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Abstract: Lattice Boltzmann simulations and a velocity measurement of flows in a cerebral aneurysm
reconstructed from MRA (magnetic resonance angiography) images of an actual aneurysm were
carried out and the numerical results obtained using the bounce-back schemes were compared with
the experimental data to discuss the effects of the numerical treatment of the no-slip boundary
condition of the complex boundary shape of the aneurysm on the predictions. The conclusions
obtained are as follows: (1) measured data of the velocity in the aneurysm model useful for validation
of numerical methods were obtained, (2) the numerical stability of the quadratic interpolated bounce-
back scheme (QBB) in the flow simulation of the cerebral aneurysm is lower than those of the half-way
bounce-back (HBB) and the linearly interpolated bounce-back (LBB) schemes, (3) the flow structures
predicted using HBB and LBB are comparable and agree well with the experimental data, and (4) the
fluctuations of the wall shear stress (WSS), i.e., the oscillatory shear index (OSI), can be well predicted
even with the jaggy wall representation of HBB, whereas the magnitude of WSS predicted with HBB
tends to be smaller than that with LBB.

Keywords: boundary condition; oscillatory shear index; wall shear stress; spatial filter velocimetry

1. Introduction

A cerebral aneurysm is a disease in which the blood vessel of a cerebral artery is
deformed into a saccular geometry. Rupture of cerebral aneurysms induces subarachnoid
hemorrhage, which is an extremely serious disease with a high probability of death or poor
prognosis, and therefore, it is important to understand the mechanisms of growth and
rupture of the cerebral aneurysms. Although it has been pointed out that hemodynamic
parameters, e.g., the wall-shear stress (WSS) acting on the artery wall, relate with the growth
and rupture mechanisms [1,2], our knowledge on the mechanisms is still insufficient.

Computational fluid dynamics (CFD) is expected as a powerful tool to analyze fluid
flows inside cerebral aneurysms. Foutrakis et al. [3] used artificial aneurysm models, which
were two-dimensional channels with branches and convex geometries, to numerically
investigate the characteristics of flows in the aneurysms. Valencia et al. [4] carried out
three-dimensional simulations of flows in artificial aneurysm models and discussed the
effects of the angle of connection between the aneurysm and the artery on the flow. These
numerical studies were carried out using the artificial aneurysm models. On the other
hand, numerical simulations with aneurysm models reconstructed from actual patient data
have been carried out since the early 2000’s [5–7]. Due to the complex shapes of actual
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cerebral aneurysms, it is desired to simply model the boundary condition at the artery wall.
Since the lattice Boltzmann method (LBM) [8] can easily deal with such complex boundary
shapes by using the bounce-back schemes, we developed a numerical method based on
LBM for simulating blood flows in cerebral aneurysms in our previous studies [9–11].

The LBM predicts fluid flows based on the motion of imaginary fluid particles and the
no-slip condition at the solid wall is simulated by the bounce-back motion of the particles.
The half-way bounce-back scheme (HBB) [12] is the simplest, but the solid boundary
is represented by a stepwise shape along the computational grid lines even for curved
boundaries. On the other hand, the linearly interpolated bounce-back scheme (LBB) and
the quadratic interpolated bounce-back scheme (QBB) deal with the boundary shape more
accurately [13]. The HBB and LBB have been used in simulations of flows in cerebral
aneurysms [14,15]. However the validation of HBB and LBB were usually carried out
only for simple geometries [13] and the effects of the boundary model on the predicted
flows in cerebral aneurysms have not been discussed in detail. The QBB uses the quadratic
interpolation of the velocity distribution function. Therefore QBB is expected to be more
accurate than LBB, which is based on the linear interpolation. Sanjeevi et al. [16] have
however pointed out that QBB is less stable compared with LBB.

