 (b)

Figure 7. (a) Positions of the first peak ∆xpeak ( ), the bubble center of mass ∆xcm ( ), and the
tail ∆xtail ( ) relative to the position of the bubble nose for case AW5. (b) The power spectrum of
∆xpeak, ∆xcm, ∆xtail for axisymmetric oscillations at times t . 4.6 ms (solid line) and after symmetry
breaking at t & 4.6 ms (dashed line).

5. Simulation Results: Breaking of Axial Symmetry

In this section, we discuss highly resolved three-dimensional simulations of the
bubble dynamics for cases AW5 to AW8 (Table 3) at which the bubble deformations are
substantially larger than in the previous cases. In [21], the authors observed that increasing
the Reynolds number Re at a constant capillary number Ca leads to a longer nose of the
bubble and flatter tail. Numerical simulations are consistent with this observation (see
Figures 2 and 8). What is important in cases AW5-8 is that the bubble axial symmetry
breaks, leading to the formation of wavy structures in the azimuthal direction in the back
of the bubble.

Figure 8 displays the observed shape at various times for the least unstable case
AW5, with the color indicating the velocity magnitude. Early on in this regime, only axial
deformations of the bubble are observed with the thin layer of the carrier fluid between
the bubble and the wall exhibiting ripples that are weak near the head of the bubble but
increase in strength toward the back. Strong sloshing-like oscillations of the back end of the
bubble are seen until about t = 2.9 ms, after which the axial symmetry breaks exhibiting
period-3 waves in the azimuthal direction. These waves move back and forth between
the tube walls and the center with some “spilling” along the wall, which is seen as the
ripples on the thin film. The waves are initially radially symmetric (Figure 8a–d), but
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eventually the radial symmetry breaks, forming three humps along the azimuthal direction
(see Supplementary Movie S1).

Table 3. Summary of the final velocities of the bubble and the average thicknesses. Here, Umean is the
mean velocity at the inflow, Ub is the mean velocity of the bubble, δ is the dimensionless averaged
thickness, and Nc is the number of cells for the film resolution. For all cases AW5–AW8, the volume
of the bubble is fixed, Vb = 0.2179 nL. The dimensionless channel length l is taken as 30, and the
maximum level of refinement Jmax is taken as 13. Note that the bubble velocity and film thickness for
cases AW7 and AW8 (indicated by superscript ‘*’) are taken at times t = 2.37 and 1.42 ms, respectively.
At these times, the bubble approaches but may be somewhat short of its final dynamic state.

Names Ca Re Umean [m s−1] Nc Ub [m s−1] δ [−]

AW5 0.024 920 1.580 20 2.005 0.0716
AW6 0.034 1200 2.060 29 2.824 0.106
AW7 0.0455 1500 2.575 20 3.76 * 0.137 *
AW8 0.056 1800 3.09 20 4.65 * 0.15 *

The waves at the back of the bubble can be interpreted as arising due to the kind of
sloshing caused by the relative motion of the bubble and the wall (see [43] for a related
qualitative analysis). With this viewpoint, we expect to see various modes determined
roughly by Bessel functions in the radial direction and sinusoidal functions in the azimuthal
direction. The latter is responsible for the observed asymmetric shapes at the tail and
consequently in the film region near the tail. The fundamental mode of the oscillation is
radially symmetric and corresponds to our cases AW1–AW4. The radial wavelength of
these modes can be estimated as the tube diameter as we have estimated before. Higher
modes have shorter wavelength and are asymmetric as we saw in cases AW5–AW6. Of
course, these are crude qualitative arguments that are confirmed only by estimates of the
frequencies and wavelengths in the simulations versus predictions of the linear dispersion
relation (for infinite space rather than for a cylindrical domain, which would have been
more appropriate). More detailed and careful analysis of stability is likely to be rather
complicated in view of the complex geometry of the flow. However, the above estimates
may serve as certain guides in the future development of a more in-depth modeling of the
phenomena.

In Figure 9, we show the more unstable cases AW6 to AW8 at four different times
for each case. What we notice in these cases is that the instability of the bubble back is
stronger, increasing with the case number. Not only is the amplitude of the sloshing-like
oscillations of the back larger, but also the number of maxima/minima in the azimuthal
direction (azimuthal mode number) increases. The dynamics is highly complex and
irregular at saturation. It is also relatively concentrated toward the tail of the bubble (see
Supplementary Movie S2).

