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Abstract: Bayesian methods were studied in this paper using deep neural networks. We are inter-
ested in variational autoencoders, where an encoder approaches the true posterior and the decoder
approaches the direct probability. Specifically, we applied these autoencoders for unsteady and
compressible fluid flows in aircraft engines. We used inferential methods to compute a sharp ap-
proximation of the posterior probability of these parameters with the transient dynamics of the
training velocity fields and to generate plausible velocity fields. An important application is the
initialization of transient numerical simulations of unsteady fluid flows and large eddy simulations
in fluid dynamics. It is known by the Bayes theorem that the choice of the prior distribution is very
important for the computation of the posterior probability, proportional to the product of likelihood
with the prior probability. Hence, we propose a new inference model based on a new prior defined by
the density estimate with the realizations of the kernel proper orthogonal decomposition coefficients
of the available training data. We numerically show that this inference model improves the results
obtained with the usual standard normal prior distribution. This inference model was constructed
using a new algorithm improving the convergence of the parametric optimization of the encoder
probability distribution that approaches the posterior. This latter probability distribution is data-
targeted, similarly to the prior distribution. This new generative approach can also be seen as an
improvement of the kernel proper orthogonal decomposition method, for which we do not usually
have a robust technique for expressing the pre-image in the input physical space of the stochastic
reduced field in the feature high-dimensional space with a kernel inner product.

Keywords: kernel proper orthogonal decomposition (KPOD); variational autoencoder (VAE); infer-
ence model; prior distribution; Gaussian kernel; unsteady and compressible fluid flows

1. Introduction

Numerical simulation in the domain of fluid dynamics remains a difficult task, espe-
cially with respect to turbulent fluid flows for which the large eddy simulations are crucial
for modeling the details of all the different spatial scales. Thanks to the precision that these
techniques offer in the field of fluid dynamics with respect to other numerical methods
for the resolution of Navier–Stokes equations, they are used in the aeronautical industry
for helping the design conception of the different components of an aeronautical engine.
Typically, these simulations are used for solving the reacting Navier–Stokes equations in
order to predict the behavior of a turbulent flow in an aeronautical injection system and
a combustion chamber [1,2]. However, the CPU cost of large eddy simulations is still
prohibitive despite all the progress in high-performance computing on massively parallel
super computers. This cost is essentially related to the need for performing multiple runs
in parametric and geometric studies involved in optimization loops.

In the state of the art, we find different methods offering a solution to this problem:
model order reduction techniques, metamodeling and deep learning approaches.
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POD-based model order reduction offers a large panorama of solutions thanks to
the projection of the model’s equations upon a reduced order vector space obtained by
POD method [3,4]. The capacity of the POD–Galerkin approach to adapt to highly non-
linear convective equations, such as the incompressible Navier–Stokes equations, thanks to
stabilization approaches [5–8], made of this approach a good candidate for the construction
of parametric and geometric reduced order models for the incompressible Navier–Stokes
equations, as can be seen in [9,10].

Metamodeling and kriging approaches [11,12] can be used as alternatives to projection-
based model order reduction approaches, as these offer a completely non-intrusive frame-
work for computing the solution in the reduced order vector space. The projection coef-
ficients are obtained by solving a regression problem with respect to the real orthogonal
coefficients from the available offline data, as can be seen in [13–15].

Recently, the use of deep learning approaches for approximating solutions of fluid
dynamics simulations has undergone an important development. We can cite [16], where
VAEs [17,18] are used for computing missing data in fluid dynamics fields. This application
has been compared to the gappy POD technique, as can be seen in [19,20]. We cite the
work in [21], where a multiple temporal paths convolutional neural network (MTPC) was
used to predict features in different time ranges for a turbulent flow, in order to perform
a super-resolution reconstruction of these flows from low fidelity spatial fields. In [22],
convolutional neural networks are used to learn the mapping from a coarse grid to the
closure term of a large eddy simulation.

In this paper, we propose a solution to the problem stated in this introduction from
a new point of view. We consider the transient dynamics (or the time evolution) of an
unsteady fluid flow as a latent variable and we propose building a robust inferential model
related to this variable. This might be helpful for the initialization of large eddy simulations
in order to improve the efficiency of these simulations, by inferring to observed data the
most accurate posterior approximation over this latent variable with respect to the true
posterior. The problem of the initialization of transient simulations in turbulent fluid
dynamics and the problem of turbulence injection are still open problems in the state of the
art [23].

In general, uncertainty quantification and statistical methods are used in order to
measure the effect of uncertainty or randomness in the parameters of a model on the
solutions of this latter. Most of the time, this is applied to quantities of interest on the
solutions. There are many ways to perform these uncertainty quantification and statistical
methods: by applying a classical Monte Carlo approach [24] and by applying approx-
imation techniques of the Monte Carlo method thanks to a large family of techniques,
such as generative approaches where we can find, for example, the generative adversarial
networks and the Bayesian approaches coupled to VAEs [25], the stochastic reduced order
models such as polynomial chaos expansions, and the Gaussian process regressions cou-
pled to data compression techniques such as the POD or with the pre-image problem for
the KPOD [26], stochastic models of random matrices that appear in the nonparametric
method of uncertainties [27], and the stochastic projection-based reduced-order model
(SPROM) [28].

