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Abstract: The exchange of momentum across the air–sea boundary is an integral component of the
earth system and its parametrization is essential for climate and weather models. This study focuses
on the impact of gustiness on the momentum flux using three months of direct flux observations from
a moored surface buoy. Gustiness, which quantifies the fluctuations of wind speed and direction,
is shown to impact air–sea momentum fluxes. First, we put forward a new gustiness formula that
simultaneously evaluates the impact of fluctuations in wind direction and speed. A critical threshold
is established using a cumulative density function to classify runs as either gusty or non-gusty.
We find that, during runs classified as gusty, the aerodynamic drag coefficient is increased up to
57% when compared to their non-gusty counterparts. This is caused by a correlated increase in
vertical fluctuations during gusty conditions and explains variability in the drag coefficient for wind
speeds up to 20 m/s. This increase in energy is connected with horizontal fluctuations through
turbulent interactions between peaks in the turbulent spectra coincident with peaks in the wave
spectra. We discus two potential mechanistic explanations. The results of this study will help
improve the representation of gustiness in momentum flux parameterizations leading to more
accurate ocean models.

Keywords: gustiness; momentum flux; drag coefficient; air–sea interaction; marine boundary layer

1. Introduction

In the marine boundary layer, the ocean is tightly coupled to the atmosphere through
the wind stress τ. The wind stress is a quantification of the momentum flux across the
air–sea interface which is important for many processes such as wave growth and break-
ing [1–3], aerosol production [4], atmospheric and oceanic circulation (e.g., [5–7]), global
climate [8], and upper ocean mixing (e.g., [9,10]). The momentum flux is also a key compo-
nent of tropical cyclone intensity [11].

In the constant-flux layer the total wind stress can be decomposed into three parts:

τ = τt + τw + τv (1)

Here, τt is the turbulent stress, τw the wave-induced stress, and τv the viscous
stress [12]. τv is caused by the differential of wind and sea surface current speed within
the viscous sub-layer which has a thickness on the order of 10−5 m, much thinner than
the wave-induced boundary layer [12,13], and is negligible away from the sea surface. τw
occurs in the wave-boundary layer, within which air flow is influenced by waves [14]. The
wave-boundary layer height has been shown to depend on wind speed [15,16] and sea
state [17], and is predicted to be order 1 m for pure wind sea conditions in [18]. It has
also been demonstrated that the wave induced stress is less than 5% of the total stress at
the height of 1 m, and less than 1% at 3 m. Previous experiments have established the
practice of making measurements 3–4 m above the sea surface e.g., [19,20] where viscous
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and wave-induced stress were deemed negligible. (i.e., τ ≈ τt � τw � τv). Under such
conditions, turbulent fluxes approximate the total momentum flux, e.g., [21]:

τt ≈ τt = −ρu′w′ − ρv′w′ (2)

Here u′, v′, and w′, are velocity in the along, cross, and downwind directions, re-
spectively, with primes denoting the fluctuating component and overbar representing
time average (O~30 min). Air–sea coupling within the marine boundary layer is widely
parameterized by the wind stress equation:

τ = ρ ∗ u2
∗ = ρCdU2

10 (3)

where u∗ is the shear or friction velocity of the wind at the sea surface, ρ is the air density, Cd
is the drag coefficient, and U10 is the wind speed at a reference height of 10 m. Combining
Equations (2) and (3), we arrive at Cd, calculated from direct measurements

Cd =

√
(−u′w′)

2
+ (−v′w′)

2

U2
10

. (4)

Because of the isolation and harsh environmental conditions, measuring fluxes at sea is
very challenging and expensive, especially at high wind speeds. As such, it is common for
the momentum flux to be determined instead by using the nondimensional drag coefficient
as a function of the mean wind speed. Since the drag coefficient is widely adopted and
used in lieu of direct flux measurements when quantifying air–sea momentum exchange
(e.g., [22,23]), we focus on the impact of gustiness on the drag coefficient such that results
have direct implications for Earth system models.

Many studies have shown that Cd increases approximately linearly with wind
speed [21,24,25]. However there remains substantial variability in Cd. Several secondary
variables have been shown to affect Cd, including sea state [19,26–29], currents [6], air–sea
temperature difference and stability [3,30], and gustiness [30,31].

