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Abstract: The performance of several engineering applications are strictly connected to the rheology
of the working fluids and the Oldroyd-B model is widely employed to describe a linear viscoelastic
behaviour. In the present paper, a buoyant Oldroyd-B flow in a vertical porous layer with permeable
and isothermal boundaries is investigated. Seepage flow is modelled through an extended version of
Darcy’s law which accounts for the Oldroyd-B rheology. The basic stationary flow is parallel to the
vertical axis and describes a single-cell pattern where the cell has an infinite height. A linear stability
analysis of such a basic flow is carried out to determine the onset conditions for a multicellular pattern.
This analysis is performed numerically by employing the shooting method. The neutral stability
curves and the values of the critical Rayleigh number are evaluated for different retardation time and
relaxation time characteristics of the fluid. The study highlights the extent to which the viscoelasticity
has a destabilising effect on the buoyant flow. For the limiting case of a Newtonian fluid, the known
results available in the literature are recovered, namely a critical value of the Darcy–Rayleigh number
equal to 197.081 and a corresponding critical wavenumber of 1.05950.

Keywords: buoyant convection; porous medium; Oldroyd-B viscoelastic fluid; linear stability analy-
sis; open boundary

1. Introduction

The convective instability in a plane vertical porous layer saturated by a fluid is a
topic of great interest for its applications spanning from geophysical systems to building
insulation. Although the analysis of geophysical systems typically involves groundwater
or hydrocarbons, the study of thermal insulation panels features air or another gas as a
working fluid. Hydrocarbons saturating a porous medium may occasionally display a
non-Newtonian viscoelastic behaviour. This circumstance will be that envisaged in the
present study.

The classical paper by Gill [1] offered a rigorous mathematical proof that a vertical
porous layer, saturated by a Newtonian fluid endowed with impermeable boundaries, kept
at different uniform temperatures, displays a stationary conduction regime with a stable
parallel vertical buoyant flow, regardless of the temperature gap between the boundaries.
In other words, such basic buoyant flow is always stable for every value of the Rayleigh
number. The linear stability analysis carried out by Gill [1] is relative to a Newtonian
fluid subject to Darcy’s law. In the context of Newtonian fluids, other authors further
developed Gill’s important result by including other features such as the non-linearity
of the perturbation dynamics or other momentum transfer models of the seepage flow
in the porous medium [2–7]. Further investigations provided evidence that the stability
theorem proved by Gill does not hold when the hypothesis of impermeable boundaries
for the porous layer is released [8–12]. As proved in these studies, with perfectly or partly
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permeable boundaries, the onset of convective instability is possible for sufficiently large
values of the Rayleigh number.

Stability analyses of the buoyant flow in a vertical porous layer envisage a non-
Newtonian saturating fluid only in a few instances [13–15]. Barletta and Alves [13] consid-
ered a power-law fluid, while Shankar and Shivakumara [14,15] considered a viscoelastic
fluid described according to the Oldroyd-B model as developed, for saturated porous
media, by Khuzhayorov et al. [16] and employed by other authors [17,18]. However,
the non-Newtonian versions of the stability analysis of Gill’s system developed by Bar-
letta and Alves [13] and by Shankar and Shivakumara [14,15] are relative to a layer with
impermeable boundaries.

Following the path devised by Barletta [8], the aim of this paper is to relax the assump-
tion of impermeable boundaries and reconsider the linear stability analysis of the vertical
buoyant flow in a vertical layer saturated by a viscoelastic Oldroyd-B fluid. The special
case analysed by Barletta [8] is retrieved when the relaxation time of the viscoelastic fluid
coincides with the retardation time. On the other hand, the viscoelastic behaviour shows
up when such times are different. In this case, the threshold to convective instability is
affected by the viscoelastic rheology of the fluid. The neutral stability condition and the
critical Rayleigh number will be obtained for different values of the characteristic governing
parameters of viscoelasticity.

2. Mathematical Model

A vertical porous layer saturated by a viscoelastic fluid is studied. The layer is
infinitely wide in the y and z directions and has thickness L in the horizontal direction
x. A sketch of the layer is presented in Figure 1. The Oldroyd-B model is employed to
describe the viscoelasticity. Darcy’s law for Oldroyd-B type of fluids [16] is written

µ

K

(
1 + τ2

∂

∂t

)
u = −

(
1 + τ1

∂

∂t

) [
∇p + ρ f g β(T − T0)

]
, (1)

where τ1 and τ2 are two characteristic relaxation/retardation times, respectively, with
τ2 6 τ1. The buoyancy force is modelled by the Oberbeck–Boussinesq approximation,
x = (x, y, z) is the Cartesian position vector, u = (u, v, w) is the filtration velocity vector, T
is the temperature and g is the gravitational acceleration vector (opposite to the z direction).