As already mentioned in the abstract, we chose the Bayesian approaches coupled to
VAEs in order to generate plausible unsteady velocity fields of a compressible and unsteady
fluid flow. The variational autoencoders introduced in [17,18] became very popular for
tackling inferential techniques in latent spaces. In fact, we would like to take advantage of
the inference model in order to be able to sharply estimate the posterior probability over
the random conditional variable once the observed data have been taken into account. This
allows us to draw samples in a generative approach and to generate plausible velocities of
the fluid flow using the decoder of the VAE.

Practically, prior distribution over the random variable is used for the approximation
of the true posterior following the Bayes theorem. In general, the prior distribution is
a standard normal one. Hence, there is no practical way to verify the sharpness of the
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inferred posterior approximation to the observed data over the random variable. In other
words, the standard mean-field parametrization of the posterior approximation can limit
the use of the VAE. It is only based on a prior belief that the considered standard normal
prior distribution allows one to infer the true posterior to the observed data. Recent
works on the state of the art tried to solve this problem. In [29], sampling from the VAE
posterior approximation has been shown to improve the performance of the VAE. In [30], a
Hamiltonian VAE (HVAE) inspired by Hamiltonian Monte Carlo (HMC) [31] which uses
target information has been proposed.

In this paper, we propose a solution to this issue based on a data-targeted prior
distribution based on the KPOD orthogonal coefficients with the observed data. Moreover,
we enforce this data-targeted prior distribution thanks to a new training algorithm of the
VAE, where the encoder approximation of the variance plays the role of a square error with
respect to the data-targeted prior and not the variance of a probability distribution of a
standard normal prior, as done in classical VAE. This enables us to interpret the inferred
approximation of the true posterior and its parameterized mean function. Therefore,
we were able to draw samples from the data-targeted parameterized mean and generate
plausible velocities of the fluid flow using the VAE’s decoder. This new generative approach
using the KPOD orthogonal coefficients is a simple procedure for expressing the pre-image
in the physical space of the stochastic reduced field by the KPOD approach in the complex
feature space.

The paper is organized as follows: in Section 2 we recall some definitions and no-
tations necessary for the remainder of the paper; in Section 3, we give the problem and
methodology formulations; in Section 4, we apply the new proposed algorithm on the
instantaneous velocities of a reacting fluid flow in a fuel jet; and in Section 5, we conclude
the paper and we give the prospects of this work.

2. Definitions and Notations

We recall in this section all the necessary definitions and we give the notations needed
through the following sections.

2.1. VAE’s Cost Function

In Bayesian and variational methods, particularly for variational autoencoders, the op-
timized quantity is expressed as follows:

Lclassical(Φ, θ, u(t)) = Ez∼qΦ(z|u(t))[−log(pθ(u(t)|z))] + DKL(qΦ(z|u(t))||pθ(z|u(t))), (1)

where, without any loss of generality:

• u(t) is the observed data which in this case represent the instantaneous velocity field
of an unsteady fluid flow; and t ∈ [0, T], T is the maximum physical time.

• z is the random variable. We consider the transient dynamics (or the time evolution)
of the unsteady fluid flow as a latent variable and we propose building a robust
inferential model related to this variable.

• qΦ(z|u(t)) is a distribution over z which is optimized as an approximation of the true
posterior pθ(z|u(t)). Hence, Φ represents the encoder parameters.

• pθ(u(t)|z) is the direct probability of the occurrence of an observed variable u(t) given
a random variable z. Hence, θ are the decoder parameters.

• DKL denotes the Kullback–Leibler divergence between the distribution approximation
and the true posterior. As we do not have access to the true posterior of the observable
fields, we assume an a priori distribution over z following the Bayes theorem.

• According to the Bayes theorem, the posterior probability is given by

pθ(z|u(t)) =
pθ(u(t)|z)pθ(z)

pθ(u(t))
. (2)
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where pθ(u(t)) =
∫

z pθ(u(t)|z)pθ(z)dz is the expectation of pθ(u(t)|z) following
pθ(z).

2.2. Evidence Lower Bound

The evidence lower bound (ELBO) is defined by

log(pθ(u(t)))− DKL(qΦ(z|u(t))||pθ(z|u(t))) = Ez∼qΦ(z|u(t)) log
pθ(u(t)|z)pθ(z)

qΦ(z|u(t))
, (3)

where:

• pθ(z) is the prior distribution on the latent variables and it is usually defined as a
multivariate standard normal distribution: pθ(z) = N(0, 1).

• As pθ(u(t)) does not depend on q, then Equation (3) shows that maximizing the
evidence lower bound minimizes DKL(qΦ(z|u(t))||pθ(z|u(t))). Hence, the choice of
prior distribution over z is very important in order to approximate at best the true
posterior over z given an observed datum.