Many studies have quantified the influence of sea state on Cd. Results show that wave
age Cp/U10, where Cp is the phase speed of the peak wave frequency, is well correlated to
Cd [24,27,32,33], and Cd tends to be higher in young seas, Cp/U10 < 1.5. The association
between wave age and Cd is not surprising given that young waves are steeper and rougher
than old waves [29,34,35]. Also based on the association between wave age and drag, Oost
et al. [36] found a reliable relationship between for Cp and ocean roughness.

The impacts of swell on Cd have also been extensively investigated with mixed results.
For example, Dobson et al. [37] found no evidence that swell influences Cd, but Drennan
et al. [38] observed reduced wind stress in the presence of swell. This finding was supported
by the finds of Potter [39], who determined that swell can reduce Cd up to 37% due to the
reduced turbulent energy around the swell frequency. In contrast, Drennan et al. [40] found
that both crossing- and opposing-swell significantly increase Cd, and Vincent et al. [41]
showed an increase in drag due to increased energy in the high-frequency waves relative to
pure wind seas, consistent with their previous work [42]. Increased drag coefficient in the
left-rear of a tropical cyclone where conditions are thought to be predominantly crossing
and opposing-swell, has also been shown [28].

Surface currents have been shown to reduce Cd, especially when the current is aligned
with the wind [30]. Kara, Metzger, and Bourassa [7] reported that Cd can be reduced over
10% in the tropical Pacific Ocean due to currents being in line with the prevailing winds.
Furthermore, a numerical modelling study of an idealized typhon showed that surface
current can reduce the momentum fluxes in the right-rear typhoon quadrant about 6%
in [5]. In contrast, Wüest and Lorke [43] found that currents in the Kuroshio Extension
have very little influence on Cd. Currents can also affect the momentum fluxes in indirectly;
Kenyon and Sheres [44] found that strong current gradients impact the surface gravity
wave field which can then affect air–sea momentum fluxes.
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The stability of atmosphere influences Cd according to Monin–Obukhov similarity
theory [45–49]. Monin and Obukhov [50] put forward the Obukhov length to describe the
air–sea fluxes processes.

L = − v3
∗

k ∗
(

g
T0

)(
q

Ctρ

) (5)

where k is the von Karman constant, T0 is surface temperature, g is gravity acceleration,
v∗ is friction velocity, q is kinematic heat flux, Ct is specific heat, and ρ is air density. The
Obukhov length accounts for the relationship between sea surface temperature, specific
heat, air density, heat flux, and friction velocity. In light winds, the momentum fluxes are
sensitive to the stability of the atmosphere, with increased flux for unstable conditions [51].

While much attention has been given to sea state, currents, and atmospheric stability,
there are few studies that directly address the effect of gustiness on Cd. The importance
of accounting for gustiness when estimating momentum fluxes was first addressed by
Janssen [52], who believed that the friction velocity should be related to both the mean and
standard deviation of wind speed. Miles and Ierley [53], using a theoretical model, found
that, under some circumstances, 20–30% more energy is transferred to the ocean during
gusty conditions but that a reduction in the stress is also possible. Abdalla and Cavaleri [54]
used a model to compare the wave field under normal and gusty winds and found that
wave height is increased under gusty conditions, implying increased momentum flux.
Ponce and Ocampo–Torres [55] also showed that wind speed variability increases wave
height while Pleskachevsky et al. [56] remotely observed higher wave height under the
influences of gustiness. Annenkov and Shrira [57] studied wave responses to different
gustiness regimes using an idealized numerical model. They found that gustiness can
impact growth rate during wave development but had little impact as waves approached
full development. Uz et al. [58] found that decreasing winds had higher wind stress than
the increasing winds for any given wind speed, which is mainly caused by the delayed
response of short wind waves to the modulated wind forcing.

Previous research notwithstanding, it is very difficult to account for the impact of
gustiness on momentum flux because typical wind speed data, whether extracted from
satellite remote sensing, collected in situ, or model derived, are produced as an average
over space and/or time and so high frequency fluctuations are unknown. As such, it
is difficult to incorporate gustiness information into Cd parameterizations. Babanin and
Makin [31] addressed this by developing a method to estimate maximum gustiness using
U10, which can be then used to estimate the contribution of gustiness to Cd for any given
wind speed. In their study, gustiness was quantified using the mean and standard deviation
of wind speed calculated over 30 min:

G = std(U10)/U10 (6)

Following Babanin and Makin [59], Ting et al. [60] found that gustiness can increase
scatter in Cd, and used a scale analysis based on the equation of motion to determine
that wind stress was proportional to gustiness. They speculated that the variability in the
drag coefficient was caused by gustiness through distortion of the air–sea boundary layer
structure. The Coupled Ocean-Atmosphere Response Experiment (COARE) algorithm [30]
represents gustiness as boundary layer–scale eddies and is more akin to vertical thermal
stability rather than horizontal wind fluctuations.