The energy balance equation employed to model the heat transfer is the convec-
tion/conduction equation where no source or sink term is considered.

The vertical boundaries of the layer are permeable and the external environments
in the regions x < −1/2 and x > 1/2 are considered as isothermal fluid reservoirs in a
motionless state, so that the pressure distribution along the boundaries is purely hydrostatic.
Since the external fluid reservoirs are kept at different uniform temperatures T1 and T2,
where T2 > T1, the layer is subject to side heating, as depicted in Figure 1.

Thus, the governing equations are given by

∇ · u = 0,

µ

K

(
1 + τ2

∂

∂t

)
u = −

(
1 + τ1

∂

∂t

) [
∇p− ρ f g β(T − T0)ez

]
,

σ
∂T
∂t

+ u ·∇T = χ∇2T,

x = −L/2 : p = p0, T = T1,

x = +L/2 : p = p0, T = T2,

(2)

where g and ez are the modulus of g and the unit vector along the z direction, respectively,
while p0 is the reference hydrostatic pressure of the external environments. In Equation (2)
µ is the dynamic viscosity of the fluid, K is the permeability of the porous medium, ρ f is
the fluid density evaluated at the reference temperature T0, β is the thermal expansion
coefficient of the fluid, σ is the heat capacity ratio, χ is the ratio between the effective
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thermal conductivity ke f f of the fluid saturated porous medium and the volumetric heat
capacity of the fluid, T0 = (T1 + T2)/2. The parameters σ, ke f f and χ are defined as [19]

σ =
ϕ ρ f c f + (1− ϕ) ρs cs

ρ f c f
, ke f f = ϕ k f + (1− ϕ) ks, χ =

ke f f

ρ f c f
, (3)

where ϕ is the porosity, c f is the specific heat capacity of the fluid, cs is the specific heat
capacity of the porous medium, ρs is the density of the solid phase, k f is the thermal
conductivity of the fluid and ks is the thermal conductivity of the solid phase.

 z 

x 0 

 

 
 

 

 

porous  layer 

 

permeable 
boundary 

permeable 
boundary 

Figure 1. A sketch of the vertical porous layer.

The following scaling, where ∆T = T2 − T1, is employed to obtain the dimensionless
formulation of the problem:

x
L
→ x,

χ

σL2 t→ t,
K

χ µ
(p− p0)→ p,

L
χ

u→ u,
T − T0

∆T
→ T,

L∇→ ∇, L2∇2 → ∇2.
(4)

By substituting Equation (4) in Equation (2), the following dimensionless governing
equations are obtained

∇ · u = 0,(
1 + λ2

∂

∂t

)
u = −

(
1 + λ1

∂

∂t

)
(∇p− R T ez),

∂T
∂t

+ u ·∇T = ∇2T,

x = ±1/2 : p = 0, T = ±1/2,

(5)

where

R =
ρ f g β ∆T K L

µ χ
, λ1,2 =

χ τ1,2

σ L2 . (6)

Basic State

Let us consider as basic state the steady and fully developed buoyant flow in the
vertical direction z and adopt the subscript b to denote the quantities relative to the basic
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state. Thus, the only non-vanishing component of the filtration velocity vector ub is wb,
along the z-direction. According to Equation (5), ub results in a solenoidal field. Thus,
the basic stationary solution is characterised by a zero net mass flow rate throughout the
layer, namely

ub = (0, 0, R Tb), pb = 0, Tb = x. (7)

The solution for the basic state describes the behaviour of a stationary flow which is
parallel to the vertical axis, thus yielding a single-cell vertical pattern where the cell has an
infinite vertical height.

3. Linear Stability Analysis

To perform a linear stability analysis, we proceed by perturbing the basic state just
defined by applying small-amplitude disturbances, namely

u = ub + εU, p = pb + εP, T = Tb + εΘ, (8)

where ε� 1. By substituting Equation (8) into Equation (5) and by neglecting O(ε2) terms,
one obtains

∇ ·U = 0,(
1 + λ2

∂

∂t

)
U = −

(
1 + λ1

∂

∂t

)
(∇P− R Θ ez),

∂Θ
∂t

+ U + R x
∂Θ
∂z

= ∇2Θ,

x = ±1/2 : P = 0, Θ = 0.

