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Abstract: The instability of surface lenticular vortices is investigated using a comprehensive suite
of laboratory experiments combined with numerical linear stability analysis as well as nonlinear
numerical simulations in a two-layer Rotating Shallow Water model. The development of instabilities
is discussed and compared between the different methods. The linear stability analysis allows for
a clear description of the origin of the instability observed in both the laboratory experiments and
numerical simulations. While global qualitative agreement is found, some discrepancies are observed
and discussed. Our study highlights that the sensitivity of the instability outcome is related to the
initial condition and the lower-layer flow. The inhibition or even suppression of some unstable
modes may be explained in terms of the lower-layer potential vorticity profile.

Keywords: Vortex; instability; ocean eddies; numerical simulations; laboratory experiments

1. Introduction

Mesoscale vortices are a major component of the global oceanic circulation. They
are particularly common in oceanic regions of high mesoscale activity and can have long
lifetimes, up to the order of a year (e.g., [1–4]). These coherent structures play an active role
in the energetics of the ocean general circulation, in the transport of biological species, heat
and salt anomalies, and in air–sea interaction (e.g., [5,6]). For example, eddies that detach
from currents separating oceanic regions with different properties may propagate from one
side to the other, transporting into a new region water with anomalous properties. These
warm- and cold-core vortices are associated with the intersection of the isopycnals with the
surface of the ocean, forming a front (e.g., [7]), but can also be sub-surface intensified [8]
or form lenticular vortices at depth, a well known example of such vortices being the
meddies [3]. Typical eddy size in the ocean are a few Rossby deformation radii (between 1
and 5 for eddies described in details in the literature), with Rossby numbers smaller than
unity but finite (typically below 0.3 in absolute value) (e.g., [4,9–11]). Smaller eddies can
also be found, down to the submesoscale and with higher Rossby numbers (e.g., [12,13]).
Warm-core surface anticyclonic vortices are the subject of this study and will be referred as
lenticular vortices.

Early modelling studies of the dynamics of such vortices date back to the 1970s, start-
ing with experimental studies [14,15]. Subsequently Griffiths and Linden [16] performed
laboratory experiments in a rotating tank, using two different methods for generating the
vortex. The first method (referred to as constant-flux) consists of slowly injecting a lighter
fluid at the surface of the tank filled with heavier fluid until the desired volume for the
vortex is obtained (this technique was already used by Gill et al. [15]). The second tech-
nique, the so-called constant-volume method previously used by Saunders [14], consists
of releasing a given volume of lighter fluid initially contained in a suspended cylinder.

Fluids 2021, 6, 380. https://doi.org/10.3390/fluids6110380 https://www.mdpi.com/journal/fluids

https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0003-1307-9822
https://orcid.org/0000-0002-7917-8711
https://orcid.org/0000-0002-1419-6505
https://doi.org/10.3390/fluids6110380
https://doi.org/10.3390/fluids6110380
https://doi.org/10.3390/fluids6110380
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fluids6110380
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids6110380?type=check_update&version=2


Fluids 2021, 6, 380 2 of 25

Under the action of buoyancy and rotation, the patch of lighter fluid adjusts towards an
axisymmetric vortex which eventually destabilizes and breaks up.

The issue of the stability of oceanic surface vortices has also been addressed in the-
oretical and numerical studies. The (multi-layer) Rotating Shallow Water (RSW) model
has been widely used to investigate their dynamics, representing the eddies as patches
of lighter fluid overlying a deep ocean. Such model is appealing because it allows for an
explicit representation of the density anomaly (compared to the exterior region) in the
eddy, as well as the outcropping of the isothermal or isopycnal (e.g., [7,17]). This outcrop-
ping can be associated with specific dynamical features (including instabilities) associated
with the frontal configuration [18–20]. In the two-layer configuration, Ripa [21] derived a
semi-analytical criterion for the instability of vortices in solid-body rotation. He classified
the instability regimes in terms of wave-wave resonances, showing that lenticular vortices
with constant (zero in their case) Potential Vorticity (PV) over a quiescent layer of fluid are
prone to instability through resonance between a Poincaré-like wave in the upper layer
and a Rossby wave in the lower layer, for realistic oceanic eddy size and intensity. Paldor
and Nof [22] investigated numerically the linear stability of zero-PV lenticular vortices and
found unstable modes with azimuthal wavenumber m ≥ 2. More recently, Cohen et al. [23]
extended this analysis to vortices with constant non-zero PV.

The fact that eddies with very long lifetimes are observed seems to conflict with results
from these idealized studies, which found instability for typical oceanic regimes. Part of
the explanation could be related to the flow surrounding the vortex, and in particular to
the circulation below it. Dewar and Killworth [24] showed (although not in the context
of lenticular vortices) that a co-rotating flow under an eddy decreases the growth rate of
the instability, and Benilov [25] showed that a constant-PV lower-layer flow suppresses
baroclinic instability in a QG model, the explanation being that Rossby wave propaga-
tion is precluded in the lower layer in such a configuration. In a two-layer RSW model,
Cohen et al. [26] also reported no finding of unstable mode for lenticular vortices over a
constant PV layer.

While the nonlinear development of the instability of isolated but non-outcropping
vortices (i.e., vortices surrounded horizontally by a ring of opposite-signed vorticity) has
been investigated numerically in numerous papers, either in layered or continuously
stratified models (e.g., [27–31]), few simulations of the evolution of lenticular vortices
have been reported to our knowledge. Verzicco et al. [32] reproduced the constant-volume
experiments of Griffiths and Linden [16] and the subsequent evolution of the vortex for a
few cases, using numerical simulation of the Boussinesq equations. Numerical simulations
of the two-layer shallow water equations were performed by Thivolle-Cazat et al. [33]. They
used the MICOM code in conjunction with data assimilation of laboratory experiments
measurements (on the Coriolis platform in Grenoble, France). They did not focus on
lenticular vortices, which represented only 5 runs out of 20 experiments. This rather scarce
number of numerical studies is partly due to the difficulty of having a reliable numerical
scheme for the shallow water equations that deals with the outcropping of one of the
layers. On the other hand, fully three-dimensional numerical simulations still require large
computational resources, making a large number of runs with different parameters at high
resolution impractical.

In this paper, we report results on the instability of constant-PV surface lenticular
vortices in a two-layer configuration. These results are based on laboratory experiments
covering a wide range of vortex parameters (aspect ratio and PV), supplemented by
extensive nonlinear numerical simulations of the two-layer RSW equations. These are
compared to results from a linear stability analysis using the latter model. Besides allowing
to capture outcropping and related frontal dynamics, the two-layer model is very close to
the experimental setup used in this study, thus allowing for a more accurate comparison.
A description of the model equations and methods, including the laboratory experiments
setup, the nonlinear numerical simulation code and the linear stability analysis, are given
in Section 2. In Section 3, we discuss the linear stage of the developing instability observed
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in both the nonlinear numerical simulations and laboratory experiments, and compare to
results from the linear stability analysis. Then Section 4 addresses the nonlinear saturation
of the instability, mostly in the numerical simulations, and contains a detailed analysis
of one run illustrating the dynamics. A discussion on the impact of a lower layer flow is
provided in Section 5, and conclusions are presented in Section 6.

2. Problem Formulation and Methods
2.1. RSW Equations and Basic State
2.1.1. The Two-Layer RSW Model

The two-layer RSW equations in polar coordinates (r, θ) are, e.g., [34]

Dvi
Dt

+
(

f +
vi
r

)
ez × vi +

∇pi
ρi

= 0, (1)

∂thi +∇ · (hivi) = 0, (2)

where i is the index of the layers (1 and 2 for the upper and lower layer, respectively),
D/Dt = ∂t + u∂r + (v/r)∂θ the Lagrangian derivative, vi = (ui, vi) the horizontal velocity,
pi the pressure and hi the layer thickness. This system of equations is supplemented by a
dynamical condition at the interface:

p1

ρ1
− p2

ρ2
= g

(
1− ρ1

ρ2

)
h1 ≡ gλ2h1. (3)

In the following, we will use either the rigid lid assumption, which implies h1 + h2 = H0
with H0 a constant corresponding to the nondimensional total thickness of fluid at rest (see
below for the nondimensionalization); or a free-surface upper boundary condition. The
rigid lid assumption allows for a simpler discussion of the formulation of the linear stability
analysis and the spectra of unstable modes, while capturing the essential mechanisms at
play in both the laboratory experiments and the nonlinear numerical simulation.Relaxing
this approximation yields additional unstable modes that mostly take place for non-realistic
dynamical parameters, as will be discussed separately.

