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Abstract: With the availability of more and more efficient and sophisticated Computational Fluid
Dynamics (CFD) tools, engineering designs are also becoming more and more software driven.
Yet, the insights in temporal and spatial scaling issues are still with us and very often imbedded
in complexity and many design aspects. In this paper, with a revisit to a so-called leakage issue
in sucker rod pumps prevalent in petroleum industries, the author would like to demonstrate the
need to use perturbation approaches to circumvent the multi-scale challenges in CFD with extreme
spatial aspect ratios and temporal scales. In this study, the gap size between the outer surface of
the plunger and the inner surface of the barrel is measured with a mill (one thousandth of an inch)
whereas the plunger axial length is measured with inches or even feet. The temporal scales, namely
relaxation times, are estimated with both expansions in Bessel functions for the annulus flow region
and expansions in Fourier series when such a narrow circular flow region is approximated with a
rectangular one. These engineering insights derived from the perturbation approaches have been
confirmed with the use of full-fledged CFD analyses with sophisticated computational tools as well
as experimental measurements. With these confirmations, new perturbation studies on the sucker
rod leakage issue with eccentricities have been presented. The volume flow rate or rather leakage
due to the pressure difference is calculated as a quadratic function with respect to the eccentricity,
which matches with the early prediction and publication with comprehensive CFD studies. In short,
a healthy combination of ever more powerful modeling tools along with the physics, mathematics,
and engineering insights with dimensionless numbers and classical perturbation approaches may
provide a balanced and more flexible and efficient strategy in complex engineering designs with the
consideration of parametric and phase spaces.

Keywords: sucker rod pump; scaling; complexity; relaxation time; perturbation

1. Introduction

In oil industry, artificial lift methods are often utilized to transfer the oil and gas from
the formation to the surface, especially during the later phase of a petroleum reservoir’s
productive life due to the diminishing fluid pressure [1]. Sucker rod pumping systems
are among the most popular and low cost artificial lift means with their simple hydraulic
pumping designs [2,3]. As one of the earliest inventions for oil industries, sucker rod
pumping systems have been studied extensively [4,5]. Over 80% of the wells world wide
still depend on this oldest and most extensively used mechanism [6,7]. Yet, despite of their
extended history and popularity, many engineering and operational issues still exist [8–10].
Despite the effectiveness and efficiency of this seemingly simple pumping mechanism
amply demonstrated over decades [11,12], in practice, it has been reported that the leakage
is related to the clearance C, or rather two times the gap δ, defined as the difference between
the inner diameter of the barrel Db and the outer diameter of the plunger Da [13,14]. It is
widely reported that large clearances often cause significant leakage which often renders
the entire sucker rod pump systems inefficient.
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In this paper, for the purpose of illustrating the need for perturbation studies before
full-fledged computational fluid dynamics (CFD) simulations, we focus on the so-called
leakage issue related to the necessary gap between the plunger and the barrel for the smooth
operation of the pump mechanisms [15,16]. As illustrated in Figure 1, a typical sucker rod
pump system includes a moving contact area between the traveling unit (plunger) and
a fixed tube (barrel). Further more, a traveling ball valve is attached with the end of the
plunger and a standing ball valve is installed with the tube near the oil and gas reservoir
where the oil and gas are pushed through the fissure formation [17,18] by the so-called
formation pressure. To facilitate the reciprocal motions of sucker rod pump systems, a
clearance between 3 to 8 mills (one thousandth of an inch) is often reserved to avoid the
direct contact (abrasion) between the plunger and the tube [19,20] and to facilitate the
transport of sands and particles in oil and gas mixtures [21,22].

Although engineering designs are becoming more and more software driven, physical
insights with both temporal and spatial scales are still important in particular during the
preliminary design stages. We would like to demonstrate, through the analytical studies of
the so-called leakage issues in sucker rod pumps prevalent in petroleum industries, the
need for in-depth understanding of contributions of the geometries with extreme spatial
ratios and the flow characteristics with specific relaxation time. These insights will help
to understand the complexity and many design aspects and enable more efficient use of
computational resources with challenging spatial aspect ratios and temporal scales.

