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Abstract: Improving heat transfer from surface to airflow is a current research concern for enhancing
energy efficiency. The use of vortex generators for improving heat transfer from the surface to the
airflow is very effective. Therefore, this study focuses on applying flat and concave vortex generators
with and without holes in order to improve heat transfer. In this study, the number of pairs of vortex
generators was varied from one to three pairs at a certain angle of attack for various forms of vortex
generators. The airflow velocity through the duct was varied in the range of 0.4 to 2.0 m/s at 0.2 m/s
intervals. From the investigation results, we observed that the highest thermal performance was
found with the use of concave delta winglets without holes for various pairs of vortex generators
in terms of the overall Reynolds number. The highest thermal enhancement factor was found to be
around 1.42 at a Reynolds number of approximately 9000. From this study, it was also shown that
the lowest cost–benefit ratio was about 1.75 at a Reynolds number of approximately 3500 for three
pairs of vortex generators.

Keywords: vortex generator; heat transfer improvement; longitudinal vortex; thermal performance;
pressure drop

1. Introduction

Fin and tube condensers are widely used in household air conditioning, power gener-
ation, and the chemical industry. Therefore, the improvement of the heat transfer on the air
side of the condenser is necessary in order to enhance energy efficiency. The low thermal
conductivity of the air side is the main reason for improving the heat transfer of fin and tube
condensers. The application of vortex generators (VGs) is a passive method for increasing
the heat transfer rate. Furthermore, the use of VGs for enhancing heat transfer in order to
improve system efficiency to reduce costs has attracted the attention of many researchers.

Various researchers have carried out studies on the improvement of heat transfer using
passive methods [1–5]. Li et al. [6,7] numerically and experimentally studied the effect of
using a vortex generator on increasing heat transfer in a finless heat exchanger. They found
that using a double-triangle LVG increases the heat transfer coefficient more than that of a
common LVG. LVG is produced by the VG winglet, which can reduce the thickness of the
boundary layer, which impacts the heat transfer [8]. The longitudinal vortex (LV) produced
by the winglet-type VG can enhance heat transfer better than the transverse vortex (TV)
produced by the wing-type VG [9]. This is due to the three-dimensional flow from the LV
with the rotation axis in the direction of the main flow, resulting in a better mixing of the
flow than that from the TV [10]. Mixing the cold fluid flow away from the wall with the
hot fluid flow near the wall results in increased heat transfer [11].

The heat transfer improvement using VG was better than that gained using twisted
tapes, helical wire coils, and conical rings because of the lower pressure loss of the VG, as
observed by Wang et al. [12]. Their work demonstrates that VG was able to enhance heat

Fluids 2021, 6, 344. https://doi.org/10.3390/fluids6100344 https://www.mdpi.com/journal/fluids

https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://doi.org/10.3390/fluids6100344
https://doi.org/10.3390/fluids6100344
https://doi.org/10.3390/fluids6100344
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fluids6100344
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids6100344?type=check_update&version=2


Fluids 2021, 6, 344 2 of 17

transfer with a low pressure drop. A comparative study on the process of improving heat
transfer by applying various rectangular winglet (RW) VGs to fin and tube heat exchangers
was carried out by Ashish et al. [13]. They found that up-wavy RWVGs showed better
heat transfer improvements than those of other RWVGs. The use of curved rectangular
VGs shows an effective heat transfer improvement, as already reported by Lu and Zai. [14].
They noted that VGs with a 0.25 curvature showed the best heat transfer improvement.
This indicates that the geometry and arrangement of the VG mounting has an impact
on the thermal–hydraulic performance. Pongjet and Sompol investigated the thermal–
hydraulic performance of a heat exchanger that mounts a V-shaped VG winglet [15]. They
found that V-shaped rectangular winglet vortex generators (RWVGs) exhibit increased
heat transfer rates and higher pressure drops compared to those of V-shaped delta winglet
vortex generators (DWVGs). Various geometric shapes of VGs were investigated by Li et al.
(2020) with regard to their ability to improve heat transfer in a helical channel [16]. The
authors refer to these as a streamlined winglet pair (SWP). They combined an SWP with a
rectangular cross-section to achieve increased heat transfer and obtained an increase of up
to 46% compared to a formation with no VG. The advantages and increased efficiency of
triangular-winglet VGs for improving heat transfer were studied by Tian et al. [17]. They
investigated the application of triangular-winglet VGs for enhancing heat transfer rates in
various channel geometries. Various studies related to the improvement of heat transfer
have focused on several study parameters, such as the effect of VG geometry, angle of
attack, aspect ratio, and arrangement of VGs on flow, etc. (see Refs. [18–29]).