Figure 10 shows the back view of the bubble for the cases AW6 to AW8 at various
times that show clearly how various azimuthal modes arise and nonlinear patterns form.

Figure 11 shows how the number of corners increases with increasing Re. The numeri-
cal study is conducted for a wide range of the Reynolds numbers Re = 140 to 1800. The
symmetrical oscillations are observed up to about Re = 650. The asymmetric oscillations
are subsequently generated with simple modes; then, at larger times, they go over to more
complex modes. It was observed that the mode numbers start at 3 for Re = 920 and reach
about 10 at Re = 1500 to 1800. The duration of existence of the simple modes is shortened
as Re increases.
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(a) t = 2.75 ms (b) t = 2.83 ms

(c) t = 2.85 ms (d) t = 2.92 ms

(e) t = 5.24 ms (f) t = 5.29 ms

(g) t = 5.31 ms (h) t = 5.35 ms

Figure 8. The isometric view of the bubble evolution in case AW5. The color indicates the magnitude of the velocity. Until
t ≈ 2.93 ms, the oscillations are axially symmetric and then gradually become asymmetric.
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(a) AW6: t = 0.24 ms (b) AW6: t = 0.96 ms

(c) AW6: t = 4.13 ms (d) AW6: t = 4.3 ms

(e) AW7: t = 0.17 ms (f) AW7: t = 0.58 ms

(g) AW7: t = 1.39 ms (h) AW7: t = 1.53 ms

(i) AW8: t = 0.08 ms (j) AW8: t = 0.15 ms

(k) AW8: t = 0.39 ms (l) AW8: t = 0.59 ms

Figure 9. The isometric view of the bubble evolution for cases AW6 (a–d), AW7 (e–h), and AW8 (i–l).
The color indicates the magnitude of the velocity.
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(a) AW5: t = 3.91 (b) AW5: t = 5.24 ms (c) AW5: t = 5.35 ms

(d) AW6: t = 0.96 ms (e) AW6: t = 4.2 ms (f) AW6: t = 4.3 ms

(g) AW7: t = 0.58 ms (h) AW7: t = 1.42 ms (i) AW7: t = 1.53 ms

(j) AW8: t = 0.39 ms (k) AW8: t = 0.51 ms (l) AW8: t = 0.58 ms

Figure 10. The tail side view of the bubble for cases AW5–AW8, where asymmetric oscillations are shown at different times.
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Figure 11. Number of corners on the tail of the bubble versus the Reynolds number.

Vortical Structures

In order to visualize the flow structure around and downstream of the bubble in
various cases considered above, here, we apply the technique of vortex identification
proposed in [44]. We note up front that there exists no unique way of identifying vortices
in a general flow. In fact, this is still a topic of active research, as evidenced by numerous
recent publications. We refer the reader to the review article [45] and to [46], in which
the existing methods are analyzed and compared with each other. Even though the λ2
criterion of [44] that we use here is perhaps not the most justified of the existing methods,
it is relatively simple to use and allows for some useful insight into the coherent vortical
structures that exist in the flow under consideration.

In this subsection, the vortices in cases AW5 and AW8 are described and contrasted
in connection with the results in previous sections. As mentioned before, due to high
Reynolds numbers, Re = 920 and 1800, these cases produce axially asymmetric structures
that should somehow be reflected in the vortex field.

In Figures 12 and 13, the visualized vortex structures based on the λ2 criterion are
shown. We recall the definition and basic ideas behind the criterion. Let W = Ω2 + S2,
where S = (∇u +∇uT)/2 is the rate of the strain tensor and Ω = (∇u−∇uT)/2 is the
vorticity tensor. The λ2 criterion defines a vortex core as a connected region, where Ω2 +S2

has two negative eigenvalues. That is, if eigenvalues of W are sorted as λ1 ≥ λ2 ≥ λ3, then
in the vortical structure, the second eigenvalue λ2 must be negative.

The criterion is based on the following arguments. One can deduce from the Navier–
Stokes equations that [44]

DS
Dt
− ν∆S + S2 + Ω2 = −1

ρ
∇(∇p).

The physical intuition behind the λ2 criterion is that, in the vortex core, the pressure is
expected to have a local minimum in a plane perpendicular to the vortex axis, and it must
not be affected by the first two terms in the above equation, the first of which is the rate
of change of S (irrotational straining) following the fluid particle and the second is due
to viscosity. In that case, S2 + Ω2 ≈ − 1

ρ∇(∇p). The existence of a local minimum of

p implies that∇(∇p) has two positive eigenvalues. Therefore, S2 + Ω2 must have two
negative eigenvalues. With the ordering indicated above, this requires that λ2 < 0.

