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Abstract: Newton’s method has been widely used in simulation multiphase, multicomponent flow
in porous media. In addition, to solve systems of linear equations in such problems, the generalized
minimal residual method (GMRES) is often used. This paper analyzed the one-dimensional problem
of multicomponent fluid flow in a porous medium and solved the system of the algebraic equation
with the Newton-GMRES method. We calculated the linear equations with the GMRES, the GMRES
with restarts after every m steps—GMRES (m) and preconditioned with Incomplete Lower-Upper
factorization, where the factors L and U have the same sparsity pattern as the original matrix—the
ILU(0)-GMRES algorithms, respectively, and compared the computation time and convergence. In the
course of the research, the influence of the preconditioner and restarts of the GMRES (m) algorithm
on the computation time was revealed; in particular, they were able to speed up the program.

Keywords: Newton’s method; Krylov subspace method; GMRES; GMRES (m); ILU-GMRES;
multicomponent flow

1. Introduction

The modeling of hydrodynamic processes that take place in oil reservoirs is one of the
difficult problems of fluid mechanics. This is due to the fact that the processes occurring
in reservoirs can be very complex. It is necessary to take into account phase transitions,
chemical transformations, temperature effects, degassing processes when pressure drops
at the bottom and in the reservoir, etc. When simulating multiphase, multicomponent flow
in porous media, the phase properties can vary depending on the composition of phases,
temperatures (in oil reservoirs, they can reach up to 200 ◦C) and pressure (in oil reservoirs,
it can reach up to 150 MPa). For adequate modeling of complex flow processes that occur
in oil reservoirs, it is necessary to take into account the component composition of the
phases [1,2]. Accounting for convection, diffusion, phase transitions and chemical reactions
makes it difficult to simulate such problems [3–6].

In [7,8], the authors used various methods and schemes (IMPES, SS, etc.) in order to
simulate multiphase, multicomponent flow in porous media. Other methods and schemes
can be found in [9–12]. We could find Newton’s method often in current research works in
this area. Newton’s method underlies many algorithms used to solve modeling problems.
The compositional modeling of oil and gas reservoirs requires the construction and solution
of large, rare, non-linear systems. The solution of sparse linear systems is the most time-
consuming part of many sciences and engineering applications; we usually spend over
70% of the time on solving linear systems obtained from Newton’s methods [8].

Linear solvers and preconditioners have been studied for decades, and various meth-
ods have been developed [13–15]. Saad et al. developed the linear solver of the generalized
minimal residuals method (GMRES), which is a general-purpose solver for asymmetric
linear systems [16,17]. Vinsome developed the ORTHOMIN solver (a variant of the general-
ized coupled residuals method with incomplete orthogonalization), which was developed
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initially for reservoir modeling [18]. The BICGSTAB solver (stabilized bis-conjugate gradi-
ent method) is also widely used for oil modeling. We could apply these linear solvers of
the Krylov subspace methods to any kinds of linear systems. We can understand the main
idea of the Krylov subspace method as the process of recursively constructing the residual
vector for each iteration step. Let the linear algebraic equations of the solution be:

Ax = b (1)

Take Km = Km(A, r0) = span
{

r0, Ar0, A2r0, . . . , Am−1r0
}

where r0 = b− Ax0, and x0
is the initial solution, looking for an approximate solution xm from x0 + Km, so that the
residual vector is orthogonal to another subspace Lm, that is, rm = b− Axm⊥Lm, and then
Km is the Krylov subspace, and the above method is called the Krylov subspace method.

The GMRES algorithm [17] is one of the popular Krylov subspace methods, which is
used to solve the solution of asymmetric linear equations. GMRES has very small residuals,
but as the number of iterations increases, the amount of calculation and storage increases
linearly, which is not efficient. So, the commonly used restarted GMRES, denoted by
GMRES(m) [19], performs m iterations of GMRES, and then the resulting approximate
solution is used as the initial guess to start another set of m iterations. This process repeats
until the residual norm is small enough. The group of m iterations between successive
restarts is referred to as a cycle, and m is referred to as the restart parameter. We indicate
the restart cycle number with a subscript: xi is the approximate solution after i cycles, or
m× i total iterations, and ri is the corresponding residual. The shortcoming of this method
is that it reduces the robustness of the original GMRES algorithm and cannot guarantee
the convergence of the algorithm. In addition, due to the fact that the restarted algorithm
convergence may become very slow, this may affect the good convergence of the GMRES
algorithm on specific issues due to the selection problem of m.