In this study, the gap size between the outer surface of the plunger and the inner sur-
face of the barrel is measured with a mill (one thousandth of an inch) whereas the plunger
axial length Lp is measured with inches or even feet. In the computational approaches,
the extreme aspect ratio between the plunger length Lp and the plunger outer radius Ra
(Da = 2Ra), or the barrel inner radius Rb (Db = 2Rb), as well as the gap size δ, defined
as Rb − Ra, or a half of the clearance C, does present significant challenges. Furthermore,
in engineering practice, the plunger and the barrel are often not concentric and have var-
ious levels of eccentricity. The temporal scales, namely relaxation times, are estimated
with both expansions in Bessel functions for the annulus flow region and expansions in
Fourier series when such a narrow circular flow region is approximated with a rectangular
one. These engineering insights derived from the perturbation approaches have been
confirmed with the use of full-fledged CFD analyses with sophisticated computational
tools. With these initial confirmations published in an early paper [16], new perturbation
studies on the sucker rod leakage issue with eccentricities have been presented in this paper.
The volume flow rate or rather leakage due to the pressure difference is calculated as a
quadratic function with respect to the eccentricity, which matches with the early prediction
and publication with comprehensive CFD studies [16]. In short, a healthy combination of
ever more powerful modeling tools along with the physics, mathematics, and engineering
insights with dimensionless numbers and classical perturbation approaches may provide a
balanced and more flexible and efficient strategy in complex engineering designs with the
consideration of parametric and phase spaces.

2. Analytical Approaches

As illustrated in Figure 1, during the operation of the sucker rod pump systems, within
the gap between the plunger outer surface and the barrel inner surface, two fundamental
fluid flows exist, namely, a pressure difference driven Poiseuille flow and a boundary
motion induced Couette flow. Both Poiseuille and Couette flows are idealized quasi-static
laminar flows and could be governed by the following equations

0 = −∂p
∂z

+ µ
1
r

∂

∂r

(
r

∂u
∂r

)
, (1)

where the plunger length is Lp, the fluid density is ρ, and the pressure gradient
∂p
∂z

is

expressed as −∆p
Lp

.
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Figure 1: A typical sucker rod pump system configuration.
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Figure 1. A typical sucker rod pump system configuration.

Let’s assume the plunger velocity as Up, namely, u(Ra) = Up. Furthermore, to be
consistent with the leakage definition which is from the top to the bottom, the pressure
difference ∆p is positive when the upper region pressure ph is higher than the lower region
pressure pl , moreover, the plunger velocity Up is positive when it is moving downwards.
Consider a plunger and a barrel pump system with an inner radius Ra which is a half of
the outer diameter (OD) of the plunger and an outer radius Rb which is the half of the
inner diameter (ID) of the barrel. The gap denoted as Rb − Ra = δ or the clearance C,
which is equivalent to 2δ is small in comparison with both Ra and Lp. According to the
specific geometries of typical sucker rod pump systems and their operating conditions, we
could first ignore the inertial and time dependent effects and denote the pressure difference
ph − pl as ∆p, the Navier-Stokes equation in the cylindrical coordinate system can be
simplified as

− ∆p
Lp

=
µ

r
∂

∂r

(
r

∂u
∂r

)
, (2)

where ph and pl represent the pressure on the top of the plunger and on the bottom of the
plunger, or rather within the sucker rod pump, namely, between the traveling valve and
the standing valve, µ refers to the dynamic viscosity of the fluid.

From Equation (2), we derive

u(r) = − ∆p
µLp

r2

4
+ C1 ln r + C2, (3)

where C1 and C2 can be decided based on the boundary conditions.
In order for us to understand the selection of these two constants C1 and C2, let’s

continue with this steady linear partial differential Equation (3). For Newtonian viscous
fluid, with the linear superposition principle, we can solve the Couette flow and the
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Poiseuille flow separately. For the Poiseuille flow, on the inner surface of the pump barrel
and the outer surface of the plunger, we have the kinematic conditions u(Ra) = 0 and
u(Rb) = 0. The velocity profile within the annulus region expressed as Equation (3) has

C1 =
∆p

4µLp

R2
b − R2

a

ln Rb − ln Ra
,

C2 =
∆p

4µLp

(
R2

a −
R2

b − R2
a

ln Rb − ln Ra
ln Ra

)
.

(4)

For small clearance, with the Taylor’s expansion, we derive

R2
b = R2

a + 2Raδ + δ2,

R4
b = R4

a + 4R3
aδ + 6R2

aδ2 + 4Raδ3 + δ4,

ln Rb = ln Ra +
δ

Ra
− δ2

2R2
a
+

δ3

3R3
a
+ O(δ4),

(5)

hence, the solution of Equation (3) can be expressed as

u(r) = − ∆p
4µLp

(
−r2 + 2R2

a ln r + R2
a − 2R2

a ln Ra

)
. (6)

Moreover, we can easily establish the flow rate through the annulus region as

Qp =
∫ Rb

Ra
2πu(r)rdr.

Within O(δ3), the flow rate due to the pressure difference, namely Poiseuille flow, Qp
is established as

Qp =
π∆p
6µLp

R4
a

(
ε3 +

1
2

ε4 − 11
15

ε5
)

, (7)

with the perturbation ratio ε =
δ

Ra
.

