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Abstract: This study revisits the mathematical equations for diffusive mass transport in 1D, 2D
and 3D space and highlights a widespread misconception about the meaning of the regular and
cumulative probability of random-walk solutions for diffusive mass transport. Next, the regular
probability solution for molecular diffusion is applied to pressure diffusion in porous media. The
pressure drop (by fluid extraction) or increase (by fluid injection) due to the production system
may start with a simple pressure step function. The pressure perturbation imposed by the step
function (representing the engineering intervention) will instantaneously diffuse into the reservoir
at a rate that is controlled by the hydraulic diffusivity. Traditionally, the advance of the pressure
transient in porous media such as geological reservoirs is modeled by two distinct approaches:
(1) scalar equations for well performance testing that do not attempt to solve for the spatial change
or the position of the pressure transient without reference to a well rate; (2) advanced reservoir
models based on numerical solution methods. The Gaussian pressure transient solution method
presented in this study can compute the spatial pressure depletion in the reservoir at arbitrary
times and is based on analytical expressions that give spatial resolution without gridding-meaning
solutions that have infinite resolution. The Gaussian solution is efficient for quantifying the advance
of the pressure transient and associated pressure depletion around single wells, multiple wells and
hydraulic fractures. This work lays the basis for the development of advanced reservoir simulations
based on the superposition of analytical pressure transient solutions.

Keywords: diffusion; pressure transient; gaussian solutions; reservoir modeling

1. Introduction

This article shows how the advection and diffusion terms in the equation for convec-
tive mass transport by Fokker–Planck can be solved for use in certain types of pressure-
driven flows, typically caused by engineering intervention in geological reservoirs. The
result is an expression with exponential terms for the probability position of particles
transported by the convective process, both for advection driven by migrating pressure
gradients and for the random walk diffusion.

Before setting out to derive the computational solutions, it may be useful to describe
some typical examples of situations where advection and diffusive mass transport may
occur jointly, as summarized in the principle sketches of Figure 1. The examples of mass
transport systems are ranked from relatively simple (mass transport only) to more complex
cases (mass and heat transport) based on the number of scaling parameters involved.

First, consider a high salinity layer resting on top of a low salinity layer (due to heavy
evaporation at the surface of the upper region in a brine-filled basin). The early density
inversion between the two liquid regions triggers a fast advective flow, due to Rayleigh-
Taylor (RT) instability, and is accompanied by relatively slow diffusion (Figure 1a–c). After
the removal of the earlier inversion of the density layering by advection, the further
diffusion of the high salinity solute toward the lower density layer will remove the density
gradient asymptotically altogether and will be completed at an infinite time.
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Figure 1. Principle sketches of molecular diffusion, heat diffusion and advective mass transport (convection) in typical
cases of (a–c) RT instability and (d–f) RB instability. Dashed arrows show net direction of diffusive transfer; solid vortices
show direction of advection. Bottom row includes excerpts from Dharodi and Das [1]; however, the sketches shown here are
merely demonstrating physical principles and are not intended to be accurately scaled.

Next, consider a Rayleigh–Bénard (RB) flow due to thermal convection (Figure 1d–f).
The process accelerates the transfer of heat from the hotter bottom plate to the colder
surface by the convective mass transport of fluid initially at the bottom boundary. This
process drives the mixing of the liquid outer core of our planet that maintains the magnetic
field, as well as the crystalline creep of olivine-rich rocks in the upper and lower mantle
that drives the movement of tectonic plates at the Earth’s surface [2].

One way to describe the mass transport dynamics of the above processes is by starting
out with a Navier–Stokes equation that can be parameterized to split the key physical
forces, such as those due to the external pull of gravity, the advective flow and acceleration
thereof and divergence due to diffusion and internal flow sources [3]. Ruling out inertia,
the studied flows can be assumed to be only governed by advection and diffusion; non-
dimensional scaling parameters can be introduced to weigh the relative importance of the
two principal components of the mass transport process.

For example, the Péclet number (Pe), which is the ratio of advective and diffusive
transport rates [4,5] is adequate to describe the RT instability:

Pe =
uL
Dm

(1)

with molecular diffusivity Dm, advective flow rate u, and the length unit L. For Pe << 1, the
diffusive transport rate dominates the mass transport process; for Pe >> 1, the advection
is more important than diffusion. Clearly, for the saline solute of Figure 1a–c, Pe >> 1
applies for the early phase (Figure 1a), when the density inversion is removed by the RT
flow (Figure 1b), and once the density stratification is no longer inverse (Figure 1c), the
advective transport ceases altogether, such that Pe = 0 from there onward. The principles
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of dynamic scaling of the Navier–Stokes need to be observed when building RT models
and can be expanded to non-Newtonian fluids as long as the requirement of rheological
similarity is observed [6].