2.3. Physical Problem of Interest

We consider u(t) as the instantaneous velocity field of the Navier–Stokes equations
with a variable density. These equations are often used for turbulent flows with a low Mach
number, for example, flows which we encounter in aeronautical combusters.

We write the evolution problem of the velocity u(t) in a formal fashion as follows:
Find u(t) ∈ V ⊂ X, such that:

∂u(t)
∂t

= A(u(t)), (4)

where:

• V is a real Hilbert space.
• X = [L2(Ω)]d, Ω is an open subset of Rd.
• A is a formal representation of the convection–diffusion Navier–Stokes equations.

We denote by (, ) the endowed energetic inner product from X to V. We denote by
‖.‖ the associated norm, which is the norm of the square integrable Rd-valued functions
over Ω.

We define Vh as a subspace of V, spanned by M snapshots or instantaneous realizations
of the unsteady velocity field u: these snapshots are denoted by uh(ti), i = 1, . . . , M.

2.4. KPOD and Kernel Trick

In this part, we recall the kernel proper orthogonal decomposition method. This
technique can be seen as a non-linear dimension reduction in the Hilbert space Vh. The main
motivation behind the use of the KPOD technique is that, many physical phenomena are
hardly linearly separable or independent in a subspace of Vh of reduced dimension. This is
typically the case of reacting fluid flows in aeronautical combustion chambers, where the
flow velocity together with the flame propagation are governed by a transport behavior.
In this case, the realizations are mostly linearly independent in Vh. The KPOD defines a
map φ which relates the physical input space Vh to another space Fh:

φ : Vh −→ Fh. (5)

Fh is called the feature space. The realizations which are mostly linearly independent in
Vh become linearly dependent in Fh which is endowed by a new inner product (, )Fh that
enables accounting for the correlations between the realizations.

By definition, a POD basis associated with the set of realizations φ(uh(ti)), i = 1, . . . , M,
is an orthonormal basis (Vn)n≥1 of the space Fh endowed with the new inner product, which
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maximizes the mean of the inner energy contained within the orthogonal projection of each
realization over an orthonormal basis vector:

1
M

M

∑
i=1

(φ(uh(ti)), v)2
Fh

= max
w∈Fh ;‖w‖Fh

=1

1
M

M

∑
i=1

(φ(uh(ti)), w)2
Fh

(6)

The maximization problem (6) is equivalent to the search for the greatest eigenvalues
of the following problem:

Rv = λv, (7)

whereR is defined as follows:

R :

Fh→Fh

v 7→Rv =
1
M

M

∑
i=1

(uh(ti), v)Fh uh(ti)
(8)

R is a Hilbert–Schmidt integral operator. Therefore, by the spectral theorem, the eigen-
vectors of this operator (solutions of Equation (7)) form an orthonormal basis of the space
Fh. The associated eigenvalues are positive and decrease towards 0.

In practice, these eigenvalues are obtained following the classical snapshots POD
approach introduced by Sirovich [4]: a singular value decomposition is performed to the
correlations matrix defined as follows:

Cij =
(
φ(uh(ti)), φ(uh(tj))

)
Fh

; i, j = 1, . . . , M. (9)

The kernel trick is applied because φ is in general a complex map, in order to compute
the scalar products of the correlations matrix. It is more convenient to denote the corre-
lations (9) by Kij. We are particularly interested in the Gaussian kernel product, so these
scalar products are given by

Kij = exp

(
−
‖uh(ti)− uh(tj)‖2

2σ2

)
. (10)

The kernel width parameter σ controls the flexibility of the kernel. As recommended
in [32], a typical choice for σ is the average minimum distance between two realizations in
the input physical space:

σ2 = c
1
M

M

∑
i=1

min
j 6=i
‖uh(ti)− uh(tj)‖2, j = 1, . . . , M. (11)

where c is a user-defined parameter: a larger value of σ allows more mixing between
elements of the realizations, whereas a smaller value of σ only uses a few significant real-
izations.

Therefore, as we usually do not have access to the mapping φ to compute the re-
duced order approximation in Fh, we can only compute the KPOD orthogonal projections
α(ti) = (α1(ti), . . . , αM(ti)) as follows:

αn(ti) =
M

∑
k=1

an
kKki. (12)

where an is the n-th eigenvector of the correlations matrix (9).
We find in the state of the art many related works for solving the pre-image problem

in the physical input space Vh of the reduced order approximation in the feature space Fh.
More details about the pre-image problem can be found in [26,32–35].
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2.5. VAEs

In this part, we recall the main concepts of variational autoencoders, all along with the
reparametrization trick usually used in the training procedure of these neural network ar-
chitectures.

A variational autoencoder is a particular way for studying Bayesian and variational
approaches, where the probability distributions are approximated by the encoder and the
decoder of the VAE and the parameters of these distributions are the ones optimized within
the training phase of the VAE.