We shall consider here the stability of surface lenticular vortices and nondimensional-
ize the equations accordingly. We use the size of the eddy Le (i.e., the radius of outcropping
of the interface) as the typical horizontal length scale and the inverse Coriolis parameter
f−1 as a typical time scale. The velocity is non-dimensionalized by Le f (i.e., the nondimen-
sional velocity is the Rossby number Ro = U/ f L). The thickness hi is non-dimensionalized
with the value Hsc associated with a baroclinic (or rather upper-layer) deformation radius
equal to the size of the vortex:

√
g′Hsc/ f = Le, where g′ = λ2g is the reduced gravity. That

is, the depth scale used for non-dimensionalization is Hsc = f 2L2
e /g′2 and, correspondingly,

the pressure scale is ρiL2
e f 2. The barotropic Burger number of the vortices investigated is

given by gH0/ f 2L2
e and is large (greater than 10 for most experiments, the minimal value

being 3), justifying the use of the rigid lid approximation for the linear stability analysis.

2.1.2. Vortex Profiles

Lenticular vortices are steady axisymmetric solutions of the equations with zero radial
velocity and azimuthal velocity obeying cyclogeostrophic balance. They satisfy in each
layer the following system of (nondimensional) equations:

V2
i
r

+ Vi =
dPi
dr

, (4)

dVi
dr

+
Vi
r
+ 1 = Qi Hi, (5)

which is valid both for the free-surface and the rigid lid upper boundary conditions (the
difference arising in the relationship between Pi and Hi). In the notation used in this paper,
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upper-case variables stand for background state whereas lower case are for perturbations
(and for some parameters). The family of upper-layer profiles we consider is defined by
a constant value of potential vorticity Q1. This aims at reproducing the profiles obtained
in a constant-volume experiment, where some fluid initially contained in a bottomless
cylinder is released and adjusts through the combined action of Coriolis and buoyancy
forces. The PV of the upper layer, initially contained in the cylinder, is constant with
Q1 = f /Hinit

1 , (with Hinit
1 the initial thickness of the upper layer fluid contained in the

cylinder) and nearly remains so throughout the adjustment and subsequent evolution. This
assumption of constant upper PV is also relevant for typical oceanic profiles [7,9]. In the
lower layer, we will primarily consider two different situations: V2 = 0 (quiescent lower
layer, with Q2 = 1/H2), which is the most trivial solution, and Q2 piecewise constant. The
latter configuration aims at capturing more accurately the profile obtained in constant-
volume experiments. This method consists of releasing a volume of buoyant fluid initially
contained in a suspended cylinder at the center of a rotating tank. The fluid initially below
the cylinder in the lower layer has a positive PV anomaly, so that PV has a piecewise-
constant distribution. In the course of the adjustment, this volume of fluid slightly shrinks
inward and acquires a weak cyclonic circulation. The lower layer PV is then given by

Q2 =

{
(H0 − 1/Q1)

−1, r ≤ r∗c ,
1/H0, r > r∗c ,

(6)

where r∗c is the location of fluid parcels that were initially at the radius of the cylinder
before adjustment. With the rigid lid approximation, the momentum equations for the
background state (4) in each layer reduce to:

V2
1
r

+ V1 −
V2

2
r
−V2 =

dH1

dr
, (7)

Equations (5) and (7) come with the boundary conditions H1(r = 1) = 0 and
Vi(r = 0) = 0, i = 1, 2. In the lower layer V2 = 0 at r = 1, as mass conservation im-
plies that fluid parcels in the lower layer at r = Le are unaffected during the adjustment.
The resulting boundary-value problem is solved numerically with a standard boundary
value problem solver, using a linear expansion for Vi near the singularity at r = 0 of the
form Vi(r → 0) ∝ r. Examples of vortex profiles with different values of Qi are given
in Figure 1.

2.1.3. Range of Parameters Investigated and Estimates of Realistic Values

Typical dynamical parameters for major ocean eddies, such as the Gulf Stream or
Agulhas rings, were reported in (e.g., Olson [2], Goni et al. [11]), sometimes with an
interpretation based on a two-layer formulation [10,35]. In the latter study, the authors
reported typical values for two Agulhas rings of 400 m for the vertical displacement of the
isopycnal, Le in the range 110 km to 130 km and maximum absolute azimuthal velocity
in the range 0.6 m/s to 0.9 m/s. The deformation radius is of the order of 30 km in this
area [36] (computing

√
g′h0 f , with g′ = 0.018 m/s2 as reported by the authors, gives

the same value). The resulting Burger number ranges between 0.05 and 0.07, while the
Rossby number is between around 0.04 and 0.07. These typical dynamical parameters were
confirmed by observations from satellites in ths region [11], who reported typical eddy size
ranging from 50 km to 170 km.

For a Gulf stream warm core ring (82B), the reported values were around 500 m for the
isothermal displacement, Vmax around 0.5 m/s and Le ∼ 60 km. The deformation radius is
around 20 km in this region, so the typical Burger number is around 0.11, as well as the
typical Rossby number.

In our scaling, the potential vorticity (at the center of the vortex, and assuming it
is constant)

Q1 =
1 + ζ/ f

Bu
, (8)
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and is thus equal to the inverse Burger number in the limit of small Rossby number.
Therefore, the nondimensional PV associated with the above-mentionned eddies ranges
between 9 and 20. More generally, sizes of ocean rings range between 1 and 5 deformation
radius [2], so that Bu ∼ [0.04, 1] and Q1 ∼ [1, 25]. Typical realistic values of δ do not exceed
0.3. Of course, smaller eddies with larger Rossby numbers are known to exist (e.g., [4,13]),
and these would have smaller values of Q1 (as well as δ).
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Figure 1. Basic vortex profile: nondimensional upper-layer thickness H1 (upper left panel), lower-layer PV Q2 (lower left
panel) and upper and lower layer azimuthal velocity V1 and V2 (upper and lower right panels, respectively). The vortex
parameters are Q1 = 10, δ = 0.2, and the solution with a quiescent lower layer (black) is compared to the solution with
a piecewise-constant lower-layer PV (blue). The analytical solution for Q1 = 0, V2 = 0 is plotted as a grey dashed line
for reference.

2.2. Methods
2.2.1. Setup of the Laboratory Experiments

Lenticular vortices were produced through the adjustment of a buoyant fluid initially
confined in a bottomless cylinder in a rotating tank, the so-called constant-volume exper-
imental setup [16,37]. The mechanical lift-up of the inner cylinder, which is co-aligned
with the rotation axis of the tank, was triggered after the water in the tank had reached
solid-body rotation. A schematic of the experimental setup is given in Figure 2.

The rotating tank was a square with side 99 cm and depth 51 cm. The rotation rate
could be varied between 0.5 rad s−1 and 1.35 rad s−1 within an accuracy of 0.01%. We used
two different cylinders with radius Rc 5.5 cm and 20 cm. Dyed fresh water was used to
visualize the evolution of the vortex using a CCD camera placed above the tank. The lower
layer was salt water with concentration in the range 3.6 to 80 g L−1, thus setting the value
of the reduced gravity. The total fluid depth was varied from 8 to 40 cm while the thickness
of lighter fluid in the cylinder was 3.5 ≤ h0 ≤ 7 cm, covering a range of initial depth
ratio 0.088 ≤ δ0 ≤ 0.67. In total, 42 different experiments were performed, with initial
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Burger numbers θ0 = g′h0/( f R2
c ) varying between 0.015 and 0.88. A table summarizing

the parameters of the laboratory experiments is given in Appendix D.