For the RB flow in Figure 1d–f, the relative rates of heat transport by advective mass
transfer and by conduction (heat diffusion) are given as a ratio in the Prandtl number [3,4]:

Pr =
v

Dα
(2)

with the kinematic viscosity, v, of the convecting fluid and thermal diffusivity, Dα. For
Pr << 1, the diffusive transport rate dominates the mass transport process; for Pr >> 1,
the heat transport by advection is more important than thermal diffusion. Experimental
studies of thermal convection in high Prandtl number silicones provide excellent analogues
for studying mixing and deformation patterns involved in mantle convection [7–9].

A third example (examined in more detail in the main analysis) considers a subsurface
reservoir with advective flow maintained by a pressure gradient with possible net dis-
placement contributions by diffusion (Figure 2a). Water is injected into an oil reservoir via
hydraulic pressure on inlet valves (in the left-side of reservoir space) to sweep non-residual
oil via the interconnected pore spaces in the permeable rock to the array of producer wells
(on the right-side of reservoir space) to extract the hydrocarbon. Similar well patterns are
used to extract geothermal energy, producing hotter reservoir fluids after injecting colder
fluids, leaving a positive energy balance for use in human engineered appliances, vehicles,
factories, offices and housing. Such flow systems are governed by the same Péclet number
as for Figure 1a, and when the pump rate is steady, the flow rates in the reservoir will
only change slowly due to overall pressure depletion in the reservoir, such that Pe will
remain in a narrow range over the entire production process. The detailed map view of
Figure 2b highlights how tracers inserted at time zero as an instantaneous mass will form
diffusive plumes traveling downstream, assuming Pe ≈ 1. These diffusive plumes are
not to be confused with advective plumes due to Rankine flow with continuous source
injection, where the shape of the plumes is controlled by the Rankine number (Rk, first
defined in Weijermars et al. [11]). In the case of Figure 2b, the tracer mass is injected in
an early instant, and the plumes are controlled by the relative rate of the diffusive and
advective flow—henceforth, the Péclet number (Pe).

Figure 2. (a) Basic well constellation assumed in this study with one horizontal injection well with water rates controlled
by five ICVs. Flooding of the oil reservoir occurs by a direct line drive between the inflow control valves (ICV) in the
injection well and bottomhole assemblies (BHA) of the five vertical producer wells, where pressure can be monitored. After
Weijermars et al. [10]. (b) Top view of the average 2D flow paths (from left to right) in the planar reservoir zone with
schematic of plumes (brown) formed by diffusion of instantaneous tracers placed in injection well.
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The remainder of this article proceeds to succinctly review the description of diffusive
mass transfer by probability density functions for the dilution of tracer concentrations.
It is first shown how to solve for the probabilities of the diffusion term in the Fokker–
Planck equation for convective mass transport (Section 2). The result is then transposed
to also accurately describe the advance of pressure transients that drive the advective
fluid transport due to a pressure gradient introduced at time zero (Section 3). The initial
approach is kept as simple as possible by assuming 1D or 2D flow in an infinite lateral
reservoir (such as applies to unbound flow regions around hydrocarbon wells in shale oil
and gas plays).

2. Diffusive Mass Transports

The mathematical theory of diffusion in fluids is founded on the transformation
of heat conduction equations [12–14]. The spatial transport of molecules from one part
of a system to another by random motions is termed a diffusion process [15,16]. The
paradox of diffusion is that whilst it is impossible to say in what direction the individual
molecules will move in their random walk, it is possible to calculate the mean distance
traveled over a certain period, starting from a position where there is an initial higher
concentration of molecules. Although no single molecule can be assigned a particular
direction of motion, the random molecular motions and collisions result in a spatial net
transfer of tracer molecules from the higher to lower concentration regions as long as there
are more molecules in the higher concentration portion of the fluid.

2.1. Diffusion in Various Dimensions

In fluid systems with isotropic diffusivity, the rate of a unidirectional (1D) diffusion
(e.g., due to planar source in the origin normal to the x-axis) through a unit area of
observation planes (Figure 3a), also oriented normal to the x-axis, away from the source) is
proportional to the concentration gradient measured normal to the section (e.g., Crank [16]):

F = −Dm
dC
dx

(3)

where F [MT−1] is the rate of diffusive mass transfer per unit area of section, C [ML−1]
is the mass concentration in a certain location of the diffusing substance, expressed as a
mass per length (in the average diffusion direction), Dm [L2T−1] is the diffusion coefficient
(also termed diffusivity), and x [L] the space coordinate using a reference frame with the
(y,z)-plane hosting the initial mass deposited there instantaneously at time zero. If we are
mostly interested in the spatial change of the concentration over time, a simple expression
results [16]:

∂C
∂t

= ∇ · (Dm∇C) (4)

This expression is analogous to the diffusion part of the Fokker–Planck equation
(e.g., Risken [17]), which describes the change of diffusive particle density from an initial
disturbance as a probability p(

→
x , t) of future spatial values consequent to advection

→
u (
→
x , t)

and diffusion Dm(
→
x , t):

∂p(
→
x , t)

∂t
= ∇ ·

(→
u (
→
x , t)p(

→
x , t)

)
+∇ ·

(
Dm(

→
x , t)∇p(

→
x , t)

)
(5)

We first focus on the diffusion process and assume a case where advection is absent,
simplifying Equation (5) to

∂p(
→
x , t)

∂t
= ∇ ·

(
Dm(

→
x , t)∇p(

→
x , t)

)
(6)
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Figure 3. Net direction of molecular diffusion in typical cases of (a) 1D, (b) 2D and (c) 3D geometry, with concentrations
deposited at t = 0 as instantaneous finite masses in the blue source domains with darker shading.