In this study, we focus on the influence of gustiness on the momentum flux. We
introduce a gustiness formula that is sensitive to the fluctuations of both wind speed
and direction. The metric captures variation within scales of 0.01–1 Hz. We apply the
new formula to data from the Impact of Typhoons on the Ocean in the Pacific (ITOP)
experiment [61]. Our results indicate that gusty periods exhibit higher Cd than predicted by
the linear wind speed parameterization [25]. We also used a scaled Miyake-Cospectrum [62]
to explore the momentum fluxes transferred into the ocean. This Miyake-Cospectrum is
normalized by wind speed, which is helpful for comparing the gustiness influences under
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different mean wind speeds. We ultimately conclude that gustiness is important to Cd,
accounting for about 57% of the variability in Cd. We also find that the cospectra of the
momentum flux is proportional to the gustiness. When winds are gusty, we find an
associated increase in energy in the cospectra.

2. Data and Methods
2.1. Data

Data used in this study were collected during the Impact of Typhoons on the Ocean in
the Pacific (ITOP) experiment [61]. Data were collected between August and December
2010, from an instrumented Extreme Air–Sea Interaction (EASI) buoy (Drennan et al. [63])
deployed in the Philippine Sea approximately 750 km east of Taiwan. Direct fluxes were
measured onboard with simultaneous mean parameters including air and ocean tempera-
ture, humidity, and atmospheric pressure. The EASI buoy, which was based on the hull of
a 6-m Navy Oceanographic Meteorological Automatic Device (NOMAD), also measured
directional wave spectra that were produced over 30 min, as was wind speed [64]. Several
studies have previously used data collected by EASI during ITOP (e.g., [9,27,39,63,65]) and
provide extensive information about the experiment, instrumentation, and data processing
and quality. Here, we only reproduce information about the wind sensors and associated
processing methods.

The EASI buoy was equipped with two Gill R2A sonic anemometers. However, due to
severe weather, only one R2A anemometer collected reliable data. The sampling frequency
of the wind anemometer was 20 Hz with runs of 30 min, which was found suitable for
collecting all turbulent scales [66]. The anemometer was positioned 5.45 m above mean
sea level and away from the buoy structure such that flow distortion was negligible. Two
motion packages in the buoy measured six degrees of freedom of motion along with the
compass bearing. The motion of the platform was accounted for when calculating the
wind velocity in accordance with the methods by [67]. Following motion-correction, a
quality control procedure removed spikes in the 20 Hz u, v, and w time series [66]. Ogives
were calculated and it was revealed that the scales of 0.01–1.0 Hz were adequate to fully
characterize momentum flux, as expected from universal curves [62]. Next, u, v, and w
were rotated according to the mean wind vector so that the w′ was around 0 and u pointed
towards the mean wind direction, thereby mean(v) = 0. These data were then used to
calculate Cd following Equation 4. Log layer theory was used to adjust the value of Cd to
the equivalent measured at 10 m in neutral conditions, which is referred to as Cd10N .

2.2. Gustiness Formulation

The Babanin and Makin [31] equation for gustiness (Equation (5)) quantifies the
fluctuation of wind speed but does not consider wind direction variability. We show that
directional variability can also increase variance in both u and v, and therefore must be
part of the gustiness formulation in order to more fully characterize wind variability. For
example, if wind speed is constant, the runs with unstable direction will contain more
turbulent energy than runs with stable direction. As such, we put forward a new gustiness
formula, GA, (Equation (7)), to account for fluctuations in both wind speed and direction.