The high pressure drop resulting from the use of a curved-winglet VG encouraged
Syaiful et al. (2019) to investigate the application of perforated concave delta winglet
(PCDW) VGs for enhancing thermal–hydraulic performance [30]. They found a decrease in
pressure drop with lower heat transfer rates when using PCDW VGs compared to when
using CDW VGs. Although the results of their study were not as expected, they showed
a significant decrease in pressure drop. In a subsequent study, Syaiful et al. (2021) tried
to investigate the use of concave rectangular winglet (CRW) VGs for increasing the heat
transfer rate, where CRW VGs showed a better thermal improvement than concave delta
winglet (CDW) VGs [31]. As with previous studies, they found that pressure drops could
be reduced with the use of perforated VGs compared with non-perforated VGs.

From the various studies that have been carried out, it can be stated that evaluating
the profits of using perforated concave delta winglets (PCDW) VGs for improving heat
transfer from the surface to one row of tubes arranged in-line remains a topic that has
rarely been investigated. Therefore, the novelty of the present work is the use of PCDW
VGs to improve the rate of heat transfer from the tube surfaces to the air flow in a rect-
angular channel. The thermal–hydraulic performance and advantages of PCDW VGs
were evaluated by determining the variables of temperature and pressure drop of the
flow from the experimental test. The thermal–hydraulic performance and profit of PCDW
VGs are indicated by the thermal enhancement factor (TEF) and cost benefit ratio (CBR).
Furthermore, flow visualization was performed to determine the longitudinal vortex (LV)
generated by VGs. The evaluation of the uncertainty in the study was also observed by
determining the error of the calculated parameters.

In this work, validation was carried out by comparing the results of the Whitaker
study and the current study, as discussed in Ref. [32]. The temperature data obtained
at a predetermined velocity were used to calculate the Nusselt number. Meanwhile, the
pressure drop data obtained using a micromanometer at various flow rates were used to
determine the coefficient of friction. The Nusselt number and friction coefficient data were
used to determine the thermo-hydraulic performance (TEF).

2. Materials and Methods
2.1. Experimental Set-Up and Procedures

Figure 1 illustrates the experimental set-up of the current work. The use of PCDW
and CDW VGs to increase the rate of heat transfer from in-line tubes to the airflow in the
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rectangular channel was investigated in this experiment. The channel had a length, height,
and width of 370 cm, 18 cm, and 8 cm, respectively. This rectangular channel was made of
glass with a thickness of 1 cm. Air was sucked in by a blower (Wipro with a rated voltage
of 380 V–50 Hz) located at the end of the channel. The inlet airflow velocity was regulated
using an inverter (Mitsubishi Electric-type FR-D700 with an accuracy of ±0.01). Air flowed
through a straightener, which consisted of an array of aluminum pipes with a diameter of
5 mm and a length of 290 mm. The wire mesh was placed directly behind the straightener
to achieve a uniform flow. Airflow velocity was measured with a hotwire anemometer
(Type AM-4204 made by Lutron with an accuracy of ±0.1) placed 27 cm from the wire
mesh. In this experiment, the airflow velocity was varied in the range of 0.4 m/s to 2.0 m/s
in intervals of 0.2 m/s. Then, air flowed through the test specimen, which consisted of six
tubes in an in-line row heated at a constant rate of 40 W. The six tubes of the test specimens
were mounted on a plate.
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Figure 1. (a) Schematic of heat transfer rate and pressure drop test equipment; (b) flow visualization experimental set-up.