When the diffusion is only studied in one dimension (in a direction appropriately
oriented with respect to the planar source), Equation (4) may be simplified into

∂C
∂t

= Dm
∂2C
∂x2 (7)

The general solution of Equation (7) for a fluid concentration C(x, t) [ML−1] originat-
ing from a finite quantity of mass [M] placed in the planar source diffusing into an infinite
1D lateral direction is [18]

C(x, t) =
M√

4πDmt
e−(

x2
4Dmt ) (8)

Similarly, the diffusion equation for a mass [M] concentrated in a cylindrical source
aligned with the z-axis at the origin of a 3D reference frame (Figure 3b) is

∂C
∂t

= Dm

(
∂2C
∂x2 +

∂2C
∂y2

)
(9)

The general solution of Equation (9) for the fluid concentration C(
→
x , t) [ML−2] diffus-

ing into an infinite 2D lateral planar space is [16]

C(x, y, t) =
M

4πDmt
e−(

x2+y2
4Dmt ) (10)

Ultimately, the diffusion equation for a singularity mass in the origin (Figure 3c)
through a 3D space with isotropic diffusivity is

∂C
∂t

= Dm

(
∂2C
∂x2 +

∂2C
∂y2 +

∂2C
∂z2

)
(11)

The general solution of Equation (11) for the fluid concentration C(
→
x , t) [ML−3] due

to a finite mass quantity diffusing into an infinite 3D space is [16]

C(x, y, z, t) =
M

(4πDmt)3/2 e−(
x2+y2+z2

4Dmt ) (12)
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Equation (12) uses a scalar Dm for diffusivity and therefore assumes the diffusion
occurs in isotropic media. The adaptation of Equation (12) to account for anisotropic
diffusion is straightforward and requires the introduction of a diffusivity tensor (see
Section 3).

2.2. Scaling the Initial Mass Concentration

The initial mass concentration C0 in location x = 0 after one time unit (remember the
diffusivity Dm has dimensions [L2T−1]), for the 1D diffusion case will be scaled (from
Equation (8) equating C(x, t) to C0) by C0 = M√

4πDmt
[ML−1]; for the 2D diffusion case we,

have (from Equation (8)) C0 = M
4πDmt [ML−2]; for the 3D diffusion case, we have (from

Equation (10)) C0 = M
(4πDmt)3/2 [ML−3].

To observe the dilution process for the three basic cases of Figure 3a–c, one should
monitor the decay of the concentrations in the dashed observation planes (1D, 2D) and
regions (3D) and use the initial dimensional units of C0 for each case, which are [ML−1],
[ML−2], and [ML−3]. For the same initial concentrations (rebased to mutual units) and
the same diffusivity, the dilution via dispersion of molecular particles will be fastest for
the spherical source geometry, intermediate for the cylindrical source and slowest for the
planar source.

Reverting to the representation of the transient diffusion front profile as a normalized
probability distribution, p(

→
x , t), as in the Fokker–Planck formulation of Equations (5) and (6),

the Gaussian equations for the 1D, 2D and 3D diffusion cases are solved by taking the
respective ratios of C(x, t) and C0:

p(
→
x , t) =

C(
→
x , t)

C0
= e−(

λ(t)(x2+y2+z2)
2 ) (13)

scaling λ(t) as the inverse of the variance (squared standard deviation σt at each time
step), such that λ(t) = σ−2

t is a time-dependent scaling factor (also termed the precision).
Evidently, λ(t) = 1

2Dmt accounts for the decay of the initial concentration after each time
step, because

C(
→
x , t) = C0 p(

→
x , t) = C0e−(

λ(t)(x2+y2+z2)
2 ) (14)

The solution of Equation (14) is universal, with the understanding that for application
to 1D diffusion problems, two dimensions are annulled (e.g., y = 0 and z = 0), and for 2D
diffusion problems, only one dimension vanishes (e.g., z = 0). For the respective 1D, 2D,
and 3D diffusion cases, C0 has dimensions [ML−1], [ML−2], and [ML−3], which can be
succinctly written as

C0=
M

(4πDmt)n/2 [ML−n] (15)

with n = 1, 2, 3 for 1D, 2D and 3D diffusion cases. Consequently, the Gaussian probability
solution of Equation (14) is universally valid for 1D, 2D and 3D diffusion cases, when using
C0 as defined in Equation (15). The latter equation basically shows how the quantity M
needs to be replenished at each time instant in balance with the dilution rate at the source,
such that C0 keeps the same amount of M to diffuse.