GA = std
(
u′ + v′

)
/U10 (7)

Equation (7) can be expanded as below:

std
(
u′ + v′

)
/U10 =

√
var(u′) + var(v′) + 2cov(u′, v′)/U10 (8)

The cov(u′, v′) term represents the influence of changing wind direction, and it re-
duces to 0 when the wind direction is stable. Supposing at one moment that the mean
wind direction has turned about x degrees, it will add an extra fluctuation (u′, v′) ∼
U·(1− cosx, sinx) to the original wind vector. A change in wind direction projects an extra
velocity onto the (u′, v′). It can be seen that the added fluctuation (U −Ucosx, Usinx)
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is correlated, which is one source of the covariance term. One thing to note, cov(u′, v′)
can be underestimated to some extent given that some portions of (u′, v′) are still inde-
pendent, similar to Brownian motion [68], when the wind direction is changing. When
cov(u′, v′) 6= 0, observation samples of (u′, v′) are distributed symmetrically but the
main axis is not along the x or y axis. Graphical representations of cov(u′, v′) = 0 and
cov(u′, v′) 6= 0 are shown in Figure 1.
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Our definition of gustiness is sensitive to run length because of the increased poten-
tial for wind direction change with time. Thirty-minute run-time is a compromise between 
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Figure 1. Graphical representation of two cases: cov(u′, v′) = 0. (a) and cov(u′, v′) 6= 0. (b). The pink vector represents
the mean wind speed (along x). The red or blue ellipse represents how the observations of u′, v′ can be distributed. The
black arrows represent possible individual observations of wind fluctuation. The red dots mark the ends of the long axis of
the ellipse.

To better characterize GA, sensitivity to sampling frequency was explored. Figure 2
shows the standard deviation of u′ + v′ for an arbitrary run as a function of sampling
frequency. When the frequency reaches approximately 1 Hz, std(u′ + v′) converges upon a
constant value, in this case 1.83. This is a typical result (though other runs converge upon
different values), indicating that our sampling frequency of 20 Hz is more than adequate to
obtain a stable standard deviation of u′ and v′.
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Our definition of gustiness is sensitive to run length because of the increased potential
for wind direction change with time. Thirty-minute run-time is a compromise between a
length adequate to capture all turbulent length scales (e.g., [19,37,63]) and short enough
such that stationarity is not violated. This record length was used in many previous
studies focused on Cd (e.g., [19,21,24,38,66,69]), and, furthermore, 30 min is a typical time
domain used by air–sea coupled climate or hurricane models (e.g., [70,71]). Hence, by
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adopting a 30 min sampling period, we seek to maximize the applicability of the results to
future research.

3. Results

Figure 3 shows the times series of wind speed (U10N) and gustiness GA. High GA can
be attributed to the fluctuation of wind speed and direction or low U10N , which increases
GA in Equation (7).
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Figure 4. Cumulative probability function of GA for entire data set. GA > 0.165 means the wind is
gusty. Otherwise, the wind is not gusty. The value 0.165 is chosen for best performance. The red line
is GA = 0.165. The black dash line is CPF = 50%.

Based on the formula for GA, Figure 5 shows Cd10N as a function of U10N . Each data
point is color coded by gustiness, with dark green indicating GA ≤ 0.165. When the winds
are not gusty, a clear linear relationship between Cd10N & U10N emerges. This relationship is
similar to the linear empirical equation proposed by [25,30]. This suggests that these widely
used linear equations were established based on data collected during relatively wind
speed stable conditions. Most gusty points are over this linear relationship, suggesting that
gusty conditions are generally associated with an increase in momentum flux. From the
error bar plot, for moderate winds (5–12 m/s), we find that the variation in Cd10N of winds
can be reduced by as much as 57% by removing the gusty runs.
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Figure 6 shows 𝐶  vs. 𝑈 . Points are colored by the covariance 
term, |𝑐𝑜𝑣(𝑢 , 𝑣 )|/𝑈 . This term can be attributed to the changing wind direction, since 
a change in direction (𝜃) will add extra correlated oscillation 𝑢 ~𝑈 ∙ (1 − 𝑐𝑜𝑠𝜃), 𝑣 ~𝑈 ∙𝑠𝑖𝑛𝜃 to the fluctuation. The covariance term will be increased when the direction is turn-
ing. Therefore, Figure 6 indicates that changing wind direction could play an important 
role in contributing to the gustiness, and thus 𝐶 . In another words, some scatter in 𝐶 , 
or increased gustiness, can be explained by changes in direction. To parallel this view-
point, the data are plotted again (Figure 7), but are now identified based on the stability 

Figure 5. Cd of gusty winds (red & yellow points) and not-gusty winds (green points) selected by GA. Non-gusty winds are
selected by the condition GA ≤ 0.165 and marked as green. The blue line is the averaged Cd for GA ≤ 0.165 with error bars
denoting 95% confidence interval binned every 2.5 m/s. The orange line is the averaged Cd for GA > 0.165 with error bars
also denoting 95% confidence interval binned every 2.5 m/s. The black dash line is the Cd10N predicted by [25]. The red line
is Cd10N predicted by COARE 3.0 algorithm [30].