Consequently, the viscous shear force acting on the plunger outer surface in the
direction from the top to the bottom can be calculated as

Fp = 2πRaLpµ
∂u
∂r

∣∣∣∣
r=Ra

= π∆pR2
a

(
ε +

1
6

ε2 − 1
4

ε3 − 13
72

ε4 − 1
144

ε5
)

. (8)

Likewise, for the Couette flow, with the moving outer surface of the plunger, together
with the sucker rod, since the barrel is stationary, thus, for Newtonian viscous fluid, the
fluid velocity at the barrel inner surface is zero. Hence, we have the kinematic boundary
conditions u(Ra) = Up and u(Rb) = 0, and the flow field can be expressed as

u(r) = C1 ln r + C2, (9)

with

C1 = − Up

ln Rb − ln Ra
,

C2 =
Up ln Rb

ln Rb − ln Ra
.

(10)

Using the Taylor’s expansion, we have the simplified expression for the flow field,

u(r) =
UpRa

δ
(ln Rb − ln r). (11)
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Notice that the gradient of the velocity profile at the plunger surface matches with the
approximation with respect to the thin gap. Moreover, the flow rate due to the shear flow,
namely, Couette flow, Qc can still be written as

Qc =
∫ Rb

Ra
2πu(r)rdr,

yet the flow direction is the same as the plunger velocity Up, namely, from the bottom to
the top when the upper region pressure ph is higher than the lower region pressure pl .

Again, using the Taylor’s expansions in Equation (5), we have

Qc = πUpR2
a

(
ε +

7
6

ε2 +
11
12

ε3 +
5
72

ε4 − 13
48

ε5
)

. (12)

As a consequence, the viscous shear force acting on the plunger surface in the direction
from the top to the bottom can be calculated as

Fc = −2πRaLpµ
∂u
∂r

∣∣∣∣
r=Ra

=
2πLpµRaUp

δ

(
1 +

1
2

ε− 1
12

ε2 − 5
24

ε3 − 11
144

ε4 +
1
32

ε5
)

. (13)

It is clear that the leading term of the shear force Fc is consistent with the Newto-
nian fluid assumption with the dynamic viscosity µ. Finally, by combining the Couette
and Poiseuille flows, we can have the steady state solution for the velocity profile φ(r)
expressed as

φ(r) =
1

4µ

∆p
Lp

(
r2 − R2

b − R2
a

ln Rb − ln Ra
ln r− R2

a ln Rb − R2
b ln Ra

ln Rb − ln Ra

)
+

Up(ln Rb − ln r)
ln Rb − ln Ra

, (14)

where the Taylor’s expansion in Equation (5) is employed for the coefficients in Equations (4)
and (10) with δ = C/2.

It is the cylindrical coordinate system that renders this seemingly simple problem
complicated. If however, we utilize the scaling based on the physics and mathematics, for
the large aspect ratio between the plunger length Lp and the gap size of the annulus region
δ as well as between the plunder radius Ra and the gap size, we can cut open the annulus
region and simplify the flow domain as a rectangular box as shown in Figure 2 with an
axial length Lp (z direction), a width 2πRa (x direction), and a height h (y direction) [23,24].
Notice here that even with the eccentricity which is marked with the difference 2e between
the widest gap and the narrowest gap, or rather e, the distance between the center of the
outer surface of the plunger and the center of the inner surface of the barrel, there exists a
mid symmetrical axis at x = πRa and the flow regions with x ∈ [0, πRa] and [πRa, 2πRa]
are identical. Once we recognize the symmetry, we only need to consider one half of
the annulus region with eccentricity and the half of the perimeter is denoted with x ∈
[−πRa/2,+πRa/2], as depicted in Figure 2. Of course, for the concentric sucker rod pump,
we have a uniform gap with h = δ. However, with eccentricities, such a height will be a
function of x which will be discussed separately in Section 3.



Fluids 2021, 6, 362 6 of 17

Figure 2. An annulus flow region and its simplified rectangular domain with the width direction in
the circumferential direction.

For narrow annulus regions, the governing Equation (1) for the Poiseuille and Couette
flows can be simplified as

0 = −∂p
∂z

+ µ
∂2w
∂y2 , (15)

where w is the velocity component in the axial or z direction and the pressure gradient in z
direction is still constant.

Again, for the Poiseuille flow, on the inner surface of the pump barrel at y = h and
the outer surface of the plunger at y = 0, we have the kinematic conditions w(0) = 0 and
w(h) = 0. Hence, the velocity profile within the annulus or rather simplified rectangular
region can be expressed as

w(y) =
∆p
Lp

y(h− y)
2µ

. (16)

Furthermore, we can easily establish the flow rate Qp through the concentric annulus

region with h = δ as
∫ δ

0
2πRaw(y)dy. The flow rate due to the pressure difference Qp is

established as

Qp =
2πRa∆p
12µLp

h3 =
π∆p
6µLp

R4
aε3, (17)

with ε =
δ

Ra
.