2.3. Using Regular Probability versus Ascending and Descending Cumulatives

A persistent misconception prevails in the literature about the computation of the
probability of the concentration values, C

(→
x , t
)

, occurring at various travel distances in
the resultant direction of random-walk diffusion. According to the present study, the prob-
ability of these concentrations for 1D, 2D and 3D cases are directly given by Equation (14).
However, a majority of users continue to use not the regular probability p

(→
x , t
)

but the
descending cumulative (based on integration of the area under the regular probability
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curve; e.g., Crank [16]). The mitigation of this widespread misconception warrants a
brief explanation, with examples, of how to properly interpret the various probability
density functions for the solute concentrations due to diffusion from an instantaneous
initial source mass.

First, consider the dimensional probability density function, p′
(→

x , t
)

(Figure 4) for
the 1D case of Equation (8), which can be written in terms of the standard deviation,
σt =

√
2Dmt:

p′(x, t) =
C(x, t)

M
=

1
σt
√

2π
e−

1
2 (

x
σt
)2

(16)

Figure 4. Regular Gaussian probability functions for the spatial concentrations C/M at different
times, scaled by values of Dt (1/16th, 1

2 and 1 [L2]) due to 1D diffusion. The vertical scale has a
dimension of [L−1]. After Crank [16].

The ascending cumulative distribution function, fX(x, t), describes the likelihood
that a fraction of the original amount of tracer (or solute) has not yet reached the location x,
expressed as fX(x) = p(X ≤ x) using the error-function (erf ):

fX(x, t) =
∞∫
−∞

p(x, t)dx = ∑
Xk≤x

pX(x, t) =
1
2

[
1 + er f

(
x(t)
σt
√

2

)]
(17)

Note that Equation (17) has the form of a two-sided Laplace transform, which was
applied by Fourier [12] to develop the heat diffusion equations subsequently used by
Fick [13] to develop the diffusive mass transport equations.

If we limit our attention to the cumulative distribution in the half-space with positive
x-coordinates, the factor 1

2 can be dropped (rescaling the vertical axis from 0.5 to 1 at x = 0)
from Equation (17):

fx(x, t) = 1 + er f
(

x(t)
σt
√

2

)
(18)

Figure 5a shows examples of the ascending cumulative for different times (100 years,
10,000 years, 1 million years and 10 million years). These integral solutions show the
volume under the curve (fraction of the original amount of tracer) that has not yet reached a
certain location at a particular time. For example, after 1 million years at 40 m from the
source, a 40% fraction of the initial mass has still not reached the location (but 60% has). At
x = 100 m, 80% of the initial mass has still not reached the location (but 20% has).
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Figure 5. (a) Ascending cumulative probability function; (b) descending cumulative probability function. Diffusion times
shown are for 100 years, 10,000 years, 1 million years and 10 million years. The value of the diffusion constant for these
curves was Dm = 10−6 cm2/s. Circles are reference points used for graph interpretation in the main text. Adapted and
re-interpreted from Mullins [19].

Another way to plot the cumulative is the descending cumulative distribution function
(also called survival function) f ′X(x, t), which is obtained from the ascending cumulative of
Equation (17) by applying f ′X(x, t) = 1− fX(x, t):

f ′X(x, t) =
1
2

[
1− er f

(
x(t)
σt
√

2

)]
(19)

The operation f ′X(x, t) = 1− fX(x, t) means that now the complementary probability
is given, namely f ′

X
(x) = p(X ≥ x). The reference is now the probability of which fraction

of the original mass was already brought by diffusion past location x. If we again limit our
attention to the cumulative distribution in the half-space with positive x-coordinates, the
factor 1

2 can be dropped from Equation (19):

f ′X(x, t) = 1− er f
(

x
σt
√

2

)
= er f c

(
x

σt
√

2

)
(20)

Using the error-function complement (erfc) defined above, Figure 5b shows exam-
ples of the descending cumulative or decumulative probability function for different
times (100 years, 10,000 years, 1 million years and 10 million years). These integral so-
lutions show the volume under the curve (fraction of the original amount of tracers)
that have already reached a certain location at a particular time. For example, after 1 million
years, at 40 m from the source, a 60% fraction of the initial mass has already reached the
location (but 40% has not). At x = 100 m, 20% of the fraction has already reached the
location (but 80% has not).

3. Advective Mass Transports Due to Pressure Gradients

The early mathematical description of heat diffusion by Fourier [12] led Fick [13] to
apply the equations to mass diffusion. The application to pressure transients was furthered
by Raghavan [20] in the context of well test analysis. Traditionally, the advance of the
pressure transient is modeled analytically by scalar equations (developed by petroleum
engineers in well testing literature) that generally do not attempt to solve for the spatial
vector field solution for the position of the pressure transient as it migrates over time. The
classical well testing equations are used to estimate the change over time of the average
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pressure in the reservoir in order to be able to estimate certain unknown properties (such
as permeability) of the reservoir rock from which the fluid is produced [21–23].