In order to obtain the thermal–hydraulic performance in this experiment (see Figure 1a),
six tubes were heated at a rate of 40 W, which was regulated by a heating regulator and
monitored by a Wattmeter (Lutron DW-6060 with an accuracy of ±0.01). Several ther-
mocouples (type K with a temperature range of −200–1250 ◦C and accuracy of ±0.001)
were installed at the inlet, on the surface of each tube, and on the plate where the tubes
were attached, with 15 thermocouples placed on the outlet side. Then, the thermocouples
were connected to the data acquisition device (Advantech USB-4718 type with an accuracy
±0.001), which was connected to the computer CPU for recording and monitoring. In
order to obtain pressure-drop data, two pitot tubes were placed 26 cm in front of the
test section and 2.5 cm behind the test section. The two pitot tubes were connected to a
micromanometer (Fluke type 922 with an accuracy of ±0.05) to monitor the pressure drop
of the airflow through the test section. The pressure drop was recorded every five seconds
for each velocity.

In the present study, flow visualization was performed to observe the LV produced
by VGs. The experimental set-up for flow visualization is shown in Figure 1b. In this
flow visualization experiment, the compressor was used to pump the steam produced by
a liquid vaporizer through a capillary tube inside the channel where the test section was
installed. This smoke would flow along with the main flow through the test section inside
the channel. LV was observed as the flow passed through the VGs and was captured by the
rectangular plane formed by the laser firing on the solid glass cylinder. A digital camera
was used to record and monitor the flow structure and LV produced by the VGs.
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2.2. Test Specimen

Figure 2 provides the detailed geometry of the test specimens and the PDW and PCDW
VG. The test specimen consisted of six tubes with a diameter of 19 mm and height of 60 mm;
the tubes were mounted on a plate with a length, width, and thickness of 500 mm, 165 mm,
and 1 mm, respectively. In this study, the DWP, CDWP, PDWP, and PCDWP VGs were
evaluated in a common flow down (CDW) configuration. The distance between the leading
edge of the VG and the center of the cylinder was 1.5 mm. The six tubes were arranged
in-line with a distance between the centers of the tubes of 60 mm. The attack angle of the
VGs was determined to be 20◦ from the main flow direction. Tests were carried out for one,
two, and three pairs of VGs arranged in-line. The leading-edge distance between a pair
of VGs and another pair was 120 mm. The perforated VGs had a length of 30 mm and a
height of 30 mm, with 15 holes with diameters of 2.5 mm. The distance between the holes
was 5 mm. Figure 3 shows a photo of the test specimen in this study for the three pairs
of PDW and PCDW. In total, 13 specimens were tested in this work, consisting of three
variations in the number of pairs of DW, CDW, PDW, and PCDW VGs as well as a baseline.
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2.3. Parameter Definition

Several equations were used in this study to evaluate thermo-hydraulic performance.
The convection heat transfer coefficient was determined using Equation (1) [16,18]:

h =
Nu k
Dh

(1)

where Nu, k, and Dh are the Nusselt number, fluid thermal conductivity, and hydrau-
lic diameter

(
Dh = 2(W × H)

(W+H)

)
, respectively. Nusselt number can be calculated using

Equation (2) [16,18].

Nu =
Q

A LMTD
·Dh

k
(2)

where Q is the heat transfer from the tube surface to the fluid flow, A is the tube surface
area, and LMTD is the logarithmic mean temperature difference of the fluid. The values of
Q and LMTD can be calculated using Equations (3) and (4), respectively [16,18].

Q =
.

m Cp (Tout − Tin) (3)

LMTD =
(Tw − Tout)− (Tw − Tin)

ln((Tw − Tout)/(Tw − Tin))
(4)

where
.

m, Cp, Tout, and Tin are the fluid mass rate, fluid specific heat, outlet, and inlet
temperature of the fluid, respectively.

The hydrodynamic performance was calculated by measuring the pressure drop of
the flow at the inlet and outlet sides of the test specimen. Then, the friction factor was
calculated using Equation (5) [33].

f =
2 ∆P Dh

ρ V2 (L + 6D)
(5)

where ρ, V, and L are the density of the air, the air flow velocity, and the length of the test
specimen plate, respectively.
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From the thermal and hydraulic performance determined by Equations (2) and (5),
respectively, the thermal–hydraulic performance can be calculated using Equation (6) [33]:

TEF =
Nu/Nu0

( f
f0
)

1/3 (6)

Another important parameter used in the heat exchanger analysis is the cost per
benefit ratio (CBR), which is the ratio of the percentage of pressure drop to the percentage
of Nusselt number between set-ups using VGs and those not using VGs [34]. This CBR
indicates whether the method used to increase the heat transfer rate is economical or not. If
the CBR value is below one, then the method used to improve the heat transfer is efficient.
CBR can be calculated using Equation (7) [34].