In our previous study [10], we investigated the effects of the collision models (single-,
two- and multiple-relaxation time collision models) and the viscous stress model on nu-
merical predictions of flows in cerebral aneurysms. However, the effects of the numerical
treatment of the wall boundary condition on numerical predictions for the complex geome-
tries were not discussed. For validation of numerical simulations with the complex shape
of an actual cerebral aneurysm, experimental data must be obtained with the same channel
geometry. In this study, we made a cerebral aneurysm model reconstructed from MRA
(magnetic resonance angiography) images of an actual aneurysm for velocity measurement
and lattice Boltzmann simulations and compared numerical results obtained using the
bounce-back schemes with the experimental data to discuss the effects of the numerical
treatment of the no-slip boundary condition on the predictions. The cerebral aneurysm
model for the experiment was produced by making use of 3D printing from a STL (stere-
olithography) mesh of the cerebral aneurysm, which was also used to generate the scalar
field (the signed-distance function) representing the boundary shape in the simulation to
assure the same geometries in the experiment and the simulation.

2. Numerical Method
2.1. Lattice Boltzmann Method

The outline of the numerical method is described in the following. The details can be
found in our previous paper [10]. The numerical method is based on LBM, in which fluid
flows are simulated by the motion of imaginary fluid particles. The motion of imaginary
fluid particles is governed by the following lattice Boltzmann equation:

fi(x + ci∆t, t + ∆t) = fi(x, t) + Ω (1)

where f (x, t) is the velocity distribution function of particles with the velocity c at the
position x and the time t, ∆t is the time step size, Ω is the collision term, and the subscript
i represents the direction of the particle velocity. The D3Q19 discrete velocity model for
isothermal incompressible flows is adopted, i.e., i = 0, 1, 2, . . . , 18. The multiple-relaxation
time collision model (MRT) [17] is used for Ω:

Ω = −M−1S(m−meq) (2)
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where M is the matrix transforming f into its moment vector m (=M f ), f is the vectorial
representation of fi, and S is the relaxation parameter matrix. The meq is the moment vector
for the equilibrium distribution functions f eq, which are given by

f eq
i = ρwi

[
1 + 3ci · u +

9(ci · u)2

2
− 3u · u

2

]
(3)

where wi is the weighting function, u is the fluid velocity, and ρ is the fluid density. The ρ
and u are given by

ρ =
18

∑
i=0

fi (4)

u =
1
ρ

18

∑
i=0

ci fi (5)

2.2. Boundary Condition

The LBM often uses the bounce-back scheme, which assumes that particles collide
with the solid wall and bounce back in the direction opposite to the original direction so
as to impose the no-slip boundary condition. In HBB, particles travel from a cell center
toward the wall during the time duration ∆t/2, and collide with the wall at t + ∆t/2. Then,
the particles return to the cell center at t + ∆t. Therefore

f ī(x, t + ∆t) = fi(x, t) (6)

where ī is the opposite direction of the i direction. Figure 1 shows an example of the
applications of HBB to a curved boundary. The curved wall is represented by the dashed
line in HBB. The jaggy representation of the curved boundary possibly deteriorates the
accuracy of predictions in the vicinity of the wall, especially when the spatial resolution
is low.

Figure 1. Half-way bounce-back scheme.

The interpolated bounce-back scheme (IBB), which interpolates fi by taking into
account the ratio, qi, of the distance between the wall and the cell center to the grid spacing
∆x, was proposed to improve the accuracy of the boundary representation [13] as shown
in Figure 2. The linearly interpolated bounce-back scheme (LBB) is IBB with the first-order
interpolation, and fi directing towards the wall at xA and t (Figure 2) is changed after the
time duration ∆t as

f ī(xA, t + ∆t) =

{
1

2qi
fi(xA, t) + 2qi−1

2qi
f ī(xA, t) for qi ≥ 1/2

2qi fi(xA, t) + (1− 2qi) fi(xB, t) for qi < 1/2
(7)

The IBB with the second-order interpolation is the following quadratic interpolated bounce-
back scheme (QBB):
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f ī(xA, t + ∆t) =

{ 2qi−1
qi

f ī(xA, t) + 1
qi(2qi+1) fi(xA, t) + 1−2qi

1+2qi
f ī(xB, t) for qi ≥ 1/2

qi(1 + 2qi) fi(xA, t) +
(
1− 4q2

i
)

fi(xB, t)− qi(1− 2qi) fi(xC, t) for qi < 1/2
(8)

where the subscripts A, B and C denote the cells in Figure 2.