3.1. Current Practice in Reservoir Modeling

Prior attempts have been made to develop a so-called Fast Marching Method (FMM)
to go beyond the limitation of classical well testing formulae and reconstruct the spatial
advance of the pressure front [24–27]. Such methods are particularly needed to develop
reservoir simulators that can quickly resolve for the flow near hydraulically fractured
wells, presently used to develop geothermal and hydrocarbon reservoirs around the globe.
FMM results for the advancing fluid due to a pressure gradient have been compared to
results using analytical vector field solutions based on complex analysis methods (CAM),
augmented with Eulerian time-tracking, and both methods were found to be accurate [27].
However, FMM models can presently only account for simple fracture geometries, and
the spatial solution of the pressure front requires gridding to compute the shape of the
advancing pressure transient cell-by-cell at different times.

3.2. Gaussian Pressure Transient Solution

For the reservoir studied here, we assume the pressure in the reservoir remains
above the bubble point pressure of the reservoir fluid to avoid multiphase flow conditions
complicating production in condensate and wet gas reservoirs. The fluid is of constant
density and constant Newtonian viscosity, has constant compressibility throughout the
reservoir and is not sensitive to pressure changes introduced by engineering interventions.
The process is isothermal. The porous medium hosting the reservoir fluid is also considered
homogenous and isotropic in porosity and permeability. The solutions are confined to
convective flows with mass transport in the laminar flow regime, without the inertia effects
which are typically absent in flow in porous media.

The purpose of the present study is to demonstrate the concept of the Gaussian
pressure transients as a method to model the advance of the pressure transient and the
associated pressure depletion in the prototype reservoir. The Gaussian method is com-
pletely new and is first launched in this paper, so there is no prior work to which to refer
(except a parallel conference paper [28], which applies the concept in a practical study).
Spatial changes in the porosity and permeability are not considered in the present study but
can be accounted for by the spatially zoned indexing of the diffusivity. Zones with lower
diffusivity will locally decrease the pressure gradient; zones with higher diffusivity will
locally increase the pressure gradient. Fractured porous media can be perfectly modeled
with the Gaussian method because the fractures have finite widths and lengths, where
the diffusivity will be much higher than in the nearby matrix; the results will be a locally
higher-pressure gradient. Detailed solutions for heterogeneous, anisotropic and fractured
reservoirs will be given in future work, based on the present foundation.

A key step made here is that we show how the diffusion equation can be adapted for
the rapid generation of transient pressure profiles, due to certain engineering interventions
in porous media that begin with the introduction of instantaneous pressure drops. The
bottomhole pressure is quickly lowered by the presence of the well, and the initial flow is
then commonly held constant with the help of a pump, for which a variety of technical
solutions exist. Rather than weakening or diluting at the source, the pressure will stay
constant, while almost instantaneously diffusing into the reservoir. The advance of the
pressure transient is not linearly related to the fluid withdrawal rate [29,30].

The equation for pressure diffusion into the 1D space of a porous medium is

∂P
∂t

= Dh
∂2P
∂x2 (21)

which is identical to Equation (7) for molecular diffusion except for the use of hydraulic
diffusivity Dh in Equation (20) and molecular diffusivity Dm in Equation (7). In reservoir
studies, we are commonly dealing with a pre-existing pressure in the reservoir, P0, which is
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then suddenly changed by an engineering intervention (e.g., producer well and hydraulic
fractures). Thus, a local pressure change is also commonly imposed, ∆P0, which is the
difference between the original pressure in the reservoir, P0, and the pressure level of the
well intervention Pi, such that the initial pressure in Equation (21) can best be replaced by
∆P0 = Pi − P0, in order to avoid any confusion:

∂∆P0

∂t
= Dh

∂2∆P0

∂x2 (22)

The Gaussian general diffusion solution of Equation (14) can now be used for tracking
the spatial and temporal change of the pressure in a 1D, 2D or 3D reservoir layer as the
pressure front advances from the source into the reservoir. The spatial advance of the
initial pressure change, ∆P0, can be accurately described by the general solution for the 3D
Gaussian diffusion probability equation:

∆P(
→
x , t) = p(x, t)∆P0 = e−

λ(x2+y2+z2)
2 ∆P0 (23)

Equation (23) is extremely useful to model the spatial pressure-depletion profile
around individual wells and hydraulic fractures.