CBR =
%∆P
%Nu

(7)

where %∆P and %Nu are the percentage difference of the pressure drop and Nusselt
number for the case using VG with that of without using VG.

2.4. Validation

Validation was necessary to ensure that the experiments carried out were going in
the right direction. This validation was carried out by comparing the current experiment
with the experiment from Whitaker, for which validation results can be seen in previous
studies [31]. In the validation, the current experimental conditions were adjusted to the
experimental conditions used by Whitaker. The value of the Nusselt number was deter-
mined to be in the Reynolds number range from 2000 to 10,000. The overestimated values
found from the present experimental results were compared with those from Whitaker’s
experiments, as the heat induced was higher than that in Whitaker’s work. However, the
Nusselt number of the experimental results now shows a similar tendency according to
Whitaker’s experimental results.

3. Results and Discussion
3.1. Effect of VG on Heat Transfer

The heat transfer improvement due to the installation of VGs can be represented by
the value of the Nusselt number ratio of the set-ups with and without VGs, as shown in
Figure 4. Figure 4 shows the ratios of the Nusselt numbers for mounting DWP, CDWP,
PDWP, and PCDWP VGs for one, two, and three pairs of VGs to Reynolds numbers. From
this study, it was found that the addition of pairs of VGs was able to increase the rate of
heat transfer, as indicated by the increase in the Nusselt number ratio with the rise in the
number of pairs of VGs at the same Reynolds number. The main reason for this is that
the addition of pairs of VGs increases the number of LVs generated and strengthens the
LV [18]. A high strength of LV results in good fluid mixing, which results in increased heat
transfer [30].

From Figure 4, it can be observed that the CDWP VGs set-up without holes shows the
highest Nusselt number ratio at the same number of pairs of VGs and the same Reynolds
number. The highest Nusselt number ratio for the case of VGs without holes found in the
installation of one, two, and three pairs of CDW VGs is 1.64 at Re = 8973, 1.65, and 1.73 at
Re = 4300. As for the case of perforated VGs, the highest Nusselt number ratio for the use
of one, two, and three pairs of CDW VGs was found to be 1.56, 1.57, and 1.62 at Re = 4300.
From the experimental results shown in this study, it can be concluded that the hole in the
VG has an impact on a slight decrease in the Nusselt number ratio. This is because the jet
flow formed from the VG hole is able to damage the LV produced by the VG, meaning
that its intensity is reduced, which results in a decrease in the fluid mixing and the Nusselt
number ratio afterward [35]. The Nusselt number ratios in cases with one, two, and three
pairs of DW and PCDW were found to be almost the same for all Reynolds numbers.
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3.2. Effect of VG on Friction Factor

Figure 5 provides a comparison of the friction factor ratios (f /f 0) for the installation of
DWP, CDWP, PDWP, and PCDWP VGs at various Reynolds numbers. From the current
experimental study, in general, it was found that the holes in the VGs were able to reduce
the friction factor ratio, which indicates a decrease in pressure drop with the holes in the
VGs. This decrease in pressure drop is caused by a decrease in the frontal area through
which the flow passes, as well as the weakening of the LV. The jet flow effect of the VG
holes reduces the stagnation of flow, reducing the local pressure losses [36]. A higher f /f 0
was found in the CDWP installation than in the other cases due to the large frontal area of
the CDWP VGs. The highest f /f 0 for the holeless VG case was found to be 1.6, 1.8, and 2.8
at Re = 4300 for one, two, and three pairs of CDW VGs, respectively. From Figure 5, it can
be observed that the highest f /f 0 for all cases in one, two, and three pairs was found at a
Reynolds number of around 4400. From Figure 5, it can also be seen that f /f 0 in cases one,
two, and three of DWP and PCDWP shows almost the same value. f /f 0 tends to decrease
with respect to the Reynolds number.