Figure 2. Interpolated bounce-back scheme; (a) interpolation after the collision with the solid wall,
q ≥ 1/2; and (b) interpolation before the collision, q < 1/2.

2.3. Cerebral Aneurysm Model

STL data of a cerebral aneurysm is generated from MRA images as shown in Figure 3,
where the STL mesh is a collection of triangular elements. The STL data are imported into
our in-house LBM code, AN2WER [9–11] , and are used to reconstruct the signed-distance
function (level set function) [18], ψ, which is used to evaluate the distance fraction, qi,
in IBB. The ψ is the negative distance from the wall in the solid region, whereas ψ is the
positive distance in the fluid region, and therefore, the zero-level set, ψ = 0, represents the
wall. The ψ is reconstructed as follows. For the Cth computational cell at xC, the distance
from the wall given by the eth triangular element is given by

ψL
e→C = (xC − xe) · ne (9)

where xe and ne are the position vector and the unit normal of the eth element, respec-
tively. Contributions from all the elements near xC are collected to obtain ψ(xC) using the
following weighting average [19]:

ψ(xC) =
∑e ψL

e→C|xC − xe|−p

∑e |xC − xe|−p (10)

where the power, p, for the weight is set to seven. Figure 4 shows the level set function
reconstructed from the STL data in Figure 3.
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By making use of ψ, qi in Equations (7) and (8) are given by

qi =
|ψ(x)|

|ψ(x)|+ |ψ(x + ci∆t)| (11)

Figure 3. STL mesh of cerebral aneurysm model generated from MRA images.

Figure 4. Level set function for aneurysm surface representation.

3. Experimental
3.1. Experimental Setup

Figure 5a shows the experimental setup, which consists of the test section, the reservoir
tank (TRUSCO, F-3GR), the pump (IWAKI, MD-15R-N), the flow meter (NIPPON FROW
CELL, FDT-H-5) and the laser light source (KENTEC, LDB2W-H (wavelength: 450 nm)).
The liquid phase was supplied from the tank to the test section using the pump and
returned to the tank after flowing the test section.

The test section (Figure 5b) was the cerebral aneurysm model (Figure 3) made by using
3D printing (Yasojima Proceed Co. Ltd., Kobe, Japan). The aneurysm model had the single
inlet and outlet, and its dimensions in the width, depth and height were approximately
50, 40 and 40 mm, respectively. The aneurysm models in the experiment and the simu-
lation had the same geometry since the same STL data were used. The material was the
transparent resin (stratasys, VeroClear). The resolution of the 3D printing was 30 µm per
layer. The model was produced from two parts for smoothing the inner surface. UV-cured
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coating was applied after smoothing, so that the model boundary was rigid. The test
section was surrounded by the rectangular box of transparent acrylic resin and the box was
filled with the liquid phase. For the liquid phase, silicone oil (Shin-Etsu Silicone, KF-56A
(Newtonian fluid)) was used for index matching [20]. The liquid phase supplied by the
pump was flowed into the aneurysm model through a horizontal circular pipe of 24 mm
inner diameter, D, and 450 mm length (hydraulic entrance section). The temperature of
the liquid phase was 24.8± 1 ◦C and the flow rate was 2.38 L/min. The Reynolds number
defined by

Re =
ρUD

µ
(12)

was 150, which is the typical value in cerebral arteries [21], where U is the mean velocity
(0.088 m/s), and µ is the liquid viscosity.

Figure 5. Experimental equipment. (a) experimental setup; (b) aneurysm model made using 3D printing.