More precisely, we see in Figure 1 a formal representation of a VAE. The encoder
qΦ(z|uh(ti)) on the left side of the figure is an approximation of the true posterior pθ(z|uh(ti))
(inverse probability) of the training realizations uh(ti), i = 1, . . . M, over the random vari-
able z. The latent random variable z at the end of the encoder layers is sampled following
the mean m(u(ti), Φ) (denoted mΦ(u) on all the corresponding figures for simplicity) and
the logarithm of the variance log(s2(uh(ti), Φ)) (denoted δΦ(u) on all the corresponding
figures for simplicity), Φ being the optimization parameters of the encoder during the
training of the VAE. In the formulation z = m(uh(ti), Φ) + exp

(
1
2 log(s2(uh(ti), Φ))

)
U, U

is a random vector in RN (N being the dimension of z such that N << M) sampled from a
standard normal distribution in each dimension. This formulation is usually considered
during the training of the VAE as it allows the backward differentiation of the deep neural
network only on deterministic quantities that depend on the parameters Φ of the encoder.
The coordinates of U are independent and identically distributed following a standard
normal distribution. This latter formulation is what is usually called the reparametrization
trick. The decoder pθ(uh(ti)|z) is the direct probability of occurrence of uh(ti) given z, θ
being the optimization parameters of this probability distribution. The latter is classically
given as follows:

pθ(uh(ti)|z) = exp

(
−
‖uh(ti)− µh(ti)‖2

2

)
, (13)

where µh(ti) is the decoder output during the training phase given uh(ti) as the input of
the encoder, as shown in Figure 1.

u

Φ θ

mΦ(u)

δΦ(u)

z ∼ mΦ(u)+

µ
e

1
2 δΦ(u)N (0, I)

Figure 1. Schematical representation of the classical VAE.

The Kullback–Leibler divergence employed in classical VAEs (see Figure 1) and more
generally, a common quantity in variational inference, is the relative entropy between a
multivariate normal and standard normal distribution. Hence, the latent loss in VAEs is
expressed as follows:

DKL

(
N
(
(m1, m2, . . . , mN)

T , diag(s2
1, s2

2, . . . , s2
N)
)
||N(0, 1)

)
=

1
2

N

∑
i=1

(
s2

i + m2
i − 1− ln(s2

i )
)

. (14)
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3. Problem and Methodology Formulations
3.1. Motivation for the Method

As already discussed, the choice of prior distribution pθ(z) over the latent random
variable in Bayesian techniques is very important. In this paper, we propose a data-targeted
prior distribution that improves the results obtained by a classical VAE with a standard
normal prior distribution. Furthermore, our implementation of this new prior distribution
is verified under any choice of architecture for the encoder and the decoder parts of the VAE.

In the literature, we can find attempts of using prior distributions different from the
multivariate standard normal distribution. We cite the work of Partaourides et al. [36],
where a class of asymmetric deep generative models (AsyDGMs) has been proposed,
characterized by asymmetric latent variable posteriors that are formulated as restricted
multivariate skew-normal (rMSN) distributions. However, in this work, the neural net-
work’s architecture is considered always linear because of the difficulty of formulating the
reparametrization trick in this particular case.

We also found attempts to improve the quality of a VAE by changing the direct
probability. We cite the work of Berger et al. [37], where a new distribution class has been
proposed for the observation model, i.e., the direct probability. Hence, the reconstruction
likelihood is changed by supposing that the variance of the normal distribution is a learned
parameter. Therefore, the likelihood is not a simple squared error loss.

In this paper, we are interested in proposing a new class of deep generative mod-
els based on data-targeted prior distribution defined by the kernel proper orthogonal
decomposition orthogonal coefficients with the training data. This idea was inspired by
model order reduction techniques based on linear projection approaches in the physical
space of training fields [8,38,39] or even non-linear ones in the physical space such as
the KPOD approach [26,32–35], where the obtained projection coefficients are used to do
reconstructions by a linear combination all along a POD reduced basis in the physical
space Vh or in the feature space Fh. By analogy, we would like to take advantage of these
KPOD coefficients in order to propose a new prior distribution over the latent variable of
a VAE. From this data-targeted prior distribution over the latent variable, we would like
to reconstruct the physical fields—this time thanks to the neural network’s layers. This is
a way to deal with the pre-image problem in the KPOD approach thanks to the decoder
output in the physical input space Vh. Moreover, the choice of KPOD projection coefficients
has already been motivated by the fact that for complex physical phenomena with transport
behavior, such as the compressible turbulent fluid flows or the reacting fluid flows with
a variable density, the linear dimensionality reduction is not possible within the physical
input space where all the instantaneous velocity fields are linearly independent. Therefore,
a reduced number of POD orthogonal coefficients that precisely describes the dynamics
of the fluid flow does not exist. In [40], a deterministic autoencoder was used in order to
approximate the manifold data over which the model’s equations were applied to define a
new projection-based reduced order model. The resolution of this reduced order model
gives access to the dynamics of the latent variable. The final solution is then obtained from
the application of the decoder layers on the physical latent variable. In this paper, we
use VAEs and we do not solve the model’s equations; however, we take advantage of the
generative model of a VAE thanks to its latent space learned as a probability distribution.