Fluids 2021, 6, 344 8 of 17
Fluids 2021, 6, x FOR PEER REVIEW 8 of 18 
 

  
(a) (b) 

 
(c) 

Figure 5. f/fo for the use of VGs with/without holes on the Reynolds number and the number of pairs of VG. (a) One pair 
of VG, (b) Two pairs of VG, and (c) Three pairs of VG. 

3.3. Effect of VG on Thermal–Hydraulic Performance 
The thermal–hydraulic performance during the use of VGs can be represented by 

TEF. A TEF of higher than one indicates that there was an effective heat transfer improve-
ment. Figure 6 shows that the highest thermal–hydraulic performance was found with the 
use of CDWP VGs. This indicates that the heat transfer improvement caused by the use of 
CDWP VGs was more significant than the increase in pressure drop. The use of CDWP 
and PCDWP VGs resulted in a large LV radius with a high intensity, which reduced the 
wake region [37]. The reduction in the wake region increased the flow velocity down-
stream of the tubes and reduced the recirculation zone, leading to an increase in the rate 
of heat transfer in that region [18,38]. A decrease in the wake region reduced the stagna-
tion region, which reduced the pressure drop [38]. 

As shown in Figure 6, the maximum TEF for cases with one, two, and three pairs of 
PDW VGs is reduced by 5.9%, 4.4%, and 2.2%, respectively, compared to that of DW VGs. 
Meanwhile, in the case of concave VGs, the maximum TEF is reduced by 5.8%, 2.1%, and 
2.8% for cases with one, two, and three pairs of PCDW VGs compared to that of CDW 
VGs. In general, the highest TEF was observed to be 1.45 with the installation of three 
pairs of CDW VGs at Re = 8928. The TEF tended to increase at Reynolds numbers below 
8300 and decrease thereafter. The TEF showed almost the same values for cases one, two, 
and three of DWP and PCDWP. 

Figure 5. f /f 0 for the use of VGs with/without holes on the Reynolds number and the number of pairs of VG. (a) One pair
of VG, (b) Two pairs of VG, and (c) Three pairs of VG.

3.3. Effect of VG on Thermal–Hydraulic Performance

The thermal–hydraulic performance during the use of VGs can be represented by TEF.
A TEF of higher than one indicates that there was an effective heat transfer improvement.
Figure 6 shows that the highest thermal–hydraulic performance was found with the use
of CDWP VGs. This indicates that the heat transfer improvement caused by the use of
CDWP VGs was more significant than the increase in pressure drop. The use of CDWP and
PCDWP VGs resulted in a large LV radius with a high intensity, which reduced the wake
region [37]. The reduction in the wake region increased the flow velocity downstream
of the tubes and reduced the recirculation zone, leading to an increase in the rate of heat
transfer in that region [18,38]. A decrease in the wake region reduced the stagnation region,
which reduced the pressure drop [38].

As shown in Figure 6, the maximum TEF for cases with one, two, and three pairs of
PDW VGs is reduced by 5.9%, 4.4%, and 2.2%, respectively, compared to that of DW VGs.
Meanwhile, in the case of concave VGs, the maximum TEF is reduced by 5.8%, 2.1%, and
2.8% for cases with one, two, and three pairs of PCDW VGs compared to that of CDW VGs.
In general, the highest TEF was observed to be 1.45 with the installation of three pairs of
CDW VGs at Re = 8928. The TEF tended to increase at Reynolds numbers below 8300 and
decrease thereafter. The TEF showed almost the same values for cases one, two, and three
of DWP and PCDWP.

3.4. Effect of VG on the Economic Value of Improved Heat Transfer (CBR)

The cost–benefit ratio (CBR) is a parameter used to evaluate the economics of a heat
transfer improvement method [34]. The effect of the type of VG used and the number
of pairs of VGs on the CBR at various Reynolds numbers is shown in Figure 7. With the
installation of one pair of VGs, the lowest CBR was found in the case of PDWP for the
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same Reynolds number. This indicates that the installation of PDWP VGs is economically
the best out of all the VG installations. However, the CBR, in this case, reached its highest
value of around 0.965 at Re = 4400. With the installation of two pairs of VGs, PDWP still
occupied the lowest value at Re numbers greater than 5500. Below Re = 5500, PCDWP VGs
had the lowest CBR value. Furthermore, the lowest CBR was found with the use of PDWP
in the installation of one, two, and three pairs of VGs at Re numbers greater than 6600. The
increase in the number of VG pairs resulted in an increase in the CBR at the same Reynolds
number for Reynolds numbers below 6000.
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3.5. Flow Visualization