The velocity field was measured using the spatial filter velocimetry (SFV) [22] as
described in the next section. The laser beam generated by the light source passed through
the cylindrical lens to form a laser sheet for SFV. The position of the laser sheet was
12 mm above the bottom of the aneurysm. The thickness of the laser sheet was about
1.0 mm. Tracer particles, SiC (the specific gravity 1.69, the average particle diameter
3 µm), were added in the oil for the velocity measurement. The high-speed video camera
(Redlake, Motion Pro X-3) and the camera lens (Nikon, 60 mm f/2.8D) were used to take
particle images.

3.2. Spatial Filter Velocimetry

The SFV was used to measure the velocity in the aneurysm. The outline of SFV for
the measurement of the velocity component in the x direction is as follows. Grayscale
images of tracer particles are obtained by using a high-speed video camera. The images are
divided into smaller pieces, which are called the interrogation areas (IA). The mean particle
velocity in IA can be obtained by evaluating the change in the intensity of grayscale value
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due to the motion of particles. In order to evaluate the change in the intensity, the following
spatial filter, F , is applied to the grayscale values:

F (x, t) = cos(kx + ωt) (13)

where k is the wave number of the spatial filter, and ω is the angular frequency. The inte-
grated intensity, I(tn), in IA of the nth frame image is given by

I(tn) = ∑
l,m
F (xl , tn)glm (14)

where the subscripts l and m are indices of the pixels in the x and y directions, respectively,
and glm is the grayscale value of the pixel at (xl , ym). The I is normalized as

Ĩ(tn) =
I(tn)−mI

σI
(15)

The mI and σI are given by

mI =
1
N

N

∑
n=1

I(tn) (16)

σI =

√√√√ 1
N − 1

N

∑
n=1

(I(tn)−mI)
2 (17)

where N is the total number of images. The peak frequency, fp, of Ĩ is obtained by applying
the wavelet transformation, and the mean velocity is then evaluated as

v = ( fp − fs)L (18)

where the shift frequency, fs, is given by

fs =
ω

2π
(19)

and the filter pitch, L, is given by

L =
2π

k
(20)

The fs is introduced to detect particles moving in the−x direction. The velocity component
in the y direction is obtained in the same manner. See Hosokawa et al. [22] for more details.

4. Results and Discussion
4.1. Inflow Condition

A velocity measurement of the flow in the circular pipe (hydraulic entrance section)
was carried out to obtain the velocity distribution at the inlet of the test section, which will
also be used as the inlet condition in the numerical simulations of flows in the aneurysm.
Table 1 shows the parameters for SFV. The measurement positions of each velocity data
were corrected by taking into account the refraction at the pipe surface. Figure 6a shows a
comparison between the measured data of the time-averaged streamwise velocity u and the
Poiseuille distribution, i.e., u/umax = [1− (r/R)2], where umax is the maximum velocity at
the pipe center, r is the radial coordinate, and R is the pipe radius. The data agree well with
the laminar velocity profile, confirming that the flow was fully-developed in the entrance
section and the inlet condition in the numerical simulations of flows in the aneurysm could
be simply given by the Poiseuille distribution.



Fluids 2021, 6, 338 8 of 18

Table 1. Experimental conditions of SFV at inlet area.

Frame rate [frame/s] 3000
Number of images [frame] 16,000
Filter pitch [pix] 5
Spatial resolution [mm/pix] 0.053
Shift frequency [Hz] 0

Figure 6. Comparison of velocity in pipe flow between theory and (a) SFV, (b) HBB, (c) LBB, (d) QBB
(x is the position of the velocity data, x0 is the position of the center of the pipe and R is the radius of
the pipe).

Laminar flows in the circular pipe were predicted using HBB, LBB and QBB. Table 2
shows the numerical conditions. The fluid was Newtonian and the Reynolds number
was the same as in the experiment. The relaxation time, τ, was 0.517 and the liquid
kinematic viscosity in the LBM simulation was given as ν = (τ − 1/2)/3 for ∆x = ∆t = 1.
The number of cells in the streamwise direction was 400. The computational domain for
the cross section was 48× 48 cells, whereas D was 10% smaller than the domain size,
i.e., D = 43.2 cells.

Table 2. Numerical conditions of pipe flow simulation.