Therefore, hereafter pθ(z) denotes the prior distribution over z defined by the KPOD
projection coefficient (αn(ti))i=1,...,M.

Remark 1. The proposed prior distribution pθ(z) can be approximated by performing a kernel
density estimate over the total M realizations of the KPOD coefficients available for each dimension
of the random latent space. We explain the details of this computation in the following section
relative to the numerical experiments.

Remark 2. The proposed methodology combining from one side the prior distribution of the KPOD
orthogonal projection coefficients with the available physical fields and from the other side, the genera-
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tive variational approaches by VAEs, can also be seen as a new method for computing reconstructions
and new generations in the input physical space Vh from the feature high-dimensional space Fh,
which is usually performed by pre-image approaches.

3.2. Framework for the Implementation of the VAE with a Data-Targeted Prior Distribution

It is important to implement this new approach in a way that ensures its use with all
types of neural network architectures—the fully connected ones and the deep ones. We pre-
viously mentioned the work of Partaourides et al. [36], where for the proposition of a new
class of asymmetric deep generative models, the neural network’s architecture was always
considered linear. The practical difficulty in training VAEs is the reparametrization trick, so
that the source of randomness in the reduced latent space does not impact the accuracy of
the backward differentiations during the optimization of the network’s parameters Φ and θ.
For multivariate normal distributions, the expression of the reparametrization trick is very
simple. The separation in the latent variable z between the parametric functions and the
source of randomness is ensured by sampling the mean and the logarithm of the variance
within the layers, following a random vector satisfying a standard normal distribution.
Therefore, when we need to change the prior distribution pθ(z), as we are proposing in
this paper to replace the standard normal prior with a new data-targeted one based on the
KPOD coefficients, it is often very difficult to implement the reparametrization trick for
deep neural networks.

We propose the following framework in Figure 2, in order to take into account the
new latent distribution pθ(z) without the reparametrization trick. As shown in Figure 2,
we decided to keep, on the one hand, the sampling of the random latent vector z following
a multivariate normal distribution, and on the other hand, the new prior distribution pθ(z)
for which we have M available realizations αn(ti), i = 1, . . . , M in each n-th (n = 1, . . . , N)
dimension. The latter is imposed when the input of the encoder is the random output field
µh(ti). More precisely, the new prior is imposed by backward differentiation which also
minimizes the squared error loss between z′ ∼ qΦ(z′|µh(ti)) and α(ti): ‖z′(ti)− α(ti)‖2

RN .
The new loss function of the VAE becomes as it is expressed in Equation (15). Henceforth,
the backward differentiation during the learning phase is performed without the need
for a new reparametrization trick as we are penalizing the random variable z′ (follow-
ing a normal distribution for which we apply the usual reparametrization trick) with
fixed realizations of the prior pθ(z) instead of sampling z′ from pθ(z) using the associated
inverse cumulative distribution function for which the reparametrization trick is a func-
tion of m(µh(ti), Φ) and s(µh(ti), Φ) is unknown even in this case and then, computing
DKL(qΦ(z|uh(ti))||pθ(z)):

Ldata−targeted(Φ, θ, uh(ti)) = Ez∼qΦ(z|u(t))[−log(pθ(uh(ti)|z))] + DKL(qΦ(z|uh(ti))||N(0, 1))

+‖z′(ti)− α(ti)‖2
RN .

(15)

u

µ

Φ θ

mΦ(u)
mΦ(µ)

δΦ(u)
δΦ(µ)

z ∼ mΦ(u)+

z′ ∼ mΦ(µ)+

µ

e
1
2 δΦ(u)N (0, I)

e
1
2 δΦ(µ)N (0, I)

Figure 2. Schematical representation of the proposed data-targeted VAE.
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Remark 3. In the framework proposed in Figure 2, we notice that applying the new penalization
cost function ‖z′(ti)− α(ti)‖2

RN on the probability distribution over z′ of the decoder outputs
µh(ti) considerably contributed to minimizing it, as illustrated in the following numerical experi-
ments. However, by applying it on the probability distribution over z of the training data uh(ti),
‖z(ti)− α(ti)‖2

RN decreased a little bit but it very quickly stagnated.

Remark 4. This framework can be seen as a penalization technique in order to force the random
latent vector z′ during the training stage to be close to the realizations of our prior distribution pθ(z).
A direct impact is then obtained on the parameterized mean and the logarithm of variance from the
random input fields µh(ti), in order to fulfill the new prior distribution. This impact is also seen
on the parameterized mean and the logarithm of the variance from the training deterministic input
fields uh(ti), as long as the likelihood cost function Ez∼qΦ(z|u(t)) − log(pθ(u(t)|z)) is minimized.

4. Numerical Experiments
4.1. Flow Solver

For the presented simulations, the low-Mach number solver YALES2 [41] for unstruc-
tured grids is retained. This flow solver was specifically tailored for the direct numerical
simulation and large eddy simulation of turbulent reacting flows on large meshes counting
several billion cells using massively parallel super-computers [42,43]. The Poisson equation
that arises from the low-Mach formulation of the Navier–Stokes equations is solved with a
highly efficient deflated preconditioned conjugated gradient method [43].