A flow visualization test was carried out to determine the LV structure formed by
the installation of VGs. Figure 8 shows the LV formed after the flow passed through the
perforated VGs. The LV formed was captured by a cross-section plane of the flow created
by a laser beam shooting into a transverse glass cylinder. The position of the cross-section
plane was at x/L = 0.28, where x is the distance from the plane to the inlet end of the test
plate and L is the total length of the test plate. The flow structure in the downstream region
of the perforated VGs in the flow direction is shown in Figure 9. This visualization was
performed with the use of one pair of PDW and PCDW VGs.
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From Figure 8, it can be observed that the LV generated by the PCDWP VGs had
a larger radius than that of the PDWP VGs. The large LV radius has an impact on the
thinning of the thermal boundary layer on the surface, resulting in an increase in the rate
of heat transfer from the surface to the flow [34]. In addition, the use of a large LV pushed
the wake region, which could enhance the heat transfer in the area [37]. The large size of
the LV produced by the PCDWP VGs was caused by the instability of the centrifugal force
when the flow passed through the concave surface [30]. This indicates that the heat transfer
improvement brought about by installing PCDWP VGs is better than that brought about
by PDWP VGs.

From Figure 9, it can be observed that the use of PCDWP VGs generates LV by
occupying a wider flow area compared to that of PDWP VGs in the downstream area. The
large area of the LV behind the PCDW VG is due to it having a larger frontal surface area
than the surface of the PDW VG and the strength of the LV being introduced into the main
flow. This causes the mixing of the fluid near the walls of the tubes with the fluid in the
main flow to be better, meaning that the heat transfer rate increases [39]. In addition, the
LV in the downstream area can compress the wake region so that the fluid flow velocity
through the cylinder arrangement increases. This can increase the rate of heat transfer
from the tube surface to the fluid flow in the wake region [37,39]. For this reason, the heat
transfer enhancement brought about by using PCDWP VGs was better than that brought
about by using PDWP VGs.
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4. Uncertainty Analysis (Error)
4.1. Heat Transfer Uncertainty

In this study, the parameters of the mean, the standard deviation of the mean, and
the overall error were used to determine the uncertainty [40,41]. This time, for the error
calculation we used the test result data for the baseline case with a flow velocity of 0.4 m/s.
Table 1 shows the tube surface temperature data from the test results for the baseline case.

Table 1. Tube surface temperature data from the baseline test at a flow velocity of 0.4 m/s.

Data to Tw1 (◦C) Tw2 (◦C) Tw3 (◦C) Tw4 (◦C) Tw5 (◦C) Tw6 (◦C)

1 49.191 51.214 48.323 49.769 47.802 51.271
2 49.183 51.177 48.316 49.791 47.766 51.264
3 49.145 51.168 48.307 49.753 47.786 51.255
4 49.121 51.173 48.282 49.728 47.761 51.259
5 49.153 51.205 48.285 49.731 47.735 51.262
6 49.100 51.151 48.290 49.736 47.769 51.267
7 49.098 51.150 48.230 49.734 47.738 51.294
8 49.089 51.141 48.250 49.667 47.729 51.228

The data from Table 1 can be used to calculate the average tube surface temperature
(Tw) using Equation (8) [40,41].

Tw =
Tw1 + Tw2 + Tw3 + Tw4 + Tw5 + Tw6

6
(8)

From Equation (8), we can obtain that the value of Tw is 49.559 ◦C. Then, the average
standard deviation can be calculated using Equation (9) [40,41].

sTw =

√√√√∑N
i=1 (Twi − Tw)

2

N(N − 1)
(9)

The value of STw is found to be 0.194 ◦C. Therefore, the value of Tw can be written
as 49.559 ± 0.194 ◦C. Meanwhile, Tin and Tout are found to be 28.887 ◦C and 32.954 ◦C,
respectively. Then, the average standard deviation can be calculated using Equations (10)
and (11) [40,41].