Number of cells 400× 48× 48
Inlet velocity U 0.02
Length scale D 43.2
Reynolds number Re 150
Relaxation time τ 0.517

Streamwise velocities predicted using HBB, LBB and QBB are shown in Figure 6b–d,
respectively. In all the cases, the predictions agree well with the laminar velocity profile.
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The spatial resolution of 43.2 for D is therefore sufficient to obtain a good result even with
the jaggy boundary representation of HBB. However, in the cells closest to the pipe wall,
the predicted velocity in HBB is slightly larger than the analytical value. The deviations
of the predicted u in those cells from the analytical value (0.0087) were 0.027, 0.0052 and
0.00011 for HBB, LBB and QBB, respectively. The distance between the pipe axis and the
wall on the line passing through the axis is 22.0 in HBB, which is slightly larger than the
actual radius D/2 = 21.6 due to the stepwise representation of the wall. The fluid domain
is therefore bit wider on this line, which resulted in the predicted velocity larger than the
analytical value. On the other hand, the smaller errors in the velocities obtained with
LBB and QBB clearly show that the interpolation calculation treats the position of the wall
more accurately.

4.2. Steady Flow in Cerebral Aneurysm

Figure 7a shows the velocity field in the cerebral aneurysm model measured by using
SFV, the parameters of which are shown in Table 3. The liquid flows from the left top
region of the image into the aneurysm along the left-side wall and a vortical structure
is formed inside it. The center of the vortical structure is close to that of the aneurysm.
The magnitude of the velocity inside the aneurysm is much smaller than the mean velocity
at the inlet of the test section, i.e., U = 0.088 m/s.

Numerical simulations of flows in the cerebral aneurysm model were carried out.
Table 4 shows the numerical conditions. Although the simulations were carried out using
HBB, LBB and QBB, the simulation with QBB was unstable under the given conditions
and a steady state solution could not be obtained. The numerical stability of QBB is
therefore lower than the others in the present case. A similar trend was also confirmed
by Sanjeevi et al. [16], i.e., for a high Re flow in a simpler channel geometry with a strong
pressure gradient, QBB tends to be less stable than LBB.

Table 3. Parameters of SFV for aneurysm model.

Frame rate [frame/s] 1000
Filter pitch [pix] 11
Spatial resolution [mm/pix] 0.052
Shift frequency [Hz] 110.0

Table 4. Numerical conditions for flow in aneurysm.

Number of cells (Nx × Ny × Nz) 162× 217× 226
Number of cells for D 40
Relaxation time τ 0.516

Figure 7b,c show the velocity fields predicted using HBB and LBB, respectively.
The number of the vectors was reduced in the figures for visualization purpose. Being
similar to the data, the liquid enters into the aneurysm model along the left side wall and a
vortical structure is formed inside the aneurysm in the predictions, which confirms that
both HBB and LBB give qualitatively reasonable results. The differences between the results
of HBB and LBB seem small, and therefore, from the qualitative point of view, the effects of
the numerical treatment of the no-slip boundary condition on the predictions of the flow
structure in the aneurysm are not significant. Figure 8 shows streamlines obtained using
LBB to understand the flow structure in the whole aneurysm model. The liquid from the
circular inlet flows almost rectilinearly in the main artery section, whereas the streamlines
are largely bended due to the interaction with the aneurysm wall, which corresponds to
the left side wall of the aneurysm shown in Figure 7. Swirling motion is then formed inside
the aneurysm and the streamlines direct toward the artery outlet.

The measured and predicted velocities at the positions indicated by the blue squares
on the lines, H1 (horizontal), H2, V1 (vertical) and V2, shown in Figure 7a are compared in
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the following to discuss the validity of the predictions in more detail. Figure 9 shows the
measured velocities (the open circles) on H1, where vx and vy are the x and y components
of the velocities normalized by the mean velocity at the inlet. On H1 in Figure 7a, the flow
directs downward (+y direction) for x < 0.02 m due to the liquid inflow from the main
artery, whereas for larger x the liquid in the vortical structure flows from the right to the
left (−x direction). Therefore the values of vy for x < 0.02 m are positive and large and,
for larger x, vx has negative values and its magnitude is much larger than that of vy. The vx
and vy of HBB and LBB agree well with those of SFV though some deviations appear,
especially for x < 0.025 m. No significant differences are found in the predictions of HBB
and LBB, that is, the sum of the absolute differences between the velocity components of
HBB and LBB on each line are less than several percent of the sum of the absolute value of
the velocity components.