It is not difficult to confirm that the leading term in Equation (7) matches with the
simplified expression in (17). Consequently, the viscous shear force acting on the plunger
outer surface in the direction from the top to the bottom can be calculated as

Fp = 2πRaLpµ
∂w
∂y

∣∣∣∣
y=0

= π∆pR2
aε. (18)

It is again confirmed that the leading term in Equation (8) matches with the simplified
expression in (18). Note that the viscous shear force acting on the plunger outer surface in



Fluids 2021, 6, 362 7 of 17

the direction from the top to the bottom. Moreover, due to the small gap size, it is reasonable
to assume the shear force acting on the outer surface of the plunger is the same as that of
the inner surface of the barrel [23,24]. Thus, these two surface shear forces will balance the
total normal force due to the pressure difference over the plunger length, namely,

2Fp = 2πRaδ∆p, (19)

where Fp stands for the viscous shear force acting on the plunger outer surface due to
Poiseuille flow.

It is clear that Equation (19) is consistent with Equation (18) and the leading term in
Equation (8). In fact, in engineering practice, the dominant term is often sufficient. It is
obvious that with the help of the physics and mathematics insights [25,26], the simplified
rectangular domain is much easier to handle than the annulus region and this advantage
will be more crucial when we discuss the relaxation time and the case with eccentricities
in Section 3.

Similarly, for the Couette flow, on the inner surface of the pump barrel at y = h and
the outer surface of the plunger at y = 0, we have the kinematic conditions w(0) = Up and
w(h) = 0. Hence, the velocity profile within the annulus or rather simplified rectangular
region can be expressed as

w(y) =
Up(h− y)

h
. (20)

Furthermore, we can easily establish the flow rate Qc through the concentric annulus
region with h = δ as

Qc =
∫ h

0
2πRaw(y)dy.

The flow rate due to the shear motion at y = 0 (outer surface of the plunger) is
established as

Qc = πRaUph, (21)

which matches with the leading term in Equation (12).
Consequently, the viscous shear force acting on the plunger outer surface in the

direction from the top to the bottom can be calculated as

Fc = −2πRaLpµ
∂w
∂y

∣∣∣∣
y=0

=
2πLpµRaUp

δ
, (22)

where Fc is the viscous shear force acting on the plunger outer surface due to Couette flow.
In comparison with Equation (13), it is again confirmed that the leading term matches

with the simplified expression in (22). Furthermore, in order for us to derive Equation (23)
from a full-fledged Navier-Stokes equations, we must identify whether or not the fluid
flow is in the turbulent region as well as the transient effects [27,28]. First of all, within
the gap which is measured in mills, for typical oils, the kinematic viscosity ν at 100 ◦C
is around 5.3 cSt or 5.3× 10−6 m2/s, about five times that of the water and the plunger
velocity Up is no more than 40 in/s, thus the so-called Reynolds number Re = Upδ/ν
is much smaller than 100 let alone the turbulent flow threshold around 2000. Although
the Reynolds number is a clear indication about the quasi-static nature of the Couette
and Poiseuille flows within the narrow annulus region, in order to have some guidance
with respect to the selection of the sampling time in the experimental measurements of
the pressure and the displacement within the sucker rod pump unit, we must investigate
further the inertia effects and other time dependent issues. Consider the overall governing
equation for the viscous flow within the annulus region Ra ≤ r ≤ Rb as expressed as

ρ
∂w
∂t

= −∂p
∂z

+ µ
1
r

∂

∂r

(
r

∂w
∂r

)
, (23)
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where the plunger length is Lp and the pressure gradient
∂p
∂z

is expressed as −∆p
Lp

.

Note that the pressure difference ∆p is positive when the upper region (top) pressure
is higher than the lower region (bottom) pressure which is consistent with the leakage
definition. Assuming the plunger velocity is Up, namely, w(Ra) = Up, by combining the
Couette and Poiseuille flows, we can have the steady state solution for the velocity profile
φ(r) expressed in Equation (14).