Ω

H0

h0ρ1

ρ2
Rc

Figure 2. Schematics of the laboratory experiment setup, showing the rotating tank and the inner
cylinder with lighter fluid inside, before removal.

We relate these values to the nondimensional values of the potential vorticity Q1
and aspect ratio δ. This is done using the semi-empirical fact that the vortex spreads out
by approximately one baroclinic deformation radius, Rd =

√
g′h0/ f , during the initial

adjustment, as was noticed by Griffiths and Linden [16], so that Le ≈ Rc(1 +
√

θ0). Thus,
the nondimensional upper-layer PV becomes:

Q1 =
f

h0

Hsc

f
=

L2
e

θ0R2
c
=

(
1 +

1√
θ0

)2
. (9)

For the depth ratio we use the qualitative formulas given by Griffiths and Linden [16]:

δ =

{
δ0(1 + θ0/3)−1 , θ0 ≤ 1,

3δ0(1 +
√

θ0)
−2 , θ0 > 1.

(10)

Formulas (9) and (10) are used to infer the vortex parameters in the laboratory experiments,
allowing for a comparison with the nonlinear numerical simulations and results from the
linear stability analysis.

2.2.2. Linear Stability Analysis

For comparison with observations from laboratory experiments and nonlinear nu-
merical simulations, we perform a linear stability analysis of the base flow described
above. For simplicity, and since it does not affect the main results, we use the rigid-lid
approximation here – extension to the free surface case is discussed in Appendix C. The
nondimensional equations are linearized around the basic state using the standard normal
mode decomposition (ui, vi, pi) ∝ ei(mθ−ωt), introducing an additional change of variable
u→ iu for convenience. This gives the linear eigenproblem for the eigenvalue ω defined
for r ≤ 1: (

ω−m
Vi
r

)
ui −

(
1 + 2

Vi
r

)
vi +

dpi
dr

= 0, (11)

−
(

ω−m
Vi
r

)
vi +

(
1 +

Vi
r
+ V′i

)
ui +

m
r

pi = 0, (12)

(−1)i
(

ω−m
Vi
r

)
(p1 − p2) +

1
r

d
dr

(rHiui) +
m
r

Hivi = 0. (13)
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Boundary conditions for this problem are regularity of the solution at r = 0 and r = 1.
In the exterior domain (r > 1), the rigid lid condition enforces a non-divergent flow–
cf. (13)–with p1 − p2 → h2 = 0. The flow in the exterior region can be obtained analytically,
using a condition of decay as r → ∞. This leads to boundary conditions at r = 1 for the
interior solution (see Appendix A for details):

u2 = v2,
dp2

dr
= −mp2. (14)

The resulting eigenproblem is solved using a collocation method with Chebyshev polyno-
mials. Regularity of the solution is ensured by the form of the interpolants. The azimuthal
momentum and mass conservation equations are multiplied by r for the numerical imple-
mentation. Numerical convergence in the case of an eddy over a quiescent lower layer is
reached for resolutions as low as 10 points.

2.2.3. Nonlinear Simulations: Numerics and Initial Conditions

For the nonlinear simulations, we used a high-resolution finite-volume numerical
code [38]. It integrates the two-layer RSW Equations (1) and (2) with a free surface
in conservative form, using a well-balanced entropy-satisfying scheme. The latter en-
sures physically appropriate behavior in cases of shock formation (namely a decrease
in energy) without requiring explicit dissipation. In this regard, the numerical code be-
longs to the family of implicit Large Eddy Simulation (iLES). In particular, it copes well
with outcropping (vanishing layer thickness), which is required for the simulation of
lenticular vortices. This code was previously used in the context of frontal dynamics by,
e.g., Gula et al. [18], Ribstein and Zeitlin [19], Gula and Zeitlin [39]. The numerical simula-
tions are initialized using the solutions for the lenticular vortices considered in Section 2.1.2,
with a quiescent lower layer, adapted to the free surface condition and suitably perturbed
to trigger the instability. The perturbation is obtain by applying a θ-dependent map to the
radial variable when computing the solution Hi(r), V1(r), as described in Appendix B. A
weak radial velocity field is then computed so that the divergence of the velocity vanishes,
in order to limit the generation of ageostrophic motions and especially of inertia-gravity
waves. The azimuthal wavenumbers of the perturbation range from 2 to 10 (unless other-
wise stated), and the perturbation’s relative magnitude is of the order of a few percent. A
series of numerical experiments were carried out to span the δ, Q1 plane. Values used in
the initial conditions are given in Table 1. The size of the domain is four time the diameter
of the vortices, and the numerical grid has 4002 points.

Table 1. Values of the parameters δ and Q1 used in the initial conditions of the numerical simulations
(every pairs).

δ 0.1 0.14 0.2 0.28 0.4 0.56 0.8

Q1 3 10 16 25 40 63 90

3. Early Stage of the Instability

In this section, we report the behavior of the vortices at early stages of the instability
from the laboratory experiments and nonlinear simulation and compare it with the results
from the linear stability analysis.

3.1. Preliminary Considerations from Linear Stability Analysis

We first briefly discuss the results from the linear stability analysis, neglecting the
background current (V2 = 0) for simplicity. A diagram of the wavenumber m and growth
rate σ = =(ω) of the most unstable mode in the (δ, Q1) plane is given in Figure 3.
An extensive discussion of the linear stability of these kind of vortices can be found
in (Cohen et al. [23], their “regular” regime).
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Instability is found for large values of the aspect ratio δ and/or the potential vortic-
ity Q1, with the wavenumber of the most unstable mode increasing with both of these
parameters, while the growth rate depends predominantly on δ. The latter dependence
is in agreement with what was found for non-outcropping eddies in two-layer models
(e.g., [24,40]). From the wave resonance point of view, the “standard” unstable modes
(in the upper and rightmost part of the diagram) result from the interaction between a
frontal-type wave in the upper layer, sometimes referred to as a mixed Rossby-Poincaré or
Yanai mode, and a Rossby wave in the lower layer [18,21,23,39]. The latter is supported
by the presence of the PV gradient associated with the slope of the interface since the
lower-layer PV is given by Q2 = 1/H2. The growth rate thus depends on the efficiency of
the mutual amplification between the upper- and lower-layer waves, which is primarily
driven by their spatial structure (the shape of the modes) and their phase speed difference,
as phase-locking is a necessary condition for mutual amplification. A review of two-layer
and frontal instabilities is given in Zeitlin [34].

There is a zone of relative stability in the lower-left corner of the diagram, delimited
by the m = 2 contour. In this region, however, small zones of instability also exist with
rather high (4 < m < 10) wavenumbers and growth rates not exceeding 2× 10−2 f−1.
These instabilities involve higher radial wavenumber Poincaré modes in the upper layer.
The latter have different phase speed, therefore experiencing phase locking for different
(higher) values of the azimuthal wavenumber compared to the unstable modes described
above. Finally, one sees a weak region of very high growth rate (up to 0.4 f−1) with
wavenumber m = 10 for very large depth ratio (δ > 0.85) and weak Q1, which we identify
as a frontal-frontal (i.e., implying a Rossby-Poincaré wave in the lower layer instead of a
Rossby wave) instability [19].

log(δ)

lo
g

(Q
* )

 

 

m
=

2

m=2

m=2

m=3

m=3

m=3

m=4

m=4

m=5
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0.25

lo
g(
Q
1
)

Figure 3. Growth rate (colours) and wavenumber (black contours) of the most unstable mode, as
found from the linear stability analysis, in the (δ, Q1) parameter space, for lenticular vortices with a
quiescent lower layer (V2 = 0). Following the discussion of realistic parameters (see Section 2.1.3),
typical values for large ocean rings are log(Q1) ∈ [0, 1.5] and log(δ) < −0.5.