Figure 7. Comparison of velocity fields between (a) SFV, (b) HBB and (c) LBB.

Figure 10 shows the velocities on H2, which passes the center of the vortical structure
(x ∼ 0.03 m) and therefore the velocity components change their signs near that position.
The liquid flow along the left side wall exhibits large velocities and passes H2 almost diago-
nally. Therefore the magnitudes of vx and vy are large in the small x region. The predictions
of HBB and LBB reproduce well the velocity profile though they are somewhat smaller
than those of SFV.
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Figure 8. Flow structure in cerebral artery. The streamlines are drawn by using the result of LBB.

Figure 9. Comparison of velocity components between measured (SFV), HBB and LBB (line H1).

Figure 10. Comparison of velocity components between measured (SFV), HBB and LBB (line H2).

Figures 11 and 12 show vx and vy on V1 and V2, respectively. Being similar to the
velocity components on H1 and H2, the velocity profiles, in other words, the vortical
structure in the cerebral aneurysm model, are well predicted using HBB and LBB, and the
predictions of HBB and LBB are not so different.



Fluids 2021, 6, 338 12 of 18

As discussed above, the velocities in the aneurysm model of HBB and LBB agree
with the data and the differences between the predictions of HBB and LBB are small,
which confirms that both numerical treatments of the wall can give reasonable predictions
for the present complex geometry and the effects of the wall boundary treatment on the
predicted flow structure in the aneurysm are small. We should however examine also the
effects of the wall boundary treatment at lower spatial resolutions since the predictions
of HBB would be worse than those of LBB as the spatial resolution decreases due to the
stepwise representation of the wall. We therefore carried out the simulation with lower
spatial resolutions. The spatial resolutions additionally tested were Nx × Ny × Nz =
128× 172× 178 and 81× 109× 114. The other conditions were the same as in the previous
simulation. The numbers of cells for D were 31 and 20 for the former and the latter,
respectively, and τ were 0.5125 and 0.5079. It should be noted that a spatial resolution
lower than Nx = 81 was also tested, but a numerical instability took place and a steady
state solution could not be obtained.

Figure 13 shows the comparison of the velocity components, vx and vy, between
Nx = 162, 128 and 81. The flow characteristics in the experiment are reproduced well with
HBB and LBB even at the lowest spatial resolution although the decrease in the spatial
resolution slightly deteriorates the prediction. Interestingly the prediction of HBB is not so
different from that of LBB even at the lowest spatial resolution, and therefore, the jaggy
representation of the aneurysm wall is still acceptable to reproduce the flow structure.

Figure 11. Comparison of velocity components between measured (SFV), HBB and LBB (line V1).

Figure 12. Comparison of velocity components between measured (SFV), HBB and LBB (line V2).
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Figure 13. Comparison of velocity components between HBB and LBB at lower spatial resolutions (line H2).

4.3. Wall Shear Stress and Oscillatory Shear Index

Some hemodynamic parameters, e.g., the time-averaged wall shear stress (TAWSS),
the oscillatory shear index (OSI) and so on, have been proposed to describe the growth
and rupture mechanisms of cerebral aneurysms so far, where TAWSS is the magnitude of
WSS acting on an aneurysm wall averaged for the single cardiac cycle, T, and OSI is an
indicator representing the degree of directional change of WSS during T. In our previous
study [11], we reported that thin aneurysm wall regions of un-ruptured cerebral aneurysms
are correlated with OSI at a high probability, i.e., a low OSI region in numerical predictions
corresponds to a thin wall region observed in an endovascular surgery. The TAWSS also
showed correlations with the thickness of the aneurysm wall, i.e., a high TAWSS region
corresponds to a thin wall region, whereas OSI would be more effective than TAWSS.