Figure 6 shows Cd10N vs. U10N . Points are colored by the covariance term,√
|cov(u′, v′)|/U10. This term can be attributed to the changing wind direction, since

a change in direction (θ) will add extra correlated oscillation u′ ∼ U10·(1− cosθ), v′ ∼
U10·sinθ to the fluctuation. The covariance term will be increased when the direction is
turning. Therefore, Figure 6 indicates that changing wind direction could play an important
role in contributing to the gustiness, and thus Cd. In another words, some scatter in Cd, or
increased gustiness, can be explained by changes in direction. To parallel this viewpoint,
the data are plotted again (Figure 7), but are now identified based on the stability of their
wind speed and direction. Here, we used std(u) > 1m/s and std(θ) > 7

◦
to identify runs

that were considered either wind speed unstable or wind direction unstable. Using these
values results in 25% and 31% of data characterized as gusty due to variability in speed
and direction, respectively. For comparison, if we set the threshold to 0.5, 2, or 3 m/s, the
percentage of gusty data would be 78%, 4%, 0.7%, respectively. Setting the threshold to 3, 5,
or 10◦ would result in 100%, 82%, and 11%, respectively, classed as gusty. Most importantly,
Figure 7 shows that deviations in both speed and direction are important considerations
when quantifying gustiness. Notably, directional deviations identify much of the scatter
in the U10N − Cd10N relationship at low to moderate wind speeds that cannot be captured
when considering fluctuations in wind speed alone. Furthermore, we avoid another issue
with identifying gustiness based on wind speed, which is that all data above ~15 m s−1 are
classified as gusty because, inherently, std(u) increases with U.
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We find that variations in both wind speed and direction can have significant influ-
ences on Cd. In fact, the stability of wind direction is potentially a better metric than the
stability of wind speed (Figure 7). When wind direction is stable, a linear relationship sug-
gested by previous studies (e.g., [21,24,66]) between Cd10N and U10N emerges. In contrast
to cov(u′, v′), speed stability does not correlate with variation in Cd10N at moderate wind
speeds (5–12 m/s). This implies that direction is more effective in explaining the variation
in Cd10N .

4. Discussion
4.1. Gustiness and Vertical Oscillation

Next, we examine in detail the difference between a gusty run and a not-gusty run.
Figure 8 shows a histogram of the distribution of u′& v′ over 30 min for two different runs.
These runs are controlled for wind speed, i.e., both have U10N = 10 m/s. For Figure 8a,
GA = 0.12 (low gustiness), and for Figure 8b, GA = 0.21 (high gustiness). In each panel
there are 36,000 data points (i.e., 30 min * 60 s * 20 Hz) of (u′, v′) that distribute around
(0,0) in a cloud of points. In Figure 8a, the data are distributed symmetrically, forming
a circle, and the histogram is symmetric, which indicates the wind direction remained
relatively stable. In Figure 8b, the data are asymmetrically distributed over a larger area
in u′, v′ space, skewed towards the lower-left. In this case, the distribution is an ellipse
and the major axis is rotated away from the wind direction, indicating that the direction
was changing over the duration of the run. In Figure 8c, the directions of the gusty and
non-gusty runs are shown. We can see that the direction of the run in Figure 8b has changed
about 20 degrees over 30 min, while the direction of the not-gusty run in Figure 8a has a
negligible trend.

Note that the mean of |w′| in Figure 8a,b is larger during the gusty run than the non-
gusty. This suggests a stronger vertical oscillation in the gusty runs which may account
for the observed higher Cd. To explore this further, we plot the mean of |w′| in Figure 9
as a function of wind speed for all our data. This shows that gusty periods tend to have
higher |w′| compared to periods when the wind speed and direction remain more stable, as
determined using GA = 0.165. This indicates a stronger oscillation in the vertical direction
during gusty conditions which, when correlated with the u′, v′, increases Cd. For moderate
winds speeds, |w′| is 30~50% larger for gusty than non-gusty periods. Hence, higher
gustiness can inspire a stronger vertical oscillation, which transports the extra energy
across the air–sea interface.
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We now offer two potential explanations for the source cov(u′, v′) term. The first
source is that the wind direction is changing while the other is that the waves may be
intermittently coupling with the gustiness. When the wind stress is between wave and
wind directions, waves can explain some gustiness. These two sources may function
simultaneously. We inspected many cases finding that, for a few runs, the stress direction
was in between the wave direction and wind direction.