3.2. Observations in Laboratory Experiments

Just after the withdrawal of the cylinder, the freshwater spreads radially and the
flow adjusts to an axisymmetric lenticular vortex. The detailed dynamics of this initial
adjustment has been carefully discussed in several papers [16,33,37] and is not the subject
of the current paper. One should keep in mind that dissipative processes and mixing occur,
especially close to the edge of the vortices, diminishing the azimuthal velocity and reducing
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the shear between the two layers there [37]. This is almost certainly the main source of
differences between the experimental adjusted lenticular vortex profile and the inviscid
solution. After this period, the flow eventually starts to develop non-axisymmetric features
that consist of m arms developing out of the initial vortex and rolling up in a cyclonic sense,
forming dipolar structures that can eventually detach and propagate away.

Snapshots of different stages of the initial adjustment and the development of an
instability with m = 6 are shown in Figure 4. The parameters of this eddy (see table
in Appendix D) are δ ≈ 0.17, Q1 ≈ 58, Bu ≈ 0.02. That is a very large eddy (around 7
deformation radii) with a Rossby number of order 0.1. Here and below, when restoring
dimensional values, we will use Rd ∼ 25 km and f ∼ 10−4 s−1, which is fairly typical
of mid-latitudes. Using these, the maximum velocity is 1.75 m/s, which is large (but
one should keep mind that all these parameters are estimated within at least a factor of
2 uncertainty). In the laboratory experiments, the number of arms is often well defined
and their development rates are of the same order. Sometimes, at high-wavenumber, one
or two arms may have an inhibited growth compared to the others (see Figure 4d). The
wavenumber of the developing unstable mode, as well as the timescale of the growth of the
instability, are different between the various experiments (2 ≤ m ≤ 7 for the investigated
range of parameters). A comparison of the prediction from the linear stability analysis with
the experimental observations is given in Figure 5 (left panel) and shows good agreement.
Possible reasons for the observed discrepancies are the following:

• The parameters δ, Q1 in the laboratory experiments are deduced from qualitative con-
siderations and semi-empirical relations, neglecting the details of the initial adjustment;

• Friction effects decreases the azimuthal velocity, especially during the initial adjust-
ment and near the edge of the eddy [37].

• The initial adjustment leaves out high-wavenumber perturbations to the vortex before
the instability starts developing (see Figure 4a). The vortex may be unstable with
respect to several wavenumbers, which are unevenly excited by this perturbation, so
that a mode that is not the most unstable may initially gain more energy than the most
unstable one and develop faster.

(a) t = 6Tf (b) t = 12Tf

(c) t = 18Tf (d) t = 24Tf

Figure 4. Snapshots of the evolution of the flow during a developing instability with wavenumber
m = 6 observed in the laboratory experiment. Small-scale dissipative processes during the initial
adjustment are visible in the first snapshot. Estimated eddy parameters are δ ≈ 0.17, Q1 ≈ 59.
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Another possible source of differences is that the lower-layer flow is neglected in the
linear stability analysis. However, as will be shown in Section 5, this is very unlikely to be
the dominant cause of discrepancies.
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Figure 5. Left panel: wavenumbers of the most unstable modes from the linear stability analysis (contours) and observed
in laboratory experiments (text). Green labels are reproduced from (Griffiths and Linden [16], their Figure 5), and blue
labels are from our set of experiments. Contours in the lower left part of the panel has been removed for visibility, using the
condition σ > 2× 10−2 for modes higher than m = 2 in this region of the (δ, Q1) space. Right panel: comparison of the
growth rate predicted by linear theory (colours) and measured in the numerical experiments (colored bullets) in the (δ, Q1)

parameter space (zoomed over the range of δ values investigated in the nonlinear simulations).

3.3. Results from Nonlinear Numerical Simulations

Our numerical simulation reproduces the observations reported previously from the
laboratory experiments, as far as the development of the instability is concerned, at least
qualitatively. We compute a growth rate associated with the development of the instability
based on the perturbation of the upper layer thickness with respect to the angular mean at
the initial time. A clear period of linear growth is observed in every simulation. Figure 5
(right panel) shows a comparison of the growth rate calculated in the numerical simulations
and that predicted by the linear stability analysis here adapted to the free surface for a
more rigorous comparison. Note that, for the range of (δ, Q1) investigated, the impact of
the free surface compared to a rigid lid approximation is negligible (see Appendix C for an
extended discussion).

Rather good agreement is found in most cases. In particular, no instability occurs
for the two runs outside the linear instability zone and the growth rate of the most un-
stable mode increases with the depth ratio and to some extent with the upper layer PV.
Nonetheless, the growth rate measured in numerical simulations is systematically smaller
that the linear prediction, with a relative error ranging between 10% and 40% and roughly
increasing with Q1. Several explanations are possible for this discrepancy. It is most likely
because of numerical dissipation near the edge of the vortex: although the numerical
code does not use explicit viscosity, the entropy condition used in the Riemann solver is
associated with a decrease of the energy across shocks. Hence, energy dissipation occurs at
the edge of the lens. In addition, there is a non-negligible time before the unstable mode
starts developing, because the initial amplitude of the perturbation is weak and the shape
of the perturbation is different from that of the unstable modes. Short-time non-normal
modes are very likely to be excited by such a perturbation, before the long-time unstable
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modes start developing and dominate the flow (e.g., [41]), so that the angular mean profile
changes before the unstable mode starts developing.

The development of the instability is investigated in a numerical experiment where we
used the linear unstable modes as a perturbation to the initial state. This procedure has been
routinely used (e.g., [30,39]) and enables a clear investigation of the dynamics associated
with the unstable mode in isolation from other phenomena. The vortex parameters are
δ = 0.2 and Q1 = 12, corresponding to Ro ∼ 0.25 and Bu ∼ 0.1, i.e., it has a typical size of
roughly 3 deformation radius. The dimensional maximum velocity reaches 1.8 m/s, which
is roughly twice the observed typical maximum velocity in ocean rings. The pressure
and velocity perturbations associated with the developing unstable mode for this vortex
initialized with an m = 3 perturbation in the upper layer are shown at t = 40 f−1, roughly
after twice the growth timescale, in Figure 6. (Note that here and below, for clarity, fields in
the upper layer are only represented where the layer thickness is greater than H0/103).
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Figure 6. Upper (left) and lower (right) non-axisymmetric parts of the pressure (lines) and velocity (arrows) at t = 40 f−1

for the simulation initialized with a m = 3 perturbation in the upper layer. Positive values of the pressure perturbation are
in blue and negative values are in red.

The standard picture of a frontal mode in the upper layer and Rossby mode in the
lower layer (with the velocity along the pressure isolines) clearly emerges, and matches
the structure of the linear unstable mode (not shown, but one can compare with Gula and
Zeitlin [39] in the rotating annulus): the m = 3 growing perturbation manifests itself by the
non-axisymmetric shape of the vortex in the left panel.