We therefore carried out numerical simulations of flows in the cerebral aneurysm
model with an unsteady inlet condition and evaluated TAWSS and OSI to discuss the
effects of the wall boundary treatment on these hemodynamic parameters. The Casson
model [23] was used to account for the shear-thinning characteristics [10,24]. The inlet
condition was time-dependent to roughly mimic the change in the flow rate during T,
i.e., the flow rate increased at the early stage of T until it reached the peak value (the
contraction period), and then, it decreased and returned to the initial value (the dilation
period) (see Kimura et al. [9] for the detail).

The instantaneous wall shear stress vector, τW , is given by

τW = (I − nn) · (µ∇u) ≈ µ
(I − nn) · u(x)

ψ(x)
(21)

where x is the position of the center of a cell closest to the wall, I is the unit tensor and n is
the unit normal to the wall given by

n =
∇ψ

|∇ψ| (22)

The TAWSS is given by

TAWSS =
1
T

∫ T

0
|τW |dt (23)

The OSI is a hemodynamic parameter that describes the fluctuation of the WSS vector
during T and is given by [25]

OSI =
1
2

(
1−
|
∫ T

0 τWdt|∫ T
0 |τW |dt

)
(24)
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The spatial resolutions were Nx = 162, Nx = 128 and Nx = 81, Re was 150, and the
Bingham number, Bi, was 0.1, where

Bi =
τ0D
µPU

(25)

Here τ0 is the yield stress and µP is the reference viscosity. The time average of U was set
to 0.02.

Figure 14a,b show TAWSS predicted using HBB and LBB, respectively, with Nx = 162.
The distributions of TAWSS of HBB and LBB are similar although TAWSS of HBB is
somewhat smaller than that of LBB in some areas, e.g., the region indicated by the dashed
oval in the figure. Table 5 shows TAWSS averaged for the aneurysm. The TAWSSs of
HBB are about 11% smaller than those of LBB at all the spatial resolutions. The TAWSS
depending on the wall boundary model implies that the velocity vectors near the aneurysm
wall are different in HBB and LBB though the velocity profiles in the entire aneurysm
are almost the same as shown in the previous section. Table 6 shows the mean values
of the magnitude of the velocity component tangent to the wall, vt = |(I − nn) · u(x)|,
in the computational cells closest to the aneurysm wall. Being similar to TAWSS, the mean
tangential velocity of HBB is smaller than that of LBB regardless of the spatial resolution.
Therefore the smaller TAWSS in HBB is due to the smaller velocity magnitude in the near
wall region.

Table 5. TAWSS and OSI averaged in aneurysm (TAWSS is normalized with ρU2/2).

Nx = 162 Nx = 128 Nx = 81

TAWSS OSI TAWSS OSI TAWSS OSI

HBB 0.0108 0.0222 0.0127 0.0200 0.00975 0.0217
LBB 0.0123 0.0221 0.0143 0.0198 0.0109 0.0203

Table 6. Mean vt in aneurysm (normalized with U).

Nx 162 128 81

HBB 0.00390 0.00709 0.00617
LBB 0.00488 0.00866 0.00770

Figure 15 shows the predicted OSI of Nx = 162, where the maximum value of OSI for
visualization is set to 0.01 since regions of OSI < 0.01 were confirmed to have correlations
with thin wall regions [11]. The distributions of OSI predicted with HBB and LBB show only
a little difference. The mean OSIs for the aneurysm are shown in Table 5; the values of HBB
and LBB are very similar. The same trend was also seen for Nx = 128 and Nx = 81. Hence
HBB can predict fluctuations of WSS as well as LBB in spite of the jaggy representation of
the curved boundary.