4.2. Possible Reason and Evidence for the Increased Momentum Fluxes

Figure 10 shows the mean power spectra of w′ for the entire data set. Each subplot
represents a different wind speed range, data are further subdivided based on gusty and
non-gusty conditions. Concurrent mean wave spectra are overlaid on the turbulence
spectra. Turbulent power spectra can be seen to increase with wind speed, as expected;
however, in each case, the gusty conditions are always more energetic than the non-gusty
runs. For the lowest wind speeds, the gusty case has 20% higher energy, increasing to
over 50% at the highest wind speeds. The increases are concentrated around the peak
frequency. The peak frequencies of the wave spectra are located around the peaks in the
w′ spectra, which shows some coupled or at least correlated behavior between turbulence
and waves. This is true whether or not conditions are gusty. This analysis is repeated for u′

spectra (Figure 11) and no difference is found between the u′ power spectrum of gusty and
not-gusty runs (p < 0.05). The same is true of v′ (not shown), i.e., there is no marked increase
in energy in horizontal velocity at ocean wave scales. This suggests that the increased Cd
during gusty conditions is due to increased energy in the vertical oscillation.
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Figure 10 shows that gusty runs coincided with more energetic 𝑤’ spectra. When 
more energetic 𝑤′ is correlated with 𝑢’, gustiness translates directly to increased momen-
tum flux. Figure 11 shows the 𝑢′ spectra, in which there are less changes in the spectra. 
To investigate whether this extra energy is correlated with 𝑢 , we examine a probability 
density function (PDF) of normalized momentum flux in Figure 12. The momentum flux 
is normalized by friction velocity (−𝑢𝑤/𝑢∗ ) where 𝑢∗  is estimated using [25] and the data 
are binned by 𝐺 . Positive values represent momentum transferred into the ocean and 
negative values are momentum transferred into the atmosphere. The PDFs have asym-
metric shapes skewed towards positive values. This means downward momentum fluxes 

Figure 10. Mean power spectra of w′ combined with wave spectra for (a) 0 < U < 5 m/s, (b) 5 < U < 10 m/s,
(c) 10 < U < 15 m/s, and (d) 15 < U < 20 m/s wind speeds. The solid lines are the w′ spectra (left y-axis), the dashed lines
are wave spectra (right y-axis). In each panel, blue represents the gusty runs and the red represents non-gusty. Note that the
limits of the y-axis in each subplot are not the same. Shaded area is 95% confidence interval for the w′ spec.
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Figure 11. Power spectrum of u′ under the same wind conditions. (a) 0 < U < 5 m/s, (b) 5 < U < 10 m/s, (c) 10 < U
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positive means the downward momentum fluxes, and the negative means the upward momentum fluxes. Shaded area is
95% confidence interval for the u′ spec.

Figure 10 shows that gusty runs coincided with more energetic w′ spectra. When more
energetic w′ is correlated with u′, gustiness translates directly to increased momentum flux.
Figure 11 shows the u′ spectra, in which there are less changes in the spectra. To investigate
whether this extra energy is correlated with u′, we examine a probability density function
(PDF) of normalized momentum flux in Figure 12. The momentum flux is normalized by
friction velocity (−uw/u2

∗) where u2
∗ is estimated using [25] and the data are binned by GA.

Positive values represent momentum transferred into the ocean and negative values are
momentum transferred into the atmosphere. The PDFs have asymmetric shapes skewed
towards positive values. This means downward momentum fluxes exceed the upward
fluxes. As GA increases, the PDFs flatten and the probability of high and low −u′w′/u2

∗
increases, while the probability of −u′w′/u2

∗ around zero decreases. This shows that more
energetic w′ do indeed increase momentum flux to the ocean.