Recall that λ(t) = 1
2Dht for the isotropic diffusivity case. For application to layered

reservoirs in the geological subsurface, it is practical to introduce the diffusivity tensor, Dij
(dropping the subcript h). If we next chose the reference frame aligned with Dij, then the
diffusivity tensor elements all vanish, except the principal ones such that Dn (n = 1, 2, 3)
can be equated to Dx, Dy and Dz. The solution of Equation (14) can now be modified to
account for anisotropic diffusivity:

∆P(
→
x , t) = p(

→
x , t)∆P0 = e

− 1
4t (

x2
Dx +

y2
Dy +

z2
Dz )∆P0 (24)

Reservoir development target zones (aquifers, geothermal and hydrocarbon reservoirs)
occur commonly confined between an upper and lower impervious boundary, with the
overlying and underlying formations being bound by relatively clay horizons or other
impermeable strata. Consequently, we may conveniently reduce our analysis to a 2D
pressure diffusion problem.

∆P(x, y, t) = p(x, y, t)∆P0 = e
− 1

4t (
x2
Dx +

y2
Dy )∆P0 (25)

If the well system is a simple vertical well in pressure communication with the full
height of the reservoir zone (via a bottom-hole gravel-pack with well perforation), it would
act as a 2D cylindrical source of pressure change (Figure 3b). The pressure transient will
advance in the reservoir as concentric circles of radius r (r =

√
x2 + y2) in a 2D map view

and as a cone in a 3D perspective (Figure 6a).
For the pressure changes induced by a single hydraulic fracture of half-length W f ,

we have elliptical pressure-change contours (Figure 6b). A conditional modification is
introduced to ensure that the transient propagates at the same rate in all directions away
from the initial pressure drop source, as follows (assuming the fracture runs parallel to the
y-direction):

• For y ≥W f , use y = y−W f ;
• For −W f < y < W f , use y = 0;
• For y ≤ −W f , use y = y + W f .
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λ = 1. Fracture half-length is 4 m. Horizontal scale in m. Vertical scale is inverted probability (0 to −1). For plotting, the
reservoir pressure drop ∆P0 in Equation (24) is entered as a negative z-value.

The evolution of the 3D pressure profiles around multiple sources of pressure change
in the reservoir space (for example, n wells or n hydraulic fractures) can now be deter-
mined using a series of (time-dependent) Gaussian equations ∆P(xk, yk, t) to represent the
reservoir pressure at any one time:

P(x, y, t) = P0 +
n

∑
k=1

∆P(xk, yk, t) (26)

Multiple pressure profiles may interact (as in Figure 7) by shifting the center of
pressure change coordinates (x, y) in Equation (26) to a new location (x’, y’), applying a
simple coordinate translation transformation to Equation (26):

x′ = x− xs (27a)

y′ = y− ys (27b)

For fractures that are obliquely oriented, at angle β with respect to the Cartesian
x-direction, we may introduce an additional coordinate rotation transformation:[

x′
y′

]
=

[
cos β sin β
− sin β cos β

][
x
y

]
(28)

However, in the present study, we keep the fractures aligned with one of the Cartesian
axes for simplicity.



Fluids 2021, 6, 379 12 of 16Fluids 2021, 6, x FOR PEER REVIEW 13 of 18 
 

 
Figure 7. Example of Gaussian pressure profiles (for one treatment stage with fuour hydraulic fractures) at different times 
(from left to right): t = 100 h (4.2 days), 1000 h (1.4 months), 5000 h (6.8 months) and 10,000 h (1.14 years) of production. 
Pressure in target zone is seen in 3D (top row) and in map views (bottom row) and well is at y = 0, centrally transverse to 
the fractures. Vertical scale in 3D views gives pressure (in MPa). Fracture half-length is 10m and fracture spacing is 10m. 

0P ~20 MPa and PΔ  = −13 MPa. After Wang and Weijermars [28]. 

For fractures that are obliquely oriented, at angle β  with respect to the Cartesian 
x-direction, we may introduce an additional coordinate rotation transformation: 

' cos sin
' sin cos
x x
y y

β β
β β

     
=     −     

 (28) 

However, in the present study, we keep the fractures aligned with one of the 
Cartesian axes for simplicity. 

3.3. Engineering-Induced Pressure Depletion in Reservoirs 
To pair the profile of the pressure transient of Equation (25) to reservoir parameters, 

we introduce the time-dependent spatial advance, tχ , of the pressure transient (radius 
of investigation, see Appendix A in [30]): 

h
t

D t
Z

χ =  (29) 

With the hydraulic diffusivity, hD , capturing the intrinsic properties of the reservoir 

( k , φ ) and of the fluid ( μ , tc ) in its pores: 

h
t

kD
cφμ

= [ft2/h] (30) 

with porosity, φ , permeability k , dynamic viscosity, μ , and total compressibility, tc
. If the time scale, t , is in hours and all parameters are inserted as imperial field units, the 
conversion constant, Z, for physical units used in Equation (29) will assume the value of 
1688.7 [30]. Note that the time t  is sometimes formulated in terms of a diffusive pseudo-
time τ , with the square root of time unit ( tτ = ) (e.g., [24,25]), such that effectively 

Figure 7. Example of Gaussian pressure profiles (for one treatment stage with fuour hydraulic fractures) at different times
(from left to right): t = 100 h (4.2 days), 1000 h (1.4 months), 5000 h (6.8 months) and 10,000 h (1.14 years) of production.
Pressure in target zone is seen in 3D (top row) and in map views (bottom row) and well is at y = 0, centrally transverse to
the fractures. Vertical scale in 3D views gives pressure (in MPa). Fracture half-length is 10m and fracture spacing is 10m.
P0~20 MPa and ∆P = −13 MPa. After Wang and Weijermars [28].