The final unsteady velocity profile w(r, t) can be written as

w(r, t) = φ(r)− w̄(r, t), (24)

where the governing equation for the transient part w̄(r, t) is expressed as

∂w̄
∂t

= ν
1
r

∂

∂r

(
r

∂w̄
∂r

)
, (25)

with the boundary conditions w̄(Ra, t) = 0 and w̄(Rb, t) = 0.
Using the separation of variable method and common special functions [29], we

introduce w̄(r, t) = ψ(t)ϕ(r). As a consequence, we have ϕ(Ra) = ϕ(Rb) = 0 and the
following governing equations

ψ̇ +
ψ

τ
= 0, (26)

1
r

d
dr

(
r

dϕ

dr

)
+

1
ντ

ϕ = 0, (27)

where ν is the kinematic viscosity and the time scale τ is also called the relaxation time.
For an exponentially decreasing function expressed as e−t/τ , the tangent line at the

origin always provides an horizontal intercept τ and in general within 5 and 6 times the
relaxation time τ, the function is considered as sufficiently close to the steady solutions.
From Equations (26) and (27), we have ψ(t) = Aoe−t/τ along with the characteristic
expression

ϕ(r) = A1 Jo(

√
1

ντ
r) + A2Yo(

√
1

ντ
r). (28)

It is clear that the characteristic solution expressed in Equation (28) is based on the
combination of the first and the second kind of Bessel function satisfying Equation (27) and
the characteristic time τ defined as the relaxation time in Equation (26) can be determined
by the boundary conditions of ϕ(r), namely ϕ(Ra) = ϕ(Rb) = 0. Therefore, in order for
Equations (26) and (27) to have nontrivial solutions, we must have nontrivial or nonzero
solutions of A1 and A2, for the following linear system of equations,

A1 Jo(
√

1
ντ Ra) + A2Yo(

√
1

ντ Ra) = 0,

A1 Jo(
√

1
ντ Rb) + A2Yo(

√
1

ντ Rb) = 0.
(29)

It is clear that we must have the determinant of the coefficient matrix A in Equation (29)
equals to zero, namely

det(A) = Jo(

√
1

ντ
Ra)Yo(

√
1

ντ
Rb)− Jo(

√
1

ντ
Rb)Yo(

√
1

ντ
Ra) = 0. (30)

Finally, combining the steady and the transient solutions, the complete velocity profile
can be expressed as

v(t, r) = φ(r)−
∞

∑
k=1

Ake−t/τk gk(r) (31)
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where the special function can be expressed as

gk(r) = Jo(

√
1

ντk
r)Yo(

√
1

ντk
Ra)− Jo(

√
1

ντk
Ra)Yo(

√
1

ντk
r) (32)

and the coefficient Ak is calculated as

Ak =

∫ Rb

Ra
φ(r)gk(r)rdr∫ Rb

Ra
gk(r)2rdr

(33)

In order to separate the effects of the pressure difference and the plunger motion and
getting ready for quasi-static or unsteady integrations, Equation (14) is rewritten as follows.

φ(r) =
1

4µ

∆p
Lp

φp(r) + Upφu(r), (34)

where we have

φp(r) =

(
r2 − R2

b − R2
a

ln Rb − ln Ra
ln r− R2

a ln Rb − R2
b ln Ra

ln Rb − ln Ra

)
,

φu(r) =
ln Rb − ln r

ln Rb − ln Ra
.

(35)

As a consequence, the velocity profile can be expressed as

v(t, r) =
1

4µ

∆p
Lp

[
φp(r)−

∞

∑
k=1

Eke−t/τk gk(r)

]
+ Upφu(r), (36)

where the coefficient Ek is calculated as

Ek =

∫ Rb

Ra
φp(r)gk(r)rdr∫ Rb

Ra
gk(r)2rdr

. (37)

It is known that for viscous fluid to squeeze through a narrow annulus channel,
the required pressure gradient or pressure drop given a fixed channel length will be
proportional to the gap δ to the power of three, namely, O(δ3). The derivation based on
Poiseuille flow does confirm such a notion. Moreover, the leakage issue is mostly prominent
during the upward stroke, namely, the sucking process. In the upward stroke, the plunger
is moving up and as a result will drag fluid up instead of down, which is opposite to the
leakage. This effect is due to so-called Couette flow which will introduce a flow rate in a
different direction of the power of one, namely, O(δ). Note that in the Couette flow, we
focus only on the shear flow introduced by the inner wall (plunger) translational motion
whereas no rotational motions as discussed earlier literatures will be considered.

In this paper, through the solution of the partial differential Equation (25) in cylindrical
coordinate systems, it is possible for us to derive the relaxation time scales and confirm
the quasi-static nature in the majority of oil production systems and the related measuring
technologies in particular the sampling frequency around 30 Hz. We will also delineate the
transient or rather quasi-static time dependent leakage due to Poiseuille flow from that of
Couette flow.