The following test case was chosen from a list of test cases available from the sources
of the YALES2 code.

4.2. Governing Equations, Test-Case and Training Set

The governing equations are the Navier–Stokes equations with variable density. They
are formulated as follows:

∂ρh
∂t

+ div(ρh(t)uh(t)) = 0

∂ρhuh
∂t

+ div(ρhuh ⊗ uh)− div(ν[∇uh + (∇uh)
T ]) +∇ph = 0

divuh = 0

(ρh, uh)(t=0) = (ρ0, u0)

(16)

ρh(t, x) is the density of a particle at a position x in Rd and a time instant t, ν is the air
viscosity, and ph is the pressure field.

The test case is a simple 2D model of an aeronautical injector, for which an illustration
of the unstructured mesh used for the computation and an example of the x-component of
an instantaneous velocity field can be seen in Figure 3. A mixture of air and fuel enters the
domain from the channel on the left, at inlet velocities of 0.1 m/s for the air and 0.05 m/s
for the fuel. Wall boundary conditions are enforced at the top and lower boundaries, and an
outlet boundary condition is enforced on the right extremity of the domain. The Mach
number for this test case is equal to 3.10−4 and the Reynolds number is equal to 50 based
on the inlet fuel velocity.

The training set uh(ti) and ph(ti), i = 1, . . . , M, necessary for the optimization of the
VAE parameters, is formed of 998 snapshots of the high-fidelity velocity and pressure
extracted at each time step. These 998 snapshots are taken among 5000 time steps of the
high-fidelity simulation corresponding to 500 ms.
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Figure 3. Illustration of the mesh and the example of the x-component of an instantaneous velocity
field of the considered test-case.

4.3. KPOD Orthogonal Coefficients with the Training Realizations

We present in Figure 4 the evolution of the first two KPOD orthogonal coefficients,
α1(ti) and α2(ti), i = 1, . . . , 998, associated with the training velocity and pressure fields
(scaled between 0 and 1). The computation of these coefficients was previously detailed
in (10) and in (12). We precise that we chose the user-defined parameter c, as can be seen in
Equation (11), such that σ2 = 15 for the Gaussian kernel computation (10).

Figure 4. KPOD orthogonal coefficients α1(ti) (left) and α2(ti) (right), with respect to the time step
i = 1, . . . , M.

4.4. Variational Autoencoder Architecture

The framework proposed in Figure 2 was presented under any choice of architecture
for the encoder and the decoder parts of the VAE. Therefore, and without any loss of
generality, we chose to apply our new inferential model on a classical deep convolutional
architecture illustrated in Figure 5. The latent space dimension denoted by N is set as equal
to 2.

In order to solve the optimization problem of the VAE parameters, we used the
ADAM optimizer, introduced in [44], which is an algorithm for the first-order gradient-
based optimization of stochastic objective functions, based on adaptive estimates of a
lower-order moment. We set the learning rate as equal to 10−3.

Remark 5 (Projection and inverse projection). The vector containing the discretized solution on
the unstructured mesh (illustrated in Figure 3) has no information on the geometrical proximity of
its components without the connectivity of the mesh. The solution expressed as a two-dimensional
array on a Cartesian mesh has such information: two values having close indices in this array
are also close in the physical domain. We can apply convolutions on this array. Projections are
needed to express the discretized YALES2 solution on a 48× 48 Cartesian mesh, compatible with
convolution neural networks, while inverse projections are needed to express the approximations
generated by the neural network back onto the physical unstructured mesh. These operations were
illustrated in Figure 6. The finite element interpolation was used for both the projection and inverse
projection—the Cartesian mesh being converted to a quadrilateral-based unstructured mesh with
the same vertices before applying the inverse projection.
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Figure 5. Illustration of the VAE architecture.

Figure 6. Illustration of the projection and inverse projection operations: (a) example of a YALES2
solution on the unstructured mesh; (b) projection of (a) on the 48× 48 Cartesian mesh; (c) inverse
projection of (b) on the unstructured mesh; (d) difference between (a,c), which corresponds to the
errors introduced by both the projection and inverse projection steps.

In what follows, when comparing the classical VAE (from Figure 1) with the proposed
data-targeted VAE (from Figure 2), we keep the same encoder and decoder architectures
and parameters for the learning task, namely the same batch sizes, numbers of epochs,
learning rate and optimizer.

4.5. Reconstructions and New Generations

In what follows, all fields are expressed and represented on the unstructured mesh
(used for the YALES2 computations), after applying the inverse projection procedure, as
can be seen in Remark 5. Relative errors are also computed after inverse projection.

4.5.1. Comparison of Reconstructed Fields during the Training Phase

We investigated the results at the end of the training phase for the classical and data-
targeted VAEs in Figures 7–12. Moreover, the logarithm of the instantaneous relative errors
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with respect to LES solutions are shown in Figure 13. We precise that these results were
taken from the last 4000-th training epoch.