sTin =

√√√√∑N
i=1 (Tini − Tin)

2

N(N − 1)
(10)

sTout =

√√√√∑N
i=1 (Touti − Tout)

2

N(N − 1)
(11)

Therefore, STin and STout are found to be 0.012 ◦C and 0.045 ◦C, respectively. Further-
more, the values of Tin and Tout can be written as 28.887 ± 0.012 ◦C and 32.954 ± 0.045 ◦C,
respectively. The standard deviation values of Tin and Tout are still higher than the accuracy
value of the thermocouple used in the measurement. Additionally, the value of Q at a flow
rate of 0.4 m/s is found to be 19.477 W. Equation (12) can be used to calculate the error
value of Q [40,41].

Earss Q =

√(
∆Tin

∂Q
∂Tin

)2
+

(
∆Tout

∂Q
∂Tout

)2
(12)

where ∂Q
∂Tin

=
.

m·Cp ·(Tin−Tout)
Tin

, while ∂Q
∂Tout

=
.

m·Cp ·(Tin−Tout)
Tout

. With ∆Tin = 0.012 ◦C and
∆Tout = 0.045 ◦C, Earss Q is obtained at about 0.028 W. Therefore, the heat transfer rate
was found to be Q = 19.477 ± 0.028 W. This deviation of Q is higher than the accuracy
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of the Wattmeter used in the measurement. Furthermore, the LMTD is determined using
Equation (4) to have a value of about 18.564 ◦C. Using Equation (13), the error value of
LMTD is found to be 0.077 ◦C [40,41].

Earss LMTD =

√(
∆Tin

∂LMTD
∂Tin

)2
+

(
∆Tw

∂LMTD
∂Tw

)2
+

(
∆Tout

∂LMTD
∂Tout

)2
(13)

Then, the LMTD value can be written as 18.564 ± 0.077 ◦C. Furthermore, Nu is found
to be 155.308 at a flow velocity of 0.4 m/s using Equation (2). The error for Nu is determined
using Equation (14) [40,41]:

Earss Nu =

√(
∆LMTD

∂Nu
∂LMTD

)2
+

(
∆Q

∂Nu
∂Q

)2
(14)

From Equation (14), the Nu error is found to be around 0.684. Therefore, Nu for the
baseline case with a flow velocity of 0.4 m/s is 155.308 ± 0.684. Then, the value of the
convection heat transfer coefficient is calculated using Equation (15) and is found to be
44,857 W/m2K [40,41].

Earss h =

√(
∆Nu

∂h
∂Nu

)2
(15)

The error of the convection heat transfer coefficient is found to be 0.197 W/m2K. Fur-
thermore, the value of the convection heat transfer coefficient can be written as
h = 44.857 ± 0.197 W/m2K. Using Equation (16), the percentage error of the convection
heat transfer coefficient is found to be 0.44% [40,41].

% Errorh =

(
Earss h

h

)
100% (16)

The errors for all cases are determined in the same way. Therefore, the error percentage
of the Nusselt number in the use of DWP, CDWP, PDW, and PCDW can be inferred from
Table 2. From Table 2, it is found that the perforated VG installation error is higher than
that without holes when using one and two VG pairs. The opposite is shown in the use of
three VG pairs, where the error from the perforated VG installation is lower than that for
the installation without holes.

Table 2. Overall error Nusselt number for the installation of DWP, CDWP, PDWP, and PCDWP VGs.

Number of Pair
Overall Error

DWP CDWP PDWP PCDWP

1 1.05% 0.60% 1.69% 0.90%
2 0.67% 0.75% 0.77% 0.74%
3 1.12% 1.15% 0.85% 0.91%

4.2. Uncertainty of Pressure Drop

The data deviation of the pressure drop was determined based on the baseline case.
The pressure drop data for the baseline case at a flow velocity of 2 m/s can be inferred
from Table 3. Furthermore, the average pressure drop was found to be 0.013 in H2O, which
was calculated using Equation (17) [40,41].

∆P =
∆P1 + ∆P2 + ∆P3 + · · ·+ ∆P30

30
(17)
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Table 3. Pressure drop data from the baseline case at a velocity of 2 m/s.