As the plunger is lifting up, the pressure difference ∆p, namely, ph-pl or the pressure

gradient
∂p
∂z

, namely, − ph − pl
Lp

with Lp denotes the plunge axial length will drive the

fluid from the high pressure area, namely, the top of the plunger, to the low pressure
area, namely, inside the pump chamber and below the plunger. This leakage is due to the
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so-called Poiseuille flow within the annulus region. It is clear that this leakage is due to
the pressure difference. The other flow is due to the viscous shear of the plunger motion.
It is important to recognize that during the upstroke, this part of flow rate is in the same
direction of the plunger, in this case, from the bottom to the top, which is opposite to the
leakage direction. This flow is due to the so-called Couette flow within the annulus region.

Consider a plunger and a barrel pump system with an inner radius Ra which is a half
of the outer diameter (OD) of the plunger and an outer radius Rb which is the half of the
inner diameter (ID) of the barrel, in fact, the width of the rectangular domain is simply the
perimeter based on the outer radius of the plunger for this first order approximation as
illustrated in Figure 2. In practice, the plunger length is measured in inches or even feet
whereas the gap size is measured in mills. Thus, the gap denoted as Rb − Ra = δ or the
clearance C which is equivalent to 2δ is very small in comparison with Ra and Lp. As a
consequence, Equation (25) in cylindrical coordinate systems can be expressed in Cartesian
coordinate systems as illustrated in Figure 2

∂w̄
∂t

= ν
∂2w̄
∂y2 , (38)

with the boundary conditions w̄(0, t) = 0 and w̄(h, t) = 0.
Notice that to prepare the discussion in Section 3 with eccentricities, we use the gap

function h(x) where the coordinate x is selected to represent the entire perimeter of the
outer surface of the plunder or the inner surface of the barrel. In the concentric case, we of
course have the constant h which is defined as the gap size δ.

Using the separation of variable method and common special functions [29], we
introduce w̄(y, t) = ψ(t)ϕ(y). As a consequence, we have ϕ(0) = ϕ(h) = 0 and the
following governing equations

ψ̇ +
ψ

τ
= 0, (39)

d2 ϕ

dy2 +
1

ντ
ϕ = 0, (40)

From Equation (40) and the corresponding boundary conditions, we can easily obtain

the sinusoidal expansion of the function ϕ(y), namely, sin(
nπy

δ
), with the modal sequence

number n. Thus, we have the evaluation of the relaxation time τ expressed as

τ =
δ2

n2π2ν
. (41)

Notice that the Couette effects cannot be approximated by the special function in
Equation (32) because of the imposed boundary conditions [30]. Consider a practical case
with D = 1.5 in and C = 5 mill, the measured plunger velocity Up can reach around
40 in/sec, namely, Ra = 0.75 in and δ = C/2 = 0.0025 in. For the fluid considered in
this paper, we set the density ρ as 1.0014× 103 kg/m3 and the plunger length Lp as 48 in.
Assume the dynamics viscosity as 0.9867 cp, we have the Reynolds number based on the
clearance ρCUp/µ as 65.5 which is much smaller than 100. Consequently, we have the fol-
lowing graphical representation in Figure 3 of the determinant expressed in Equation (30).
The eigensolutions αk with k = 1, 2, · · · , relate to the non-dimensional characteristic time

or relaxation time τk =
δ2

π2ν

1
α2

k
. Using the parameters and material properties for the

same test case, τ1 = 4.146× 10−1 ms, τ2 = 1.037× 10−1 ms, and τ3 = 4.607× 10−2 ms. In
fact, the non-dimensional relaxation times ξn evaluated by the roots in Figure 3 can be
simply expressed as 1/n2. This observation is indeed confirmed by the simplification of
the Bessel functions by the sinusoidal functions as Ra/δ → ∞. It is clear that the typical
sampling period of 8.333 ms is sufficiently larger than the five or six times the largest
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intrinsic relaxation time as predicted in Figure 3. Therefore, the transient or time dependent
effects can be ignored. This result is consistent with the finding using full fledged Bessel

functions and also confirms the rationale for the non-dimensional quantity
δ2

n2π2ν
chosen

for Figure 3.

Figure 3. Eigensolution of the characteristic function and the characteristic time with a =

√
1
ν

Ra, b =

√
1
ν

Rb, and
√

ξ =
√

τπ
√

ν/δ.

3. Eccentricity Issues

Finally, we will consider the eccentricity effects on leakage. We hope this comprehen-
sive study will help the industry to better understand the nature of the leakage with respect
to pressure difference, eccentricity, and motion related to the plunger of typical sucker
rod pump systems [31,32]. In the near future, experimental setups will be established to
validate the widely used empirical Patterson Equation and provide more evidences and
confirmations to our theoretical studies.