(9)

By applying the divergence operator to the perturbed momentum balance equation
and by applying the linear differential operator (1 + λ2∂/∂t) to the perturbed energy
balance equation, one obtains the following pressure–temperature formulation, which is
more convenient than Equation (9) since the boundary conditions are relative to P and Θ(

1 + λ1
∂

∂t

)(
∇2P− R

∂Θ
∂z

)
= 0,(

1 + λ2
∂

∂t

)(
∂Θ
∂t

+ R x
∂Θ
∂z
−∇2Θ

)
−
(

1 + λ1
∂

∂t

)
∂P
∂x

= 0,

x = ±1/2 : P = 0, Θ = 0.

(10)

We assume the pressure and temperature perturbations to have the form of normal modes,

{P(x, y, z, t), Θ(x, y, z, t)} = { f (x), h(x)} e(η−i ω)t ei(kyy+kzz), (11)

where η is the growth or decay rate, ω is the angular frequency and k = (0, ky, kz) is the
wave vector. The parameters (ky, kz, η, ω) are real while ( f , h) are, in general, complex
functions. The growth rate η marks the difference between stability (η < 0) and instability
(η > 0). The neutrally stable configuration is identified by η = 0. The condition of
minimum R among the neutrally stable modes defines the critical values kc and Rc.

By substituting definitions (11) into Equation (10), one obtains the following eigen-
value problem for neutrally stable modes,

f ′′ − k2 f − i k S h = 0,

h′′ −
(

k2 + i k S x− i ω
)

h +
λ1ω + i

γ λ1 ω + i
f ′ = 0,

x = ±1/2 : f = 0, h = 0,

(12)
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where

γ =
λ2

λ1
, k2 = k2

y + k2
z, S =

kz

k
R. (13)

We mention that 0 < γ 6 1 where, according to Equation (1), the limiting case γ = 1
represents the case of a Newtonian fluid.

Moreover, the rescaled Darcy–Rayleigh number S accounts for the inclination of the
wave vector to the vertical z axis. When ky = 0, one has a transverse mode propagating
along the z axis and S = R. On the other hand, when kz = 0, one has a longitudinal
mode propagating along the y axis and S = 0. Since the latter result can be obtained also
when R = 0, horizontally propagating modes are equivalent to transverse modes having
a vanishing Darcy–Rayleigh number. Thus, modes having kz < k and a given value of S
correspond to transverse modes (kz = k) with the same S and a larger value of R. As a
consequence, the transverse modes necessarily are the most unstable.

4. Numerical Solution and Discussion of the Results

The eigenvalue problem formulated through the dimensionless governing Equation (12)
can be solved numerically by means of the shooting method. In the considered approach,
the associated initial value problem is solved with the Runge–Kutta method, while Brent’s
method is adopted for the root searching procedure. The numerical solution of the problem
is here found through the built-in functions NDSolve and FindRoot available within the
Mathematica 12.0 environment.

In detail, the numerical approach used to solve the eigenvalue problem given by
Equation (12) requires the input values (λ1, γ) and determines both S(k) and ω(k) as
eigenvalue data. The minimum of S(k) yields the critical values (kc, Sc, ωc) that define the
onset of the convective instability.

The main requirement for an efficient solution of Equation (12) through the shooting
method is an accurate initial guess for the eigenvalue quantities S and ω, for a given
prescribed input dataset (λ1, γ).

The investigated cases refer to wide ranges of values of the dimensionless parameters
λ1 and γ. In detail, the considered cases are those obtained from the possible pairs (λ1, γ)
among the values λ1 = (0.015, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5) and γ = (0.1, 0.25, 0.5, 0.75, 1).
It is worth noticing that these values include the limiting case of Newtonian fluid (γ = 1)
and the special case of Boger’s fluid (λ1 = 0.1, γ = 0.75) [20].

4.1. Limiting Case of a Newtonian Fluid

As already emphasised, the limiting case of a Newtonian fluid occurs when γ = 1.
In this case, regardless of the value of λ1, the neutral stability curve, displayed in Figure 2,
shows up a minimum in the plane (k, S) for the critical values

kc = 1.05950, Sc = 197.081, ωc = 0, (14)

which hold for every choice of λ1 = λ2. It is worth noticing that, as it can be inferred from
Equation (12), such a neutral stability solution with ω = 0 is always present. In other
words, among all the possible values assigned to (λ1, γ), Equation (14) yields the maximum
of Sc.
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Sc = 197.081

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

200

400

600

800

1000

k

S

Figure 2. Neutral stability curve (k, S) for a Newtonian fluid.