Pressure Drop (in H2O)

Data to ∆P Data to ∆P

1 0.013 16 0.012
2 0.013 17 0.013
3 0.013 18 0.012
4 0.013 19 0.012
5 0.012 20 0.013
6 0.013 21 0.013
7 0.013 22 0.012
8 0.012 23 0.013
9 0.013 24 0.012
10 0.013 25 0.013
11 0.013 26 0.013
12 0.013 27 0.013
13 0.012 28 0.013
14 0.012 29 0.012
15 0.013 30 0.012

Then, the mean standard deviation is calculated using Equation (18), obtaining
2.1 × 10−5 in H2O [40,41].

s∆P =

√√√√∑N
i=1 (∆Pi − ∆P)

2

N(N − 1)
(18)

Therefore, the pressure drop value for the baseline case at a flow velocity of 2 m/s is
0.013 ± 4.9 × 10−5 in H2O. Then, the error of the pressure drop is calculated by Equation (19)
and is found to be 0.47% [40,41].

% Error∆P =

(
s∆P

∆P

)
100% (19)

The same method was used to calculate the error for all cases, as shown in Table 4.
The error in the pressure drop measurement was higher in the case of the perforated VGs
than in the case of there being no holes for the total number of VG pairs.

Table 4. Overall error of pressure drop for the installation of DWP, CDWP, PDWP, and PCDWP VGs.

Number of Pair
Overall Error

DWP CDWP PDWP PCDWP

1 3.52% 2.90% 3.74% 3.56%
2 2.41% 1.50% 3.32% 2.61%
3 0.87% 1.10% 2.11% 1.91%

5. Conclusions

In this study, the evaluation of thermo-hydraulic performance was carried out in
order to obtain the best performance. From the results of this experiment, we can draw the
following conclusions:

1. The holes in the VG slightly reduce the heat transfer rate, which can be indicated by a
decrease in the Nusselt number ratio of up to 9 to 10%.

2. The holes in the VG, in addition to slightly reducing the heat transfer rate, are also
able to reduce the flow resistance, which can be indicated by a decrease in the friction
factor ratio of up to 11 to 14.5%.

3. The thermal–hydraulic performance expressed as TEF with holes in the VG was
slightly decreased by about 2.1% from that of with holes.
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4. From an economic point of view, the use of perforated VGs can reduce the economy
of a heat exchange system. This can be indicated by a threefold increase in CBR at the
highest flow velocity for the three pairs of VGs.

5. The flow visualization showed the formation of a longitudinal vortex in the cross-
section plane downstream of the VG.

6. The results of the study also showed that the data uncertainty obtained from calculat-
ing the heat rate and pressure drop was very low, with an average error of below 2%
and 4% for Nu and ∆P, respectively.

In the future, I will evaluate the installation of PCDW in in-line and staggered tube
configurations and visualize them.
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Abbreviations

A tube surface area (m2)
W test section width (m)
H test section height (m)
D tube diameter (m)
k fluid thermal conductivity (W/mK)
Dh hydraulic diameter (m)
ρ density of air (kg/m3)
Cp fluid specific heat (J/kgK)
L length of the test specimen plate (m)
Q heat transfer from the tube surface to the fluid flow (W)
h convection heat transfer coefficient (W/m2 K)
Nu Nusselt number (−)
Nu0 Nusselt number for baseline (−)
LMTD log-mean temperature difference (K)
Tin inlet temperature of the fluid (K)
Tout outlet temperature of the fluid (K)
Tw wall temperature of the tube (K)
V air flow velocity (m/s)
.

m fluid mass rate (kg/s)
∆P pressure drop along the flow (Pa)
f friction factor (−)
f 0 friction factor for baseline (−)
N number of data (−)
sT average standard deviation (−)
Ea absolute error (−)
TEF thermal enhancement factor
CBR cost–benefit ratio
VG vortex generator
LV longitudinal vortex
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TV transverse vortex
RW rectangular winglet
DW delta winglet
CDW concave delta winglet
PDW perforated delta winglet
PCDW perforated concave delta winglet
RWP rectangular winglet pair
DWP delta winglet pair
CDWP concave delta winglet pair
PDWP perforated delta winglet pair
PCDWP perforated concave delta winglet pair
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