As illustrated in Figure 1, the plunger is in general closely fit within the pump barrel.
In general, there will be a clearance of 3 mills for a typical oil well. There are two consid-
erations of this type of simple fitting. First of all, the friction force is due to viscous shear
instead of Coulomb friction due to the direct contact or abrasion. This friction force will
be demonstrated to be fairly insignificant in comparison with the other forces. Finally, for
sandy oil fields, it is also necessary to reserve some space to avoid sticking and abrasion.
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The eccentricity of the plunger’s lateral position in the barrel has a great effect on
liquid leakage. In practice, for completely eccentric position, leakage rates 60% greater
than for concentric cases can be expected. For a thorough study of eccentricity issues,
we introduce the eccentricity as the ratio between the distance e of two centers of the
circular outer surface of the plunger and the circular inner surface of the barrel with the
gap size δ, i.e., 2e/C. As illustrated in Figure 2, we can cut the perimeters following the line
between the two centers utilizing the symmetry. Therefore, we within half of the perimeter
represented with x ∈ [−πRa/2,+πRa/2], instead of [0, πRa], we can simply interpolate
the gap function h(x) as

h(x) = δ + 2ex/πRa, (42)

where the minimum and maximum gap sizes are δ− e and δ + e, respectively.
Of course, we always have the eccentricity between 0 and 1, namely, 0 ≤ e ≤ δ.

Due to symmetry, we only need to consider half of the width in this case, namely, x ∈
[−πRa/2,+πRa/2], therefore, the velocity component in the axial (z) direction can be
expressed as, following Equation (16)

w(y) =
∆p
Lp

y[h(x)− y]
2µ

. (43)

Furthermore, we can establish the flow rate Qp through the annulus region with

eccentricity e as 2
∫ +πRa/2

−πRa/2

∫ h(x)

0
w(y)dydx. The flow rate due to the pressure different Qp

is then established as

Qp =
∆p

12µLp
2
∫ +πRa/2

−πRa/2
h(x)3dx =

πRa∆p
6µLp

R3
a

[
ε3 + ε3(

e
δ
)2
]
, (44)

with ε =
δ

Ra
and the eccentricity is evaluated as

e
δ

.

Due to the complexity of the problem, we also validate our analytical approaches with
a full-fledged CFD simulation with various eccentricities.

4. Computational Approaches

In the computational simulation with ADINA, as illustrated in Figure 4, we applied
the pressure differential for three out of four strokes, namely 1295 sample points or 10.792 s,
leaving only the stroke during which both the traveling valve (TV) and the standing valve
(SV) are closed. Notice that in this test case, we have the stroke per minute (SPM) as 5.067,
thus the period of the sucker rod pumping unit is about 11.842 s. To be consistent with
the rate of 120 sampling points per second, namely, the sampling period 8.333 ms, the
same time step size is also adopted. Furthermore, to keep the consistent units, in ADINA,
the pressure unit is psi, the dynamic viscosity unit is psi · s as well. However, since the
spatial dimension is represented with inch, therefore, the conversion factors 32.147 for
gravitational constant and 12 for foot and inch conversion must be adopted in the left
hand side (LHS) of the Navier-Stokes equation, which means, the density must be adjusted
accordingly in addition to the standard conversion from kg/m3 and lbm/ft3. Therefore,
the actual input to ADINA if the dimensions are in inches and the pressure differentials
are in psi, thus we have 9.358× 10−5 for effective density and 14.505× 10−8 for effective
dynamic viscosity.
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(a) (b) (c)

Figure 4. (a) Pressure and surface mesh. (b) Long plunger. (c) Annulus velocity profile.

Notice the challenges the extremely small gap size (a few mills, or a few thousandths
of an inch) in comparison with the plunger length (48 in) have posted to the meshing of
the annulus flow region. In fact, in Figure 4, in order to visualize the flow region, we have
to zoom in further, as a result only a tiny segment of the annulus region could be depicted.
Clearly, for the Poiseuille flow the velocity is zero at the outer surface of the plunger and
the inner surface of the barrel as depicted in Figure 4.

For the concentric case, we utilized the measured plunger velocity and pressure
differential data provided by Echometer Company in Wichita Falls, Texas. As depicted
in Figures 5 and 6, the simulation results with the actual plunger velocity and pressure
differential measurements as well as the inertial effects are nearly identical to those based
on the quasi-static analytical results in Equations (7) and (12) which are evaluated without
the inertial effects. This fact along with the relaxation time scales confirms that for the
typical operation conditions illustrated in this paper and in engineering practice, the
inertial effects within the annulus region is insignificant and can be ignored [6,28]. Again,
according to the theoretical studies on the relaxation time scales which are confirmed with
both the approximated rectangular flow region approximated with Fourier series and the
cylindrical flow region calculated with Bessel functions, we can conclude that the time
variations of the flow rate as represented in Figures 5 and 6 are in fact quasi-static in nature.
The time scales calculated in this paper also reflect the reality that in petroleum industries,
the sampling period of 8.333 ms is sufficiently large in order to avoid the transient effects
of flows within annulus regions of the sucker rod pump systems. Essentially, we could
consider these time variations are snapshots of steady solutions since the relaxation time in
the transition solution is very small in comparison with the sampling time.