Besides the restarted GMRES(m) algorithm, another way to reduce the number of
iterations of the GMRES method is that we use preconditioning as an explicit or implicit
modification to the system of linear equations. Therefore, similar to other iterative methods,
we usually combine the GMRES algorithm with a preconditioner for accelerating conver-
gence. We could effectively and easily realize the incomplete LU factorization for sparse
matrices with no fill or ILU(0) to obtain the preconditioning matrices [16,17,20,21]. Incom-
plete LU factorization assumes that sparse matrix A is represented in the form A = LU + R,
where the matrices L and U are lower and upper triangular matrices, respectively, and the
matrix R is the residual of the decomposition. After the ILU factorization is performed, the
matrix M = LU can be used as a preconditioner. ILU factorization is also the basis of many
preconditions, such as domain decomposition methods.

This article considers the mathematical model describing the process of multiphase,
multicomponent fluid flow linearized using Newton’s method in a simulation, and we
solve the system of the algebraic equation with one of the Krylov subspace methods—the
Newton-GMRES method. We especially consider a one-dimensional problem of multicom-
ponent filtration of a liquid in a porous medium with the Newton-GMRES method. We
solve and analyze the problem with the pure GMRES method, restarted GMRES(m) and
preconditioned ILU(0)-GMRES method.

2. Mathematical Modeling

The considered model of multiphase, multicomponent flow in porous media makes it
possible to simulate such modern methods of hydrocarbon production as the injection of
coolant into an oil reservoir, combustion, injection of chemical reagents (polymer, surfactant)
and others.

Let us consider a mathematical model of the multicomponent flow of three-phase
(w—water, o—oil, g—gas) fluid in a porous medium. We write the mass conservation law
for each component [8]:

∂(φ ξwSw)

∂t
+∇·(ξwuw) = qw, (2)
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∂
(
φ
(

xmoξoSo + xmgξgSg
))

∂t
+∇·

(
xmoξouo + xmgξgug

)
= qm (3)

m = 1.2, . . . Nc, where Nc—the number of components; φ—the porosity of porous
media; xmo, xmg—the mole fraction of component m in the oil and gas phases; ξw, ξo, ξg—
the molar density of the water, oil and gas phases; Sw, So, Sg—the saturation of the water,
oil and gas phases; qw, qm—the molar velocities of the water flow and m-th component,
respectively. In Equations (2) and (3), the flow rates uα are given by the Darcy law:

uα = − krα

µα
k(∇pα − ρα℘∇z), α = w, o, g (4)

where ℘—the gravitational acceleration; ρα—the pressure of phase α.
In addition to the differential Equations (2)–(4), the following algebraic expressions hold:

Nc

∑
m=1

xmo = 1,
Nc

∑
m=1

xmg = 1 (5)

Sw + So + Sg = 1 (6)

pcow = po − pw, pcgo = pg − po (7)

where pcow—the capillary pressure between the oil and water phases; pcg—the capillary
pressure between the gas and oil phases.

For the closure of the system (1)–(7), we set the conditions for the equilibrium relation
below, which is described by Gibbs law for the composition system:

fmo(po, x1o, x2o, . . . , xNco) = fmg
(

pg, x1g, x2g, . . . , xNcg
)
, (8)

fmα = pαxmα ϕmα, m = 1.2, . . . Nc,=, o, g (9)

where ϕmα—the fugacity coefficient of component m in phase α which is oil or gas, and fm
and fmg are fugacity functions of m-th component in the gas and liquid phases, respectively.

We described the distribution of chemical components in the hydrocarbon phase by the
K-value method (instantaneous evaporation coefficient) and determined each component
by the following expression:

Km = xmg/xmo , m = 1, 2, . . . , Nc

We described the thermodynamic behavior of fluids under reservoir conditions us-
ing Peng–Robinson equations of state [22], in which the relationship between pressure,
temperature and phase volume is determined.

Initial and boundary conditions of system (2)–(9) in a one-dimensional field are as
follows [0, 1]:

Sw(x, 0) = S0
w(x) So(x, 0) = S0

o(x) po(x, 0) = p0
o(x)

po(0, t) = pinj po(1, t) = pprod

Sw(0, t) = Sw
inj ∂Sw

∂x
(1, t) = 0

So(0, t) = 0
∂Sw

∂x
(1, t) = 0

where inj—injection; prod—production. Sg, pw, pg are calculated using (5) and (6).