3.4. Sensitivity to the Initial Conditions

When initially perturbed with several wavenumbers, several unstable modes with
differ‘ent wavenumbers may develop, as might be expected from the linear stability
analysis. This is visible in Figure 7 (left panel), where the evolution of the modal amplitude
of the perturbation in one numerical run is plotted and exhibits linear growth for two
wavenumbers. It is different from what is observed in the laboratory experiments, where a
single wavenumber most often emerges. We suspected this could be due to the difference
in the initial perturbation. We thus consider the destabilization of the eddy with δ = 0.2
and Q1 = 12 discussed previously, in five nonlinear simulations using 3 different types
of initial perturbation. The first consists of a random noise with different azimuthal
wavenumbers; the second consists of noise with the same radial structure as before but
only one wavenumber (we consider m = 2 and m = 3); the last one consists of the linearly
unstable mode, as shown previously (two runs). The basic vortex profile is linearly unstable
with respect to wavenumbers 2 and 3, and the associated growth rates are σ2 = 4.3× 10−2 f
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and σ3 = 3.4× 10−2 f , respectively. In the nonlinear simulations, we find growth rates
of 3.8× 10−2 and 2.9× 10−2 for m = 2 and m = 3, respectively, both in the simulation
initialized with several wavenumbers and with a single wavenumber, as shown in Figure 7.
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Figure 7. (Left): Evolution of the upper layer thickness perturbation (logarithm of norm) for different wavenumbers for
the simulation with initial conditions randomly perturbed (several wavenumbers). Dashed lines indicate the estimated
growth rate (σ = 3.79× 10−2 for m = 2 and σ = 2.91× 10−2 for m = 3). (Right): Evolution of the energy anomaly (total:
black, potential: blue, kinetic: red) normalized by the initial total energy anomaly. Thick continuous lines: perturbation
containing a range of wavenumbers, thick dashed lines: perturbation with m = 2, thin continuous lines: perturbation with
m = 3. Vortex parameters: δ = 0.2, Q1 = 12.

The development of this instability is associated with a transfer from potential to
kinetic energy. The evolution of the relative energy anomaly, with the potential energy
on the same domain with the lens subtracted, is shown in Figure 7 (right panel) for the
three different runs with different initial perturbation (multiple wavenumbers, m = 2 and
m = 3). The energy transfer starts at the initial instant, as seen from the slight but constant
decrease in potential energy. However, there is no visible increase in the kinetic energy at
this time, probably due to dissipation. Nonlinear saturation, as seen in the decrease of the
linear growth rate (cf. Figure 7), occurs around t = 100 f−1 here and is associated with an
enhancement of the energy transfer, which stops later on (at about t = 200 f−1 depending
on the simulation). During the same time, the dipoles form and start moving away from the
initial vortex position. For the m = 2 instability, t ≈ 100 f−1 corresponds to when the vortex
becomes pinched near its center, while it is associated with the arms beginning to roll up
for the m = 3 instability. Rather surprisingly, the development of the instability, as seen in
the evolution of the energy, is actually slower for the simulation perturbed with several
wavenumbers compared to the m = 2 perturbation alone associated with the strongest
transfer. To our knowledge, this kind of sensitivity to the initial perturbations has not been
reported before.

4. Nonlinear Saturation of the Instability

We now turn to the mature stage and nonlinear saturation of the instability, relying
mostly on nonlinear numerical simulations and comparing with laboratory experiments
when appropriate. The range of parameters investigated in the former is the same as in
the latter (see Table 1). In addition, we performed a set of simulations with Q1 = 12 and
δ = 0.2 already discussed in the previous section. The latter serves as a reference for the
discussion of the nonlinear saturation of the instability, and is presented in detail. The
outcome of the nonlinear saturation of the instability is not unique: it may be divided
into 3 different scenarios, depending on whether the dominant unstable mode consists of
(1) one wavenumber m = 2, (2) one wavenumber m > 2, or (3) a superposition of several
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wavenumbers. For the same initial vortex, one of the above situation can be picked by
choosing the proper initial perturbation, provided the vortex is unstable with respect to
several wavenumbers with nearby growth rates. This is particularly true (see previous
section) for the vortex with δ = 0.2, Q1 = 12 described below.

4.1. Nonlinear Saturation for m = 2 Dominant

The destabilization of the vortex in this case is similar to the standard “dipolar vortex
breaking” observed as the outcome of barotropic instability (e.g., [29,30], and references
therein). Developing arms start rolling up in a cyclonic sense (although the circulation
within the arms is anticyclonic) and form a dipole with a lower-layer cyclonic circulation
associated with the positive PV anomaly shredding from the initial core. The destabilized
vortex is shown in Figure 8 (first row) at two different stages ,and the corresponding
lower-layer PV is shown in Figure 9 below. The lower layer is nearly balanced (in the
geostrophic sense) and circulation may thus be inferred from the pressure gradient. The
self-mutual interaction of the poles is baroclinic, as each pole is in a different layer, and
is more heton-like [29,42]. As the dipoles radiate away, they detach and eventually leave
a monopole at the location of the initial vortex, which looks like an elliptical “cat’s eye”
vortex. In some case, weaker satellites result from the filaments between the radiating
dipole and the monopole (on the right above the monopole and below it on the left in
Figure 8, upper-right panel). The magnitude of this monopole is larger for larger values
of δ, and is almost negligible for small values (within the parameter range investigated in
our numerical simulations and leading to a wavenumber 2 unstable mode). It is worth
mentioning that the radial momentum of the dipoles almost vanishes once they detach
from central monopole. Almost all of the lower-layer initial patch of PV splits off and
moves along with the baroclinic dipoles, or is stirred during of the detachment of the latter,
so that the PV anomaly under the remaining elliptical monopole is very weak, enhancing
its stability (see Section 5.2 for a discussion of the impact of a vanishing lower-layer PV
gradient). This concludes the nonlinear saturation of the instability, as a marginally stable
state is thus reached. The situation shown at t = 260 f−1 in Figure 8 (upper row, right
panel) is quite representative of a quasi-stationary state observed until the end of the
simulation at t = 400 f−1.

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

Figure 8. Cont.
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Figure 8. Snapshots of thickness (grey shading, black for h1 = δ = 0.2) and pressure in the upper layer (black contour
at intervals of 4× 10−4 starting from 0) and lower layer (positive in blue, negative in red, at intervals of 10−4) for the
simulations initialized with m = 2 perturbation (first row), m = 3 perturbation (second row) and several wavenumbers (last
row) at t = 130 f−1 (left column) ant 260 f−1 (right panel), corresponding roughly to 5 and 10 inverse growth rate. Initial
vortex profile parameters: Q1 = 12, δ = 0.2.
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Figure 9. Evolution of the lower-layer PV at t = 130 f−1 (upper row) and t = 260 f−1 (lower row), for the eddy with
Q1 = 12 and δ = 0.20 initialised with azimuthal mode number m = 2 (left column), m = 3 (middle column) or several
wavenumbers (right column); corresponding to the pressure and layer thickness shown in Figure 8 (panels are transposed).
The nondimensional lower-layer PV anomaly is contoured every 0.15 from black to purple, starting at 0.05. The green
contour indicates upper layer thickness at value 0.05 = δH0/4.

4.2. Nonlinear Saturation with Wavenumber(s) m > 2

Cyclonic arms also develop for vortices that are unstable with respect to one or several
mode number(s) larger than 2. However, they hardly ever detach from the initial vortex
nor propagate away from it. Rather, as can be seen in the second and last row of Figure 8,
the baroclinic dipoles formed rotate on their own and stay in the same neighbourhood. At
later times, they adjust toward monopoles (as in Figure 8), or eventually remerge with the
main anticyclone.

It is interesting to note the differences between the development and outcome of the
destabilization when several wavenumbers develop simultaneously. In particular, the arms
often detach at different times. In the case given in Figure 8, at t = 130 f−1, only one
dipole in the process of forming is visible, whereas there are as many as the wavenumber
of the initial perturbation in the two upper rows. At t = 260 f−1, one can see that another
dipole has detached (to the right of the main anticyclone) and additional, much weaker
patches are visible, e.g., to the left of the main anticyclone. Again, this is representative of
many cases.

The saturation of the instability in the numerics is quantitatively different from what is
observed in the laboratory experiments. In the latter, the initial vortex is always completely
destroyed (meaning that all the lighter fluid initially in the eddy went into the dipoles),
while we do observe a remaining (somewhat weak) monopole at the initial location of the
eddy in the numerics. This sheds light on the uncertainties associated with both numerical
and laboratory experiment, and especially on the initialization of the flow, as discussed
throughout the paper.
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Although a detailed comparison of the different models is beyond the scope of this
manuscript, the scenario of the breakup of the vortex is qualitatively similar to non-
outcropping QG or RSW vortices with in either a gaussian shape or a piecewise-constant
PV distribution (e.g., [24,31,40]).