In Figure 14, we show the Kullback–Leibler divergence during the training phase.
We remark that the probability distribution of the encoder does not converge towards the
standard normal prior, even though the reconstruction loss converges on the output data,
as we can remark in Figure 13.

The penalization loss ‖z′ − α(t)‖2 in Figure 15 impacts the posterior approximation
of the training data uh(ti): this is performed by changing the posterior approximation of
the decoder outputs µh(ti), as can be seen in Figures 16 and 17. Following Remark 4, we
show on Figures 18 and 19 the evolution of the parameterized mean and logarithm of the
variance of the training data uh(ti) for the data-targeted VAE. We remark that these latter
are no longer the parameterized functions of a standard normal distribution. Instead, the
parametric variance, illustrated in Figure 19, represents the square error with respect to the
data-targeted prior. Hence, the parameterized mean of the training data in Figure 18 by the
data-targeted VAE encoder is interpretable. Moreover, we remark that the parameterized
mean of the training data is well contained in the prior latent space represented by the
KPOD realizations, thanks to this new training algorithm. This result shows the good
convergence of our algorithm and a good compression of the training data within the
data-targeted latent space.

Figure 7. (Data-targeted VAE) On the top, the high-fidelity first component of the velocity fields for the two time steps
499 and 998. On the bottom, the decoder outputs for the two time steps 499 and 998 at the final 4000-th epoch of the
training phase.

Figure 8. (Classical VAE) On the top, the high-fidelity first component of the velocity fields for the two time steps 499 and
998. On the bottom, the decoder outputs for the two time steps 499 and 998 at the final 4000-th epoch of the training phase.
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Figure 9. (Data-targeted VAE) On the top, the high-fidelity second component of the velocity fields for the two time steps
499 and 998. On the bottom, the decoder outputs for the two time steps 499 and 998 at the final 4000-th epoch of the
training phase.

Figure 10. (Classical VAE) On the top, the high-fidelity second component of the velocity fields for the two time steps
499 and 998. On the bottom, the decoder outputs for the two time steps 499 and 998 at the final 4000-th epoch of the
training phase.

Figure 11. (Data-targeted VAE) On the top, the high-fidelity pressure of the velocity fields for the two time steps 499 and
998. On the bottom, the decoder outputs for the two time steps 499 and 998 at the final 4000-th epoch of the training phase.
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Figure 12. (Classical VAE) On the top, the high-fidelity pressure of the velocity fields for the two time steps 499 and 998.
On the bottom, the decoder outputs for the two time steps 499 and 998 at the final 4000-th epoch of the training phase.

Figure 13. In red: log(
‖µh(ti)− uh(ti)‖2

‖uh(ti)‖2 ) for the classical VAE; in blue: log(
‖µh(ti)− uh(ti)‖2

‖uh(ti)‖2 ) for

the data-targeted VAE.

Figure 14. (Classical VAE) DKL
(

N
(
(m1, m2)

T , diag(s2
1, s2

2)
)
||N(0, 1)

)
= 1

2

2

∑
i=1

(
s2

i + m2
i − 1− ln(s2

i )
)

,

with respect to the epoch number on the abscissa axis.
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Figure 15. (Data-targeted VAE) log(∑M
i=1‖z′(ti)− α(ti)‖

2
RN ), z′ ∼ qΦ(z′|µh(ti)), with respect to the

epoch number on the abscissa axis.

Figure 16. (Data-targeted VAE) Parametric plots of the two components of m(µh(ti), Φ) (red) and
α(ti) (blue), i = 1, . . . , M.

Figure 17. (Data-targeted VAE) First component (left) and second component (right) of
log(s2(µh(ti), Φ)) with respect to the time step i = 1, . . . , M.

Figure 18. (Data-targeted VAE) In red, the parametric plot of the two components of the data-targeted
m(uh(ti), Φ), i = 1, . . . , M. In blue, the parametric plot of the two components of α(ti), i = 1, . . . , M.
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Figure 19. (Data-targeted VAE) First component (left) and second component (right) of
log(s2(uh(ti), Φ)) with respect to the time step i = 1, . . . , M.

4.5.2. Comparison of Generated Fields during the Exploitation Phase

Instantaneous velocity fields are generated by drawing samples of z following the
prior distribution pθ(z).

In the classical VAE, samples of z are drawn from the standard normal distribution by
using available open source libraries, such as the Pytorch library. In the data-targeted VAE,
αn(ti), i = 1, . . . , 998 are realizations of the prior. A kernel density estimate is performed
over the 998 training realizations of the two coefficients of the KPOD method, α1(ti) and
α2(ti), using the module stats.kde of the library Scipy in Python. The cumulative density
function (CDF) is obtained afterwards using this kernel density estimate. However, we
need, respectively, the inverses of these CDFs in order to select a random variable and we
need to be able to interpolate between the 998 realizations of the inverses of these CDFs.
These realizations are fitted using an univariate spline model, from the module interpolate
of the library Scipy in Python.