To show how much the net momentum fluxes increased as a result of gustiness, we in-
troduce the u′w′ dimensionless cospectrum, which is scaled using the Miyake formula [62].
This spectrum can contain valuable information about momentum fluxes [30,38,72]. To
quantify the net momentum flux, we integrate the u′w′ cospectra along the frequency
domain.

u′w′ =
∫ ∞

0
Suwd f (9)

Here, Suw is the real part of the cross spectrum of u and w. Figure 13 exhibits the
cospectra scaled by mean wind speed U, the measurement height z, and u∗. Cospectra
are shown for different gusty conditions along with the Miyake universal curve, which is
widely used in similar studies [38,39,41].
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cospectra scaled by mean wind speed 𝑈, the measurement height 𝑧, and 𝑢∗. Cospectra 
are shown for different gusty conditions along with the Miyake universal curve, which is 
widely used in similar studies [38,39,41]. 
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dash lines. The black dashed line is the Miyake universal curve with values taken from [72]. The red 

Figure 13. Observed u′w′ cospectra Suw normalized using the universal scaling of Miyake, Stewart,
and Burling [62] and averaged according to the wind gustiness, shown in multiple colored dash
lines. The black dashed line is the Miyake universal curve with values taken from [72]. The red is the
averaged wave spectrum of all runs, also normalized using scaling of Miyake, and standardized to a
maximum value of 0.3.

In Figure 13, the magnitude of each spectrum increases with increasing gustiness. The
cospectra therefore present further evidence that gustier winds have higher momentum
fluxes. The energy containing region of the wave spectrum is aligned with that of the
cospectra. This overlapping of energetic scales suggests some connection or coupling
between the surface waves and the winds. The energy of the vertical turbulence spectra
is strengthened in the presence of high gustiness. Although gustiness is characterized by
horizontal wind variance, it is clear that when it is gusty there is a coincident increase in the
vertical wind variance and at a similar turbulent scale-around 0.10 Hz. The vertical wind
variance is connected with the horizontal wind variance due to the turbulent interactions
and cascade of energy, which is isotropic. We know that, close to the sea surface, some of
the vertical wind variance is coherent with the surface waves, however, direct physical
connection remains unclear.
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Among the possible explanations, we propose two potential mechanisms for how
gustiness can cause the stronger w′. First, when the wind direction is rotating, it will cause
extra horizontal turbulence and produce additional positive vorticity in the z-direction.
Additionally, the ocean surface has a frictional force which can consume this vorticity,
which is to say a negative vorticity in the z-direction induced by friction. For example, in a
cylinder, extra positive vorticity in the upper layer will be balanced by the negative vorticity
held in the bottom layer. In this case, this mechanism causes friction upon the sea surface
and may explain the increased w′ during gusty conditions. Another potential mechanism
is that, when the wind speed is increasing, the vertical shear will be strengthened, in turn
inspiring a lateral vorticity. For example, when U is increasing, it can create a positive
vorticity in the mean wind direction. The only way to consume this extra vorticity is by
bottom friction. In this case, small-scale lateral circulation will be produced which can
connect the bottom wave surface layer with the upper layer. Ultimately, stronger vertical
mixing occurs. However, proof of these two potential mechanisms requires more detailed
observations to understand energy pathways and how the extra vorticity is balanced. For
example, it is advisable to use the Particle Image Velocity method to take snapshots of
the vertical profiles of the winds near the air–sea interface in a laboratory water tank or
over the ocean. Measurements made at multiple levels may also help to understand the
processes when the gustiness becomes increased.

5. Summary and Conclusions

A new gustiness formula [Equation (8)] is put forward which quantifies the fluctua-
tions of wind speed and direction. We find that it is important to account for wind direction
in explaining variability in the drag coefficient. We find that gustiness can increase Cd
independent of mean wind speed. The nominal linear relationship between Cd and U10
put forward by previous studies (e.g., [19,24,30], etc.) is found to emerge under non-gusty
(or less gusty) conditions. From examining spectra, more energetic vertical turbulence
is correlated with gustiness and is perhaps induced by some of the same mechanisms
that produce gustiness. The wind cospectra and wave spectra share a peak frequency,
suggesting a coupling between the two. From investigation of the cospectra and PDFs,
the gusty winds have a clear increase in the normalized momentum fluxes, proving that
gustiness results in extra momentum flux under the same wind speed. Overall, gustiness
is an important factor for understanding momentum fluxes into the ocean and should be
considered in an effective parameterization.
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