5. Discussion: Impact of a Lower-Layer Flow

To date, in our nonlinear numerical simulations and linear stability analysis, we have
only considered basic states with the lower layer at rest. In this case, the lower-layer PV
is given by Q2 = 1/H2, and its radial variation allows for the propagation of a Rossby
wave that can resonate a upper-layer wave to give rise to an instability. This is highlighted
in Figure 9 which shows the evolution of the lower PV (Note that, due to discretisation
errors in the vicinity of the outcropping region, PV is not exactly conserved and develops
small sharp perturbations, including in the lower layer. For visualization purpose, we
smoothed the computed PV field using a Gaussian kernel of width equal to 4 grid cells.)
during the development of the instability for the vortex with Q1 = 12, δ = 0.2 previously
shown in Figure 8. The role of the lower-layer PV in the instability is obvious from its
phase quadrature with the upper layer at early stages of the instability (best visible in
simulations initialized with well-defined azimuthal mode number—see the left and center
upper panels), typical of baroclinic instability.

However, the actual inviscid solutions associated with the experimental configuration
we used are different. In particular, the lower-layer PV has a piecewise-constant radial
profile, as shown in Figure 10. It is also different in the other standard experimental
method for producing lenticular vortices, the “constant-flux” experiment [16]. In the
latter configuration, where fluid is gradually injected from a small source at the surface,
conservation of the lower-layer PV implies that its value is constant and the same as the
planetary PV outside the eddy. While fluid is being injected, fluid parcels in the lower layer
are pushed radially outward and thereby acquire negative relative velocity. As a result, the
lower layer is co-rotating with the upper layer (cf. Figure 10, lower right panel, orange line).
(An approximate analytic solution for this configuration, neglecting the centrifugal term in
the lower layer, was derived by Griffiths and Linden [16].) On the contrary, as discussed in
Section 2.1, a weak counter-rotating circulation forms in the constant-volume experiment.

A solution with a constant lower-layer PV is a plausible configuration for realistic
ocean eddies. Indeed, deep ocean flows are weaker than surface currents and thereby
associated with very weak departure of the PV from the background planetary vorticity.
Thus, as an eddy propagates above this quiescent deep layer, it will slightly moves the
isopycnal down which will implies the development of a weak co-rotating flow in the deep
layer, through PV conservation. Although very qualitative, this is somewhat in agreement
with the deep extension of eddies reported from various observations (e.g., [2,8,9]). Based
on this remark, one can argue that constant-PV lower layer is at least as plausible as a
lower-layer at rest.

One would expect that the vanishing of the PV gradient and the associated suppression
of Rossby waves would remove the instability, as was shown for nonisolated eddies [25,43]
and more recently for warm-core eddies in the RSW model [26]. We thus consider lenticular
vortices with profiles corresponding to the two situations mentioned, which are shown
in Figure 10.
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Figure 10. Vortex profiles (same fields as Figure 1) with different lower-layer conditions: quiescent (V2 = 0; black),
piecewise-constant PV (blue) and constant PV (orange). Vortex parameters: Q1 = 10, δ = 0.25.

5.1. Piecewise-Constant Lower-Layer PV

The jump in Q2 at r = r∗c yields a cusp in the velocity profile, as follows from
Equation (5) (see Figure 10 around r = 0.6). As spectral methods do not cope well with
discontinuities, we smooth the profile of Q2 (and, correspondingly, the cusp in V2) using a
third-order polynomial that matches both the values of Q2 and its derivative (which is zero)
at r = r∗c ± 0.05 for the numerical resolution of the linear eigenproblem. The linear stability
calculation is performed over a restricted range of values for (δ, Q1): 0.01 < δ < 0.9 and
1 < Q1 < 80.

The instability regime we found with this configuration is marginally changed by the
lower layer flow compared to the quiescent lower layer. Therefore, it is not shown here,
and we refer the reader to Figure 3. The most striking difference is that the growth rate
of the instability vanishes for Q1 < 5 (log(Q1) < 0.7). For Q1 > 5, the growth rate is very
similar for low values of δ, which is not surprising as the lower-layer flow remains weak.
For larger values of the depth ratio (δ > 0.1), the growth rate for piecewise-constant Q2 is
lower than that for V2 = 0, the more so as δ increases. We found weakly unstable modes.
(σ < 2× 10−2 for δ0 < 0.9) for log(δ) > −0.5, which have critical levels associated with
the lower layer flow. However, their physical relevance is unclear and the basic flow in
this region tends to be unrealistic, as the lower layer velocity peaks at values similar (in
absolute value) to the upper layer flow and the initial value of the depth ratio (before the
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adjustment) is very high: in particular, neglecting viscous effects in the lower layer is not
appropriate in this configuration.

We also tried running four nonlinear simulation initialized with this modified vortex
profile for δ = 0.2 and 0.4, and Q1 = 12 and 25. These simulations did not exhibit significant
difference compared to their counterpart with V2 = 0, confirming the previous results from
the linear stability analysis.

5.2. Constant Lower-Layer PV

The equations for the background state are unchanged, except that the lower layer PV
is now Q2 = 1/H0, and the boundary condition for the lower-layer velocity is different:
V2(r → ∞)→ 0. The only solution that reproduces the inviscid “constant flux” experiment
adjusted state has Q1 = 0, which is associated with solid-body rotation V1 = −r/2
(e.g., [16]). We investigated, however, a broader range of values for Q1, considering that
eddies produced in oceanic flows, e.g., by detaching from boundary currents, can have
non-zero PV values.

From the linear stability analysis, we found no unstable mode in the range of param-
eters investigated: 5× 10−2 < δ < 0.8 and 0 < Q1 < 40, except for the highest values
of δ and low values of Q1 where the frontal-frontal instability occurs (not shown, but see
Figure 3, lower right corner). This result is in agreement with the fact that the absence of
gradient of PV in the lower layer prevents the propagation of a Rossby mode, thus sup-
pressing the instability resulting from its resonance with the upper-layer modes. This also
confirms some results previously reported in the literature [24–26]. It is worth mentioning
that we still found ageostrophic instability for very high values of δ and wavenumbers
m ≥ 10, which was not reported in Cohen et al. [26] as they did not investigate the corre-
sponding range of parameters (note that δ > 0.8 is unrealistic in oceanic flows, except over
shallow regions such as continental shelves).

We verified the inhibition of the instability by the constant lower PV was verified by
means of nonlinear simulations for two sets of parameters: δ = 0.2, Q1 = 12 and δ = 0.4,
Q1 = 20 (not shown). The typical dimensional parameters of the first eddy were already
given above, and the second case corresponds to a fairly large (Bu ∼ 0.03) and intense
(Ro ∼ 0.3) vortex. These simulations shown that the vortices eventually destabilized,
but only after a significant part of the lower layer velocity sustaining the constant PV
dissipated, thereby restoring a PV anomaly in the lower layer. Once a significant lower-
layer PV was reached (around half the magnitude of the lower PV in the quiescent lower
layer configuration), the eddy started destabilizing, with a typical timescale that was clearly
extended (by at least a factor 2) compared to the simulations with V2 = 0. These results
tend to confirm the stabilization of the vortex by the constant lower-layer PV.
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Figure 11. Evolution of the growth rate of the most unstable mode, σ, as the lower-layer flow evolves
from the rest-state to the zero PV anomaly solution, for a lenticular vortex with zero PV in the upper
layer. Vortex depth ratios δ = 0.49, 0.35 and azimuthal wave numbers m = 2, 7. No other unstable
mode was found.
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To obtain more insight about the impact of the lower-layer flow, we investigate the
linear stability of profiles that lie in between the two extreme configurations for the lower
layer: (1) no flow (V2 = 0, Q2 = 1/H2); and (2) constant PV (V2 > 0, Q2 = 1/H0). We
consider a class of solutions with Q1 = 0 with the lower layer velocity proportional to
the constant-PV solution with a factor α (as in, [43]). The layer thickness are recomputed
afterwards by solving (7), with δ held constant. Note that the value of H0, and hence
the dimensional size of the vortex Le, vary with α. (Other “paths” for the evolution of
the vortex profile can be used, e.g., by keeping the dimensional volume of the lens of
fluid constant, which would probably be a better approximation to experimental flows.
However, we do not aim at modelling precisely the evolution of the eddy under bottom
friction.) The evolution of the growth rate as a function of α is given in Figure 11 for two
different values of δ. One sees that the growth rate of all the unstable modes vanishes
continuously as the lower layer flow evolves towards a zero PV-gradient solution.