Finally, to draw samples of a variable following the distribution over the KPOD
coefficients shown in Figure 4, we perform the inverse transformation method, i.e., we
draw samples of a variable that follows a uniform distribution between 0 and 1 over which
we apply the fitted univariate spline model of the inverses of the CDFs.

We draw 998 samples of z for each case. We show the generated fields which
are also denoted (µh(t), ph(t)) ∼ pθ((µh(t), ph(t))|z). Furthermore, we show at given
time steps ti of the high-fidelity density ρh the spatial residue of the high-fidelity mass
conservation Equation (see (16)) with respect to the i-th generated velocity fields µh(t):
∂ρh(ti)

∂t + div(ρh(ti)µh(t)). This residue is computed on the Cartesian mesh by projecting
the high-fidelity density field on the 48× 48 Cartesian mesh. We compute this residue
using a finite difference scheme for the time derivative of the density and second-order
accurate central differences in the interior points and either first- or second-order accurate
one-side (forward or backwards) differences at the boundaries for the divergence term
div(ρh(t)µh(t)). We compare this residue with respect to the one associated with the recon-
structed and accurate velocity fields uh(ti) on the Cartesian mesh: ∂ρh(ti)

∂t + div(ρh(ti)uh(ti)).
These results are summarized in Figures 20–22. We deduce that the velocity fields gener-
ated by the data-targeted VAE satisfy fairly well the mass conservation property, as the
residue of the mass conservation equation by these latter is comparable to the one with the
accurately reconstructed velocity fields uh(t). This result was explained by the good com-
pression of the training data within the data-targeted latent space (see Figure 18), thanks
to the proposed training algorithm of the data-targeted VAE. However, the generated
velocity fields by the classical VAE do not satisfy the mass conservation; this result was
not surprising because the encoder probability distribution over the training data did not
converge to the standard normal prior (see Figure 14), leading to a bad compression of the
training data within the latent space.
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Figure 20. On the top left, the 32-th decoder generation µh(t) ∼ pθ(µh(t)|z) from a sample of the probability distribution
pθ(z) for the data-targeted VAE. On the top right, the residue of this generated sample, ∂ρh(t32)

∂t + div(ρh(t32)µh(t)). On the
middle left, the 32-th decoder generation µh(t) ∼ pθ(µh(t)|z) from a sample of the probability distribution N(0, 1) for
the classical VAE. On the middle right, the residue of this generated sample, ∂ρh(t32)

∂t + div(ρh(t32)µh(t)). On the bottom
left, the high-fidelity density field ρh(t32) projected on the Cartesian mesh. On the bottom right, the accurate residue
∂ρh(t32)

∂t + div(ρh(t32)uh(t32)).
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Figure 21. On the top left, the 202-th decoder generation µh(t) ∼ pθ(µh(t)|z) from a sample of the probability distribution
pθ(z) for the data-targeted VAE. On the top right, the residue of this generated sample, ∂ρh(t202)

∂t + div(ρh(t202)µh(t)). On the
middle left, the 202-th decoder generation µh(t) ∼ pθ(µh(t)|z) from a sample of the probability distribution N(0, 1) for
the classical VAE. On the middle right, the residue of this generated sample, ∂ρh(t202)

∂t + div(ρh(t202)µh(t)). On the bottom
left, the high-fidelity density field ρh(t202) projected on the Cartesian mesh. On the bottom right, the accurate residue
∂ρh(t202)

∂t + div(ρh(t202)uh(t202)).
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Figure 22. On the top left, the 805-th decoder generation µh(t) ∼ pθ(µh(t)|z) from a sample of the probability distribution
pθ(z) for the data-targeted VAE. On the top right, the residue of this generated sample, ∂ρh(t805)

∂t + div(ρh(t805)µh(t)). On the
middle left, the 805-th decoder generation µh(t) ∼ pθ(µh(t)|z) from a sample of the probability distribution N(0, 1) for
the classical VAE. On the middle right, the residue of this generated sample, ∂ρh(t805)

∂t + div(ρh(t805)µh(t)). On the bottom
left, the high-fidelity density field ρh(t805) projected on the Cartesian mesh. On the bottom right, the accurate residue
∂ρh(t805)

∂t + div(ρh(t805)uh(t805)).

5. Conclusions and Prospects

In this paper, we proposed a new framework for variational autoencoders in order to
tackle a new data-targeted prior distribution without the need for the reparametrization
trick. The approach gives encouraging results concerning the approximation of the true
posterior of the observable training data over the random variable. In fact, we were able to
impact the encoder’s posterior approximation thanks to a simple framework based on the
backward differentiation of a squared error loss on the latent variable with respect to the
KPOD orthogonal coefficients. The posterior approximation and its parameterized mean
function can be interpreted with respect to a data-targeted prior. The associated numerical
results illustrate that the generated fields by the decoder were plausible compared to the
ones obtained by a VAE based on a standard normal prior. As motivated in the introduction
of this paper, the future work consists of the direct application of this new methodology
for the turbulence injection problem for large eddy simulations.
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