3.3. Engineering-Induced Pressure Depletion in Reservoirs

To pair the profile of the pressure transient of Equation (25) to reservoir parameters,
we introduce the time-dependent spatial advance, χt, of the pressure transient (radius of
investigation, see Appendix A in [30]):

χt =

√
Dht
Z

(29)

With the hydraulic diffusivity, Dh, capturing the intrinsic properties of the reservoir
(k, φ) and of the fluid (µ, ct) in its pores:

Dh =
k

φµct

[
ft2/h

]
(30)

with porosity, φ, permeability k, dynamic viscosity, µ, and total compressibility, ct. If
the time scale, t, is in hours and all parameters are inserted as imperial field units, the
conversion constant, Z, for physical units used in Equation (29) will assume the value of
1688.7 [30]. Note that the time t is sometimes formulated in terms of a diffusive pseudo-time
τ, with the square root of time unit (τ =

√
t) (e.g., [24,25]), such that effectively

τ = χt

√
Z

Dh

[
h−1/2

]
(31)

The advancing pressure transient can now be tracked by equating the precision λ to
χ−2

t . Examples of the pressure transient profiles for 4 fractures with half lengths of 10 m
and a fracture spacing of 10 m were plotted for 4 successive production times (Figure 7),
using the reservoir properties given in Table 1.
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Table 1. Values assumed for computing pressure transient advance (Figure 7).

Quantity Symbol Value Units

Porosity φ 0.06 -

Permeability k 5 × 10−7 Darcy

Viscosity µ 0.001 Pa·s

Compressibility ct 0.002175 MPa−1

One important limitation of well testing literature is that attempts have been made to
include, in the conversion factor Z, additional corrections to account for initial conditions in
the reservoir other than a single well acting as a cylindrical source for the pressure diffusion.
For example, modifications of Z have been suggested for wells with bi-wing fractures, for
wells in finite cylindrical reservoir space and drainage regions with rectangular shapes [20].
All these approximations may be assumed to be of limited accuracy. The Gaussian super-
position method introduced here does not suffer from such inaccuracies, because if metric
units are used, Z = 1/2 for all cases. The explanation is that the interference of the pressure
transients for multiple sources is accounted for in the models, including the formation of
bounded flow cells when multiple wells are placed in close proximity.

It appears now to be possible to model (in future work) increasingly complex flows
by the superposition of pressure sources and then next solve for the pressure gradient
field, streamlines, velocity field, time-of-flight contours and any other parameters relevant
for evaluating reservoir and well performance. Having solved the pressure field, the
aforementioned derivatives follow standard equations and involve no computational
complexity that would prevent the implementation of the proposed method in a full-scale
reservoir model.

4. Discussion

Well testing literature has occasionally attributed the advective movement due to a
pressure gradient to a diffusion process [20,31]. The present study argues that the advance
of pressure transients, the gradient of which drives transport that has been traditionally
labeled as advection, can be described by Gaussian solutions, similar to Fourier descriptions
of molecular random walk diffusion with net mass transport. In fact, both processes—
i.e., the random walk diffusion and the pressure transient advance—can be described by
Fourier solutions, with the respective diffusivity terms being the key control parameters
for the relative rate of advance. This insight is practical to simplify descriptions of mass
transfer dynamics in geological reservoirs.

Additionally, the three fundamental types of sources (planar, cylindrical and spherical;
see Figure 3a–c) can adequately describe even very complex flow cases by superposition.
Our principal focus is on diffusion phenomena in geological reservoirs with laterally large
dimensions, which justify the assumption of an unbound porous medium. When diffusion
occurs in finite spaces, correction factors can be introduced, as has been exhaustively
documented elsewhere [32].

Interestingly, acoustic pressure waves in the subsurface are routinely described by
Green’s functions to solve integrals that are related to Fourier transforms similar to those at
the basis of diffusion equations. However, the equations used to describe the propagation
of elastic pressure waves generated from a source such as seismic guns and vibroseis trucks
are not (directly) suitable to solve pressure diffusion in the fluid phase of porous reservoirs.

4.1. Comparison of Gaussian Pressure Transients

The pressure profiles generated here with the Gaussian method appear similar to
those generated in our research group with advanced reservoir simulation methods; see
for example Figure 4 in Nandlal et al. [27] and Figure 1 in Weijermars et al. [33]. After
about 1.4 months (1000 h) of production, the pressure depletion fronts initiated from the
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BHP of the individual hydraulic fractures meet and coalesce (Figure 7, second image from
left). After about 6.8 months (5000 h) of production, the pressure in the central matrix
zones between the fractures has largely become pressure-depleted (Figure 7, third image
from left).