3. Numerical Method

In the considered system of differential equations, several components in the hydro-
carbon system are provided. From the computational point of view, the computation time
and the number of operations for solving this system increase with increasing the number
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of components. Therefore, it is necessary to group several components with the same
chemical compositions into pseudo-components. We wrote the system of equations for
three phases and two components as below (neglecting gravitational forces):

φ
∂(ξwSw)

∂t
+ div(ξwuw) = qw

φ
∂
(
x1oξoSo + x1gξgSg

)
∂t

+ div
(

x1oξouo + x1gξgug
)
= q1

φ
∂
(
x1oξoSo + x2gξgSg

)
∂t

+ div
(

x2oξouo + x2gξgug
)
= q2

uα = − krα

µα
k∇pα, α = o, g, w (10)

x1o + x2o = 1, x1g + x2g = 1, So + Sw + Sg = 1

pcow = p0 − pw, pcgo = pg − p0

f1o(po, x1o, x2o) = f1g
(

pg, x1g, x2g
)
, f2o(po, x1o, x2o) = f2g

(
pg, x1g, x2g

)
System of Equation (10) has dependent variables (x_1o, x_2o, x_1g, x_2g, u_α, p_α,

S_α). By changing variables and using several arithmetic operations (described in detail in
the article [23]), you can obtain a nonlinear system of 6 equations with 6 unknowns (x_1o,
L, z, F, S, p), where F—the total mass variable; L and V—the mass fractions, z_m—the total
mole fraction:

F = ξoSo + ξgSg

L =
ξoSo

F
, V =

ξgSg

F
zm = Lxmo + (1− L)xmg, m = 1, 2, . . . , Nc

This system is linearized by Newton’s method. For function v, we set:

vn+1,l+1 = vn+1,l + ∆v

where l refers to the number of Newton’s iteration, and ∆v represents the increment in this
iteration step; n—the time approximation level.

In the (l + 1)-th layer of the Newton iterative process, the value of the unknowns is
updated by the following law:

xn+1,l+1
mo = xn+1,l

mo + ∆xn+1,l+1
mo , m = 1, 2, . . . , Nc − 1,

zn+1,l+1
mo = zn+1,l

mo + ∆zn+1,l+1
mo , m = 1, 2, . . . , Nc − 1,

Ln+1,l+1 = Ln+1,l + ∆Ln+1,l+1, (11)

Fn+1,l+1 = Fn+1,l + ∆Fn+1,l+1,

Sn+1,l+1 = Sn+1,l + ∆Sn+1,l+1,

pn+1,l+1 = pn+1,l + ∆pn+1,l+1

The calculation algorithm is as follows [23]:

1. Equation (11) is substituted into the finite difference form of a system of nonlinear
equations of 6 variables.

2. We obtain a system of linear equations with unknown ∆pi and solve it using the
GMRES method.

3. Further, using the known ∆pi, we find the unknown ∆x1oi (∆x2oi is found by relation (5)),
∆Li, ∆zi, ∆Fi, ∆Si.

4. Next, ∆x1gi and ∆x2gi are calculated according to (5).
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5. Next, the unknowns x1oi, Li, zi, Fi, Si, are found using (10).

As mentioned earlier, the resulting system of linear equations was also solved by the
ILU(0)-GMRES method. There is a limitation in the incomplete LU decomposition; namely,
problems may arise when the diagonal element of the matrix is equal to zero. This problem
can be solved by selecting the reference element or, in other words, by pivoting [24]. In
our problem, the diagonal elements of the matrix had a nonzero value, and finding the
preconditioner did not require additional operations.

In the Figure 1, you can see a diagram of the computational algorithm.
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4. Results and Discussion

To find ∆p_i, the algorithms GMRES, restarted GMRES(m) and preconditioned ILU(0)-
GMRES were used. The matrix of coefficients of this system of linear equations is shown
in Table 1 for various mesh sizes. The characteristics of the computer are the processor
with 4-core Intel Core i7 3770 and RAM with 8 GB. In order to perform the calculation, we
created six different dimensional matrices as shown in Table 1, which shows the number of
points in each matrix and the number of nonzero elements. We have obtained a comparative
graph of the time for calculating one Newton-GMRES iterative calculation (Figure 2) and
the number of the GMRES inner iteration (Figure 3). In Table 2, we can see the acceleration
obtained by preconditioning.