Thus the effects of the wall boundary treatment on predicted flow structure are
expected to be small and fluctuations of WSS can be well predicted even with the jaggy
wall representation of HBB, whereas the magnitude of WSS predicted HBB can be smaller
than that of LBB.
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Figure 14. Comparison of TAWSS between (a) HBB and (b) LBB (the spatial resolution: Nx = 162;
TAWSS is normalized with ρU2/2).

Figure 15. Comparison of OSI between (a) HBB and (b) LBB (the spatial resolution: Nx = 162).

5. Conclusions

Numerical simulations of a flow in a cerebral aneurysm were carried out using the
lattice Boltzmann method with bounce-back schemes, i.e., the half-way bounce-back (HBB),
the linearly interpolated bounce-back (LBB) and the quadratic interpolated bounce-back
(QBB) schemes, to investigate the effects of the numerical treatment of the complex bound-
ary shape of the aneurysm on the predicted velocity field and hemodynamic parameters.
The cerebral aneurysm for the simulation was reconstructed from STL (stereolithography)
mesh data of an actual aneurysm. For validation of the numerical method, experimental
data of the velocity field in a cerebral aneurysm model, which was made by 3D printing
with the STL mesh, were obtained. The conclusions obtained for the present aneurysm
case are as follows:

1. Measured data of the velocity in the cerebral aneurysm model useful for validation of
numerical methods were obtained. The present experimental method is to be of use
for further validation with different types of cerebral aneurysm.

2. The numerical stability of QBB in the flow simulation of the cerebral aneurysm is
lower than HBB and LBB.

3. The flow structures predicted using HBB and LBB are comparable and agree well
with the experimental data.

4. The fluctuations of the wall shear stress (WSS), i.e., the oscillatory shear index (OSI),
can be well predicted even with the jaggy wall representation of HBB, whereas the
magnitude of WSS predicted with HBB tends to be smaller than that with LBB.
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Nomenclatures
Bi Bingham number
c Particle velocity
D Pipe diameter; Length scale
F Spatial filter
f Velocity distribution function of particles
f eq Equilibrium velocity distribution function
fp Peak frequency
fs Shift frequency
g Grayscale value
I Unit tensor
I(t) Integrated intensity as a function of time, t
Ĩ(t) I(t) normalized with its mean and standard deviation
k Wave number of spatial filter
L Filter pitch
M Matrix transforming f into m
m, meq Moment vectors of f and f eq

mI Mean of integrated intensity, I(t)
n Unit normal
N Total number of images
Nx, Ny, Nz Number of computational cells
p Weight for reconstruction of ψ

q Ratio of distance between wall and cell center to grid spacing
R pipe radius
r Radial coordinate
Re Reynolds number
S Relaxation parameter matrix
T Period of cardiac cycle
t Time
U Velocity scale
u Fluid velocity
u Time-averaged streamwise velocity
umax Maximum velocity at pipe center
vx, vy Velocity components normalized by inlet velocity
vt Magnitude of velocity component tangent to wall
w Weighting function
x Position vector
x, y Cartesian coordinates
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Greek symbols
∆t Time step size
∆x Grid spacing
µ Liquid viscosity
µP Reference viscosity
ν Liquid kinematic viscosity
ρ Fluid density
σI Standard deviation of integrated intensity, I(t)
τ Relaxation time
τ0 Yield stress
τW Instantaneous wall shear stress vector
ψ Signed-distance function (level set function)
Ω Collision term
ω Angular frequency
Subscripts
C Computational cell
e Triangular element of STL
i Direction of particle velocity
l, m Indices of pixels in x and y directions
n Frame number
Abbreviations
CFD Computational fluid dynamics
HBB Half-way bounce-back scheme
IBB Interpolated bounce-back scheme
IA Interrogation area
LBB Linearly interpolated bounce-back scheme
LBM Lattice Boltzmann method
MRA Magnetic resonance angiography
MRT Multiple-relaxation time collision model
OSI Oscillatory shear index
QBB Quadratic interpolated bounce-back scheme
SFV Spatial filter velocimetry
STL Stereolithography
TAWSS Time-averaged wall shear stress
WSS Wall shear stress
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