After pressure depletion in the matrix zones between the hydraulic fractures, the
pressure transient advances (by diffusive transport) outward from the central fracture box
(Figure 7, fourth image from left), as explained with detailed flow regime correlations from
well data in our prior studies [33,34]. The reservoir fluid is then drained laterally from
the reservoir via the fracture tips. However, the fluid withdrawal from the reservoir by
convective transport-in ultra-low permeability rocks lags behind the pressure transient
advance [29]. The lag between the diffusive and convective time-of-flight is the reason for
the low recovery rates of shale wells, even when hydraulically fractured (work cited). The
pressure depletion in the central fracture box (Figure 7, fourth image from left) may not be
equated with full fluid withdrawal, as was modeled in detail in another prior study by our
group (see Figure 18 in Parsegov et al. [35]).

The present study considers the pressure transient rate based on diffusivity solutions
that abide with Darcy flow (as the hydraulic diffusivity inputs are based on Darcy’s Law).
In fluids such as gases where non-Darcy flow contributions become increasingly relevant
when the porous medium has nanoDarcy permeability, the diffusivity term should be
adjusted accordingly to account for molecular diffusion effects. Some thoughts in this
direction have been expressed by other authors ([36] and references therein). Other diffusive
effects such as thermo-diffusion and Soret effects [37] may need to be factored in as well.

4.2. Merging Gaussian and Complex Analysis Methods (CAM)

Another fast analytical solution method for fluid flow in reservoirs based on Complex
Analysis Methods (CAM) was previously advanced by our research group [34]. CAM
models are gridless and based on analytical solutions with infinite resolution [27,38]. As
both CAM and Gaussian models are gridless and continuous, the outcomes of these models
can be merged and spatially superposed, sidestepping any tedious coupling of codes as
needed in finite difference-based methods.

Some conceptual differences between the CAM and Gaussian methods can be utilized
to obtain a more versatile toolbox for the ungridded modeling of fluid flow in fractured
porous media. For example, CAM starts out as a solution of the bi-harmonic equation for
steady flows, which gives the instantaneous velocity field for the flow. Transient flows can
also be modeled with CAM by superposing, with short time-steps, the solutions of the bi-
harmonic equation when fluid sources wax and wane or follow a time-dependent function.
However, the pressure field is solved instantaneously for each steady case snapshot in
time, due to which the modeling of pressure transients with CAM is not possible. Another
inconvenience of CAM solutions is that it is possible to arbitrarily assign strengths to
the flow attributes (such as high permeability fractures), but these strengths may, in fact,
be higher than physically feasible in porous media; an upper limit therefore needs to
be observed in order to avoid the occurrence of models with arrays where the velocities
overshoot the adjacent fractures.

In contrast to CAM-based flow descriptions, the Gaussian method proposed here ini-
tially solves the pressure field at any moment in time as a starting point. From the pressure
gradient field, we may subsequently compute the spatial velocity field. An advantage of
the Gaussian methods is that the superposition of pressure depletion profiles from various
sources cannot result in flow overshoot, because the boundary condition is imposed by a
certain bottomhole pressure of the well system and the initial reservoir pressure.

5. Conclusions

This paper expresses the random walk probability of diffusion in terms of a normalized
Gaussian probability function. Generic solutions are given for the Gaussian probability of
diffusive mass transfer due to a molecular random walk, taking into account the specific
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geometric position of the source in unbound 1D, 2D and 3D space. The generic solution
can be modified to account for diffusion in media with heterogeneous and anisotropic
diffusivities. The solution method is analytical and therefore avoids the numerical drift
compounding computational errors in iterations such as in numerical models of diffusive
mass transfer.

The Gaussian method is next applied here to model the advancing pressure transients
initiated from production engineering interventions such as production wells and hydraulic
fractures, as well as arrays of injectors. The pressure drop (by fluid extraction) or increase
(by fluid injection) in the production system may start with a simple pressure step function,
after which a steady pressure is maintained. For example, the method is effective for
quantifying the pressure depletion around single wells and multiple wells; because the
code is wholly based on analytical solutions, there is no need for gridding, making the
solution method very fast and economical. Multiple realizations are possible in short time
frames to evaluate and optimize the field development plan with different positioning
of the production system (involving producers, injectors and hydraulic fractures with
different spacing and lengths with multi-well interaction).

Future work can easily expand the systematic investigation of how the development
of the pressure depletion patterns affects the well performance, varying the fracture spacing
and well spacing. The Gaussian pressure transient solution provides an extremely effective
reservoir modeling methodology suitable for field performance studies of both parent
wells and parent-child wells, while accounting for the detailed pressure changes due to
infill drilling time lapse of the child wells relative to the parent wells.
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