4.2. Results for Viscoelastic Fluids

The neutral stability curves for the considered data (λ1, γ) are reported in Figure 3.
Each frame refers to a different value of γ, while the solid lines are drawn for given values
of λ1. For decreasing values of λ1, the curves move upward, as well as for increasing values
of γ. It is worth noticing that the vertical axis has the range 0 6 S 6 197.081, since this
value corresponds to the onset of instability for a Newtonian fluid, namely the maximum
possible critical value of S.
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Figure 3. Neutral stability curves (k, S) for different values of γ and λ1.
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The threshold values of k, S, ω that have been found numerically are reported in
Table 1. The obtained results (kc, Sc) are insensitive to the sign of ωc. Thus, in Table 1,
the values of ωc are to be intended as |ωc|. As can be inferred from Table 1, for a given
value of γ, an increase in the dimensionless relaxation time λ1 leads to a decrease in the
threshold values kc, Sc, ωc (at least, whenever ωc 6= 0). The minimum (kc, Sc) of the neutral
stability curve moves to the left and becomes smaller.

Table 1. Critical values of (k, S, ω) versus λ1, γ.

γ = 0.1 γ = 0.25

λ1 kc Sc ωc kc Sc ωc

0.015 6.23219 125.630 301.680 4.35669 149.556 166.030

0.025 5.48899 92.0028 186.630 3.77358 114.751 95.0600

0.05 4.56254 59.4450 96.4569 3.24560 78.3898 47.4367

0.075 4.25166 45.9027 71.5633 3.11482 63.1441 35.6140

0.1 4.05828 38.3924 59.2173 3.03338 54.7411 29.7598

0.25 3.50236 23.0465 34.1704 2.77928 37.6406 17.7300

0.5 3.16277 17.0453 23.0225 2.61721 31.0081 12.2442

γ = 0.5 γ = 0.75

λ1 kc Sc ωc kc Sc ωc

0.015 1.05950 197.081 0 1.05950 197.081 0

0.025 2.43604 183.662 53.9920 1.05950 197.081 0

0.05 2.21927 125.192 25.2047 1.05950 197.081 0

0.075 2.20008 102.173 19.2658 1.50760 183.721 8.72516

0.1 2.18714 90.0757 16.3564 1.53835 159.824 8.11327

0.25 2.12657 66.8434 10.1776 1.58390 118.328 5.94810

0.5 2.08008 58.4180 7.19023 1.59069 104.712 4.42120

5. Conclusions

The effects of viscoelasticity on the onset of convection in a fluid saturated vertical
porous layer have been analysed. An extended version of Darcy’s law has been utilised in
order to implement the Oldroyd-B rheological model for the seepage flow in the porous
medium. The boundaries of the vertical porous layer have been considered as permeable to
external fluid reservoirs kept at different temperatures. The boundary temperature differ-
ence causes a side-heating mechanism and, hence, a stationary buoyant flow driven by the
uniform horizontal temperature gradient. Such conditions define the basic conduction state.
The linear stability of this basic state has been studied by employing a three-dimensional
normal mode scheme, with a suitable Squire transformation mapping all possible modes to
equivalent transverse rolls. Finally, the stability eigenvalue problem has been formulated
and solved numerically by employing the shooting method.

The main highlights of our study are the following:

• The dimensionless governing parameters identifying the viscoelastic behaviour are the
relaxation parameter, λ1, and the ratio between the retardation time and the relaxation
time, γ. The physically significant domain is one where 0 < γ 6 1. When γ → 1,
the Newtonian fluid behaviour is recovered: the critical value of the modified Darcy–
Rayleigh number is 197.081 and the corresponding critical value of the wavenumber
is 1.05950;
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• The neutral stability threshold to the convective instability obtained for the New-
tonian case always exists, whatever is the choice of λ1 and γ. However, in most
cases, the Newtonian branch of neutral stability is not the lowest one. In these cases,
the neutral stability condition is characterised by travelling modes, i.e., modes with a
non-zero angular frequency. Thus, the effect of viscoelasticity is generally destabilising
with respect to the Newtonian fluid case;

• There exist input values of (λ1, γ), with γ < 1, such that the critical conditions for
the onset of the convective instability coincide with those for a Newtonian fluid or,
equivalently, the Newtonian branch of neutral stability is the lowest one.

There are several possible directions where the study presented in this paper can be
extended. In Authors’ opinion, one of the most interesting developments of this study
is the introduction of a model for partially permeable boundary conditions. With such a
model one can investigate the gradual transition from permeable to perfectly impermeable
boundaries, and its effects on the onset conditions for the instability.
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