6. Conclusions

In this study, we investigated the instability of constant-PV warm-core eddies in a
two-layer Rotating Shallow Water model, by means of a linear stability analysis, laboratory
experiments and nonlinear numerical simulations. We now summarize the results of
this work.

A linear stability analysis was first carried and a stability diagram was constructed. It
shows the dependence of the growth rate and wavenumber of the most unstable mode with
respect to the depth ratio δ of the eddy and the value Q1 of the upper Potential Vorticity
(PV), for an eddy over a quiescent lower layer and with the rigid-lid approximation.
We confirmed the following results, previously reported in the litterature ([19,23], and
references therein):

• The instability domain is dominated by the hybrid instability, associated with reso-
nance between a frontal mode and a lower-layer Rossby wave.

• The growth rate of the most unstable mode increases with the depth ratio and slightly
decreases (increases) with the value of the PV of the eddy for small (large) values
of the depth ratio. The wavenumber of the most unstable mode increases with both
depth ratio and the eddy PV. Several unstable modes with close growth rates and
wavenumbers co-exist for m > 2.

We also reported some results that were not discussed in former studies, to our knowledge:

• Some unstable modes may be found in the zone of stability in the lower-left corner of
the δ, Q1 parameter space.

• For very large aspect ratio, we found a very unstable ageostrophic unstable mode
with high wavenumber (m ≈ 10), associated with the resonance between Poincare-
like waves.

Moving to a linear stability analysis, we then investigated the impact of the lower flow:

• If the lower-layer PV is constant (relevant for oceanic application and “constant-flux”
experiments, and associated with a weak co-rotating lower-layer circulation), the
hybrid instability vanishes as no lower-layer PV gradient supporting the Rossby wave
propagation is present. As a result, the vortex is found to be stable, as was previously
suggested (e.g., [24,25]) and confirmed by a linear stability analysis in the same
model by Cohen et al. [26] with a different numerical method. We further confirmed
this inhibition of the instability by means of nonlinear numerical simulations. The
ageostrophic instability for very high depth ratio persists (from the linear stability
analysis), which was not previously reported.

• If the lower layer is piecewise-constant (corresponding to the inviscid adjusted state
in “constant-volume” laboratory experiments and associated with a weak counter-
rotating lower-layer circulation), the stability properties are hardly changed for Q1 > 5,
as shown by both the linear stability analysis and the nonlinear simulations. The
growth rate is slightly lower for large depth ratio. For Q1 < 5, no significant unstable
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mode has been found, but weakly unstable mode may exist for high values of the
depth ratio.

The destabilization of the vortex was studied by means of “constant-volume” labo-
ratory experiments (release of lighter fluid initially contained in a cylinder at the center
of a rotating tank filled with denser fluid) and numerically using a high-resolution finite-
volume scheme of the two-layer RSW equations. For a wide range of vortex parameters,
the wavenumber of the unstable mode observed in the laboratory experiments, as well
as the growth rate measured in the numerical simulations, showed good agreement with
the linear theory prediction. However, from a more quantitative point of view, some
discrepancies were observed:

• The wavenumber observed in laboratory experiments was sometimes different than
the linear prediction, especially for large values of the depth ratio;

• The growth rate in the numerical experiments is lower that expected from the linear
stability analysis (between 10% and 40%, increasing with Q1).

These differences could be caused by friction effects: the Ekman damping in the lower
layer (laboratory experiments) becomes important for large values of δ, while friction near
the edge of the eddy can have an impact, especially for large Q1 where the velocity profile
peaks at the edge. More importantly, we observed that the wavenumber of the developing
unstable mode is sensitive to the initial perturbation. In the numerical simulations, while
single-valued high azimuthal wavenumber perturbation is not enough to trigger instability,
a superposition of several wavenumbers leads to the concurrent development of several
unstable modes (if present). On the other hand, instability seems to be fed by high-
wavenumber perturbation in the laboratory experiments although, in most cases, it exhibits
a single well-defined wavenumber at mature stage.

The nonlinear saturation of the instability, afterwards the initial development of
(typically m) arms rolling-up in a cyclonic sense, can be classified as follows:

• for m = 2, two baroclinic dipoles form and propagate away from the initial eddy,
leaving eventually a weak monopole at the center;

• for m > 2, several dipoles propagate with a strongly curved direction. As a result,
they sometimes stay in the neighbourhood of the initial eddy, interacting in a complex
manner with each other. Again, a weak monopole can be left at the location of the
initial location of the eddy, depending on the parameters.

Here again, differences are observed between the numerical simulations and the
laboratory experiments. In particular, the destabilization of the vortex in the numerical
simulations appears more chaotic when several unstable modes (with different wavenum-
bers) develop, as they nonlinearly interact with each other. Moreover, it is very rare to
observe a leftover monopole at the center of the domain in the laboratory experiments,
as almost all the initial lighter fluid moved away inside the baroclinic dipoles. Although
it is difficult to identify the origin of these discrepancies, one should bear in mind that
dynamical parameters of the eddies produced in the laboratory experiment are estimated
from simple heuristic arguments. As a result, for instance, the spectra of unstable modes
associated with the actual eddy produced could be different resulting in one mode being
dominant over the others, which would lead to a “simpler“development of the instability
as observed.

The results presented in this paper strengthen the need to investigate the impact of
the environment of eddies to better understand their instability properties. In particular,
we found that the lower-layer flow may act to suppress the instability. In this direction,
investigating the role of smaller-scale turbulence (e.g., random fluctuations in the lower
layer) could provide very interesting information regarding the stability of ocean eddies.
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Appendix A. Linear Problem in the Exterior Domain (r > 1) and Boundary Conditions

In the exterior problem, the vertical configuration simplifies to a single active layer.
The rigid-lid assumption and constant-PV condition require the basic state velocity to
decrease as r−1 (the associated relative vorticity must be zero). The linearized equations
for u, v and p (omitting the layer index) thus become:

ω̂u−
(

1 +
2V
r

)
v +

dp
dr

= 0, (A1)

−ω̂vs. + u +
m
r

p = 0, (A2)

d
dr

(ru) + mvs. = 0, (A3)

where we have introduced the intrinsic frequency ω̂ ≡ ω − mV/r. Since V ∝ r−1, the
following relation holds:

dω̂

dr
=

2m
r

V
r

.

Cancelling the pressure terms between (A1) and (A2), using the above equality and (A3),
leads to the constraint

ω̂

[
d
dr

(rv) + mu
]
= 0. (A4)

This relation states that the vorticity of any normal mode vanishes in the exterior region,
except at critical levels where ω̂ = 0. However, this does not concern unstable modes for
which =(ω̂) 6= 0. From (A3), we can express the velocities using a stream function ψ(r):

u = −m
ψ

r
, v = ψ′. (A5)
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Hence, upon insertion of this form in (A4), the streamfunction satisfies a Laplace equation
with the condition ψ→ 0 as r → ∞. This gives the following relation:

ψ ∝ r−m so that u = v, (A6)

which is used as a boundary condition at r = 1 to ensure continuity of the eigenfunction
across r = 1. Finally, (A1) and (A2) can be combined to express u and v as functions of p
and its first derivative:

u =
mp/r(1 + 2V/r)− ω̂pr

ω̂2 − (1 + 2V/r)
, (A7)

v =
ω̂mp/r− pr

ω̂2 − (1 + 2V/r)
. (A8)

Using u = v, these equations yield a relation between p and its first radial derivative which
provides the inhomogeneous linear boundary condition (14), again by imposing continuity
of p and dp/dr at r = 1.