Table 1. Matrices information for numerical experiments.

Matrices
Number #1 #2 #3 #4 #5 #6

Number of
nodes 3,240,000 1,2960,000 29,160,000 81,000,000 129,960,000 190,440,000

Nonzero
elements 8338 16,738 25,138 41,938 53,138 64,338
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Table 2. Acceleration obtained by preconditioning.

Matrices Number GMRES Runtime(s) ILU(0)-GMRES
Runtime(s) Acceleration

#1 7.03 1.23 5.715447154

#2 53.54 11.07 4.836495032

#3 169.28 36.86 4.592512208

#4 746.1 164.54 4.534459706

#5 1641.1 349.72 4.692611232

#6 3009.45 643.71 4.675164282
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As one can see from Figure 2, the GMRES(m) algorithm takes less time than the other
two computing algorithms. However, it was selected experimentally by repeatedly giving
values ranging from 100 to 1500 to obtain the appropriate value of six different matrices.
For example, experimental calculations for matrix #3 are shown in Table 3; as we have
seen from this table, when m = 500, algorithms obtain the minimum computational time
and number of iterations, and for matrix #4, as can be seen from Table 4, the algorithm is
executed faster when m = 100.

Table 3. Numerical experiments for matrix 3 with different m values.

Matrix #3 CPU time(s) Residual Inner iteration

GMRES(100) 23.374 0.00982457 5286

GMRES(200) 56.605 0.00997898 5502

GMRES(300) 49.395 0.0099962 2942

GMRES(400) 50.373 0.00999233 2184

GMRES(500) 16.83 0.00994755 512

GMRES(600) 24.017 0.00939816 604

Table 4. Numerical experiments for matrix 4 with different m values.

Matrix #4 CPU time(s) Residual Inner iteration

GMRES(100) 35.4249 0.00993622 5788

GMRES(200) 184.447 0.00993313 10513

GMRES(300) 281.269 0.00999677 10751

GMRES(400) 200.089 0.00999497 5471

GMRES(500) 218.66 0.00999747 4473

GMRES(600) 260.9249 0.00999968 4435
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As can be seen from Table 4, in some cases, the total number of iterations is fewer than
when m = 100, but the algorithm is slower. This is due to the fact that at m = 100, at each
restart, the program builds a smaller orthogonalization basis.

The appropriate value of m for the matrix of Table 2 is given in Table 5. As we have
noted, in different matrix sizes, the value of m for the GMRES(m) algorithm is different.
However, the optimal m value of matrix #4, #5 and #6 is 100, but with substantial inner
iterations (Figure 3). Although the ILU(0)-GMRES algorithm is slower than the GMRES(m)
algorithm, there is no need to carry out repeated experiments to obtain the optimal value
of m. Moreover, with the ILU(0)-GMRES algorithm, we had better convergence then
GMRES(100) for matrix #4, #5 and #6. Moreover, the GMRES algorithm is the slowest and
most assured the number of iterations.

Table 5. Appropriate m value for different size of matrices.

Matrices
Number #1 #2 #3 #4 #5 #6

Appropriate
m value 200 300 500 100 100 100

5. Conclusions

This article discusses the Newton-ILU0-GMRES method for solving the problem of
multiphase, multicomponent flow in a porous medium. The equations describing the
motion of a multicomponent, multiphase flow in a porous medium were linearized using
Newton’s method. The resulting system of linear equations was solved using the GMRES
algorithm. In addition, a preconditioner and a modification of the method with restarts
(GMRES(m)) were used to speed up the method. The analysis and comparison (calculation
time, convergence) of the Newton-GMRES, GMRES(m) and ILU0-GMRES methods were
carried out. The numerical results demonstrate that for the one-dimensional problem
of multicomponent flow in a porous medium, the GMRES algorithm is the most time-
consuming. The GMRES algorithm with ILU(0) preconditioning works 4.5–5 times faster
than the algorithm without preconditioning. For the problem size equal or bigger than
matrix #4 for the GMRES(m) algorithm, the suitable m value is 100, but convergence is
slow. The ILU(0)-GMRES algorithm calculated slower than the GMRES(m) at the larger
size of the matrix but with better convergence in solving the given problem.

Similar results can be obtained for two-dimensional and three-dimensional equations
by applying to them an analogous method of solving, but with the condition that the
matrices of the resulting systems of linear equations satisfy the constraints of Incomplete
LU factorization.
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