Finally, to incorporate the eccentricity effects, we have resorted to the full-fledged
computational fluid dynamics simulation with ADINA [16]. As shown in Figure 5 of the
recent ASME Journal of Fluids Engineering paper [16], the computational results with ec-
centricities were compared with the corresponding concentric case. The new perturbations
results depicted in Equation (44) have been compared with the published results in Ref. [16]
and documented in Figure 7. In this paper and the early ASME paper [16], the eccentricity
is measured by 2e/C, where e is the shift of the center of the inner cylinder. Different from
Ref. [33], instead of studying the leakage rate vs. pump depth and upward moving process,
in this paper, we focus on the degree of eccentricity measured by 2e/C, or e/δ. For the
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case with D = 1.5 in and C = 5 mill, and the plunger length Lp = 4 ft, as illustrated in
Figure 7, which has also been confirmed by the recently published computational results in
Ref. [16], the misalignment can sometimes introduce up to 90% elevation of the leakage
which is consistent with the analytical prediction based on the perturbation approaches in
Equation (44).

Figure 5. Quasistatic confirmation with CFD results for Couette Flow.

Figure 6. Quasistatic confirmation with CFD results for Poiseuille Flow.
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Figure 7. Eccentricity effects on the flow rate through the annulus region.

5. Conclusions

In petroleum industry, because we must limit the contact as well as the wear and tear
of the sucker rod pump plunger and the pump barrel, it is not desirable to completely
eliminate the gap between the outer surface of the plunger and the inner surface of the
barrel thus the leakage due to the pressure difference which could be as high as a few
thousand psi. Furthermore, by reserving a slight gap between the pump plunger and
the pump barrel, the sucker rod pump will also be able to operate in oil field with the
pollution of sands. It is thus desirable for engineers to have a better understanding along
with quantifiable relationship with respect to the leakage and many relevant operational
conditions such as the pressure difference and eccentricity. Leakage issue like many
engineering problems is multifaceted and complex. For complicated problems such as
this, simple analytical, or computational, or empirical studies alone are not sufficient. Yet,
we also would like to have more design insights through deep analytical studies before
full-fledged simulation tools are employed.

Taking into consideration of the excessively small gap or clearance (a few mills)
and its related radius of curvature, pump barrel or plunger radius, we compared and
confirmed the matching of the transient solutions with Bessel functions for cylindrical
coordinates and Fourier series for Cartesian coordinates. We also compared and confirmed
the matching of the relaxation times derived with the first and the second kind Bessel
functions for cylindrical coordinates and Fourier series for Cartesian coordinates. The
fact that the multiple of the largest relaxation time with five or six is still smaller than the
sampling time step which accounts for thirty samples a second for actual cases with physical
dimensions and experimental measurements confirms that the quasi-static assumption
widely employed in the field is sufficiently accurate and appropriate.
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The results derived from the full-fledged three-dimensional computational fluid dy-
namics (CFD) simulation based on the same transient (or rather quasi-static) pressure
difference and plunger velocity which by itself is very challenging due to extreme spatial
dimensions does match very well with the analytical solutions based on steady Poiseuille
and Couette flows for both concentric and eccentric annulus regions and their rectangular
domain approximates. In short, a combination of analytical and computational approaches
is presented with comparison to existing empirical measurements. This is in particular
evident for the calculation of relaxation times with both cylindrical and Cartesian coordi-
nates which is consistent with the petroleum industry practice in the field. In conclusion, a
healthy combination of ever more powerful modeling tools along with the physics, mathe-
matics, and engineering insights with dimensionless numbers and classical perturbation
approaches may provide a balanced and more flexible and efficient strategy in complex
engineering designs with the consideration of parametric and phase spaces.
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Nomenclature
C clearance, the diameter difference
Da outer diameter of the plunger
Db inner diameter of the barrel
Fp Poiseuille Flow viscous shear force on the plunger outer surface
Fc Couette Flow viscous shear force on the plunger outer surface
Lp plunger length
ph pressure on the top of the plunger
pl pressure on the bottom of the plunger
∂p
∂z

pressure gradient

Qp Poiseuille Flow flow rate due to the pressure difference
Qc Couette Flow flow rate due to boundary motion
Ra outer radius of the plunger
Rb inner radius of the barrel
r radius of the annulus flow region, with Ra ≤ r ≤ Rb
Up plunger velocity
u(r) axial flow velocity profile
∆p pressure difference
δ gap, the radius difference
µ dynamic viscosity of the fluid
ρ fluid density
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