Appendix B. Initial Conditions for the Nonlinear Numerical Simulations

The initial conditions consist of the inviscid solution slightly perturbed by applying a
map on the radial variable, i.e.,

H̃(r), Ṽ(r) = H(r∗), V(r∗) , r∗ = r(1 + ε(r, θ)).

The simplest function ε(r, θ), which is the one we consider here, does not depend on r and
consists of a superposition of azimuthal modes:

ε(r, θ) =
lmax

∑
l=2

al sin(lθ + φl),

where φl is a random phase and al a random amplitude picked up from a Gaussian
distribution with mean value Aε and standard deviation ≈ Aε/10. The resulting thickness
and velocity field are thus nearly balanced and the boundary of the vortex is at 1 + ε(θ).
However, the angular derivative of the azimuthal velocity is no longer zero because of
the axisymmetry. We thus add a perturbation to the radial velocity to ensure that the
divergence is nearly zero:

u(r) = −1
r

∫ r

0
∂θr∗∂r∗V(r∗)dr′.

The lower layer thickness is such that the pressure in the lower layer is unperturbed (hence
the lower layer remains strictly balanced): H2 = 1− H̃.

Appendix C. Linear Stability Analysis with a Free Surface

We carried out the linear calculations presented in Section 3.1 with the free surface
configuration, and give a rapid description of the features that differ from the rigid-lid
configuration here.

While the solution for the basic vortex is hardly changed (the only modification is that
H2 = H0 − ρ1/ρ2H1), there is no longer a boundary condition at r = 1. For a quiescent
exterior fluid, the solution is given analytically by Bessel functions, which do not provide
boundary conditions at r = 1 that are linear in the eigenvalue. Hence, the linear problem is
supplemented by the lower-layer equations in the semi-infinite outer domain (r > 1), which
is solved using rational polynomials obtained by an algebraic mapping of the standard
Chebyshev series [30,44]. Continuity of u2, v2, p2 and dp/dr at r = 1 was ensured.

The corresponding spectrum of unstable modes was show in comparison with results
from the nonlinear numerical simulations in Figure 5, right label (only a portion of the
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(δ, Q1 domain was shown). The relative difference between the free-surface and rigid-lid,
for a value of the density ratio of 0.99, is less that 10% for Q1 > 5 and of the order of
15% for lower Q1. This error associated with the rigid lid approximation increases with δ
and decreases with Q1. The only remarkable emerging features are frontal-frontal modes
(e.g., [19]) that manifest themselves emerging from the bottom of the figure for very deep
eddies (around log(δ) = −0.2).

Appendix D. Laboratory Experiments Parameters

Table A1. Parameters of the laboratory experiments: experimental configuration are in the first 7
columns, estimated nondimensional parameters of the adjusted vortex in the next 4 columns, and
observed most unstable mode number in last column. Symbols are explained in the text. Bold values
are for the experiment shown in Figure 4.

θ0 δ0 g′ Rc H0 h0 Ω Le δ Q1 Bu m
cm/s cm cm cm rad/s

0.330 0.110 5.0 5.5 40.0 4.5 0.75 8.66 0.10 7.5 0.12 2
0.160 0.095 5.0 5.5 40.0 3.8 1.00 7.70 0.09 12.3 0.08 2
0.880 0.175 3.8 5.5 40.0 7.0 0.50 10.66 0.14 4.3 0.18 2
0.280 0.150 3.8 5.5 40.0 6.0 0.83 8.41 0.14 8.4 0.11 2
0.190 0.150 3.8 5.5 40.0 6.0 1.00 7.90 0.14 10.9 0.09 2
0.120 0.150 3.8 5.5 40.0 6.0 1.25 7.41 0.15 15.1 0.07 2
0.230 0.100 6.9 5.5 40.0 4.0 1.00 8.14 0.10 9.5 0.10 2
0.144 0.100 6.8 5.5 40.0 4.0 1.25 7.59 0.10 13.2 0.07 2
0.260 0.195 4.4 5.5 20.5 4.0 0.75 8.30 0.18 8.8 0.10 2
0.093 0.195 4.4 5.5 20.5 4.0 1.25 7.18 0.19 18.3 0.05 3
0.146 0.195 4.4 5.5 20.5 4.0 1.00 7.60 0.19 13.1 0.07 2
0.420 0.400 3.2 5.5 10.0 4.0 0.50 9.06 0.35 6.5 0.13 2
0.185 0.400 3.2 5.5 10.0 4.0 0.75 7.87 0.38 11.1 0.09 2
0.067 0.400 3.2 5.5 10.0 4.0 1.25 6.92 0.39 23.7 0.04 4
0.086 0.400 3.2 5.5 10.0 4.0 1.10 7.11 0.39 19.4 0.05 4
0.066 0.630 2.5 5.5 8.0 5.0 1.25 6.91 0.62 23.9 0.04 4
0.460 0.560 6.3 5.5 9.0 5.0 0.75 9.23 0.49 6.1 0.14 2
0.170 0.630 6.3 5.5 8.0 5.0 1.25 7.77 0.60 11.7 0.08 4
0.100 0.088 6.3 5.5 40.0 3.5 1.35 7.24 0.09 17.3 0.06 2
0.055 0.175 17.6 20.0 28.5 28.5 1.00 24.69 0.17 27.7 0.04 4
0.037 0.175 11.9 20.0 28.5 28.5 1.00 23.85 0.17 38.4 0.03 5
0.023 0.175 7.4 20.0 28.5 28.5 1.00 23.03 0.17 57.7 0.02 6
0.088 0.193 25.8 20.0 28.5 28.5 1.00 25.93 0.19 19.1 0.05 3
0.135 0.175 43.4 20.0 28.5 28.5 1.00 27.35 0.17 13.9 0.07 3
0.015 0.175 6.8 20.0 28.5 28.5 1.00 22.45 0.17 84.0 0.02 7
0.196 0.190 36.5 20.0 28.7 28.7 1.20 28.85 0.18 10.6 0.04 3
0.046 0.100 18.5 20.0 39.5 39.5 0.80 24.29 0.10 32.1 0.05 3
0.030 0.100 17.1 20.0 39.5 39.5 1.00 23.46 0.10 45.9 0.03 4
0.022 0.100 11.0 20.0 39.5 39.5 1.20 22.97 0.10 59.9 0.01 5
0.056 0.100 28.7 20.0 39.0 39.0 1.20 24.73 0.10 27.3 0.03 3
0.018 0.100 10.5 20.0 39.0 39.0 1.20 22.68 0.10 71.5 0.01 5
0.200 0.600 53.7 20.0 10.0 6.0 1.00 28.94 0.56 10.5 0.09 3
0.100 0.670 25.9 20.0 10.5 7.0 1.00 26.32 0.65 17.3 0.06 4
0.062 0.600 16.4 20.0 10.0 6.0 1.00 24.98 0.59 25.2 0.04 5
0.041 0.600 11.0 20.0 10.0 6.0 1.00 24.05 0.58 35.3 0.03 6
0.055 0.600 14.8 20.0 10.0 6.0 1.00 24.69 0.59 27.7 0.04 5
0.052 0.600 13.9 20.0 10.0 6.0 1.00 24.56 0.59 29.0 0.03 5
0.025 0.400 9.8 20.0 10.0 4.0 1.00 23.16 0.40 53.6 0.02 7
0.030 0.400 12.0 20.0 10.0 4.0 1.00 23.46 0.40 45.9 0.02 5
0.031 0.194 8.4 20.0 31.0 6.0 1.00 23.52 0.19 44.6 0.02 5
0.037 0.194 9.8 20.0 31.0 6.0 1.00 23.85 0.19 38.4 0.03 5
0.026 0.194 6.9 20.0 31.0 6.0 1.00 23.22 0.19 51.9 0.02 5
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