Isosurfaces of λ2 = −1 and λ2 = −2 are shown in Figures 12 and 13. There is a
toroidal vortex in front of the bubble in Figure 12 the origin of which can be understood if
we move into a coordinate system attached to the bubble. In that frame of reference, the
flow velocity is Urel = 2Uc

(
1− (2r/d)2)−Ub, and therefore, there is a radial position r at

which the relative velocity vanishes, Urel = 0. This is the position of the toroidal vortex
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core. In this regard, see also [19,47,48]. The oscillations at the back of the drop lead to
the formation of two kinds of vortices: (i) the main one has a truncated cone shape, and
the vortex decays with time and reappears with a new cycle of oscillations; (ii) secondary
vortices are seen as ring shape oscillations propagating along the drop and decaying in the
middle of the drop. In Figure 13, the toroidal vortex is harder to see due to the choice of
the levels of λ2 used for the visualization. With a different level surface, the torus becomes
more clear. The present choice is made to more clearly illustrate the vortical stuctures
around and at the back of the bubble. The dynamics of the vortical structures can be further
observed in Supplementary Movie S3.

(a) t = 2.75 ms (b) t = 2.83 ms

(c) t = 2.85 ms (d) t = 2.92 ms

(e) t = 5.88 ms

Figure 12. The vortex structure for case AW5. The color corresponds to isosurfaces of λ2 = −1
(yellow) and λ2 = −2 (green).
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(a) t = 0.22 ms (b) t = 0.37 ms

(c) t = 0.59 ms

Figure 13. The vortex structure for case AW8. The color corresponds to isosurfaces of λ2 = −1
(yellow) and λ2 = −2 (green).

6. Conclusions

In this work, we studied the dynamics of the Taylor flow—the motion of an elongated
bubble in a viscous flow in a microchannel. The analysis was conducted by performing
high-resolution three-dimensional numerical simulations using the authors’ extension of
the Basilisk software [31]. The solver employs adaptive mesh refinement to resolve fine
dynamical features associated with the thin liquid layer between the bubble and the tube
wall. The simulations have been performed for a wide range of Reynolds and capillary
numbers such that both steady-state and highly unsteady shapes of the bubble are covered.
The steady-state and time-dependent axisymmetric results have been validated against
available experiments, numerical simulations, and theoretical models.

At relatively large Reynolds numbers, the bubble is found to be highly unsteady and
to undergo strong deformations that may lead to asymmetric shapes of the bubble. By
analyzing the Fourier spectra of the shape oscillations, we found that the frequency and
wavelength of the bubble-surface undulations appear to be controlled by two distinct
physical mechanisms. First, at sufficiently small Reynolds numbers, when the bubble
velocity is close to the mean velocity, the back side of the bubble oscillates with a certain
frequency. These oscillations are transmitted to the film preserving the same frequency.
Second, when the Reynolds number is large enough, the bubble oscillations become so
strong that the second independent frequency appears. We attribute this frequency to the
thin layer instability under the influence of the gas flow in the bubble or caused by the
perturbations coming from the backside oscillations. The estimates of the frequencies based
on the linear dispersion relation for the surface waves following these physical ideas are
found to be consistent with the data obtained from the simulations.

We also analyzed in detail how the bubble shape becomes asymmetric with azimuthal
structures appearing in it as the Reynolds number increases. The breaking of axial symme-
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try yields complex irregular shapes of the bubble back and very strong oscillations. The
linear modes that appear early in the simulations have mode numbers that increase with
increasing Reynolds number.

Finally, we analyzed the vortical structures that arise in various regimes using the λ2
criterion of vortex identification. Isosurfaces of λ2 = const demonstrate the generation of a
toroidal vortex near the nose of the bubble that is stationary relative to the bubble nose.
This structure is consistent with predictions in earlier works. Elongated bubbles at large
Reynolds numbers oscillate forming ring vortices around the bubble, which propagate
along the bubble surface.

Supplementary Materials: The following movies are available online at https://www.mdpi.com/
article/10.3390/fluids6110389/s1, Movie S1: AW5-ux.mp4, Movie S2: AW6.mp4, Movie S3: AW5-
Lambda2.mp4.
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