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Abstract: In this paper, we present a general description of the flow structures inside a two-
dimensional Food and Drug Administration (FDA) nozzle. To this aim, we have performed numerical
simulations using the numerical code Nek5000. The topology patters of the solution obtained, iden-
tify four different flow regimes when the flow is steady, where the symmetry of the flow breaks down.
An additional case has been studied at higher Reynolds number, when the flow is unsteady, finding a
vortex street distributed along the expansion pipe of the geometry. Linear stability analysis identifies
the evolution of two steady and two unsteady modes. The results obtained have been connected
with the changes in the topology of the flow. Finally, higher-order dynamic mode decomposition has
been applied to identify the main flow structures in the unsteady flow inside the FDA nozzle. The
highest-amplitude dynamic mode decomposition (DMD) modes identified by the method model the
vortex street in the expansion of the geometry.

Keywords: FDA nozzle; flow structures; linear stability analysis; higher order dynamic mode de-
composition

1. Introduction

Flow disturbances can provoke severe damage in blood vessels, for instance causing
hemolysis [1], in which high-velocity jet streams increase shear forces and disrupt erythro-
cyte membranes [2]. These disturbances can be caused naturally, with some cardiovascular
diseases, like aortic stenosis, or artificially, with the introduction of prosthetic valves or the
injection of medicines. Aortic stenosis often causes turbulent flow and significant pressure
drops, which have been studied and quantified in previous works [3].

The development of new medical devices, which can prevent the appearance of tur-
bulent flows, would help to overcome the artificially-caused disturbances, reducing the
damage that such devices can produce in the human body. With this aim, ‘The critical path
initiative’ program [4] created by the United States (US) Food and Drug Administration
(FDA) intends to develop robust and standardized methodologies for medical applications.
In this line, a benchmark nozzle (see Figure 1) that resembles an idealized medical device,
has been developed with the aim of studying in detail the main characteristics describing
the flow inside the geometry. In this geometry, both experiments [5,6] and computational
fluid dynamics (CFD) simulations [7–11] have been carried out, remarking the importance
of continuing studying this model, using better techniques to model the flow, especially
in the turbulent regime [12–15]. Additionally, some authors paid attention to the location
of the transition to turbulence and the critical Reynolds number at which such transition
occurs, finding that it was influenced by some numerical aspects, such as grid density or
numerical noise [16,17]. In experiments, the breakup of the jet is caused by flow instabil-
ities originated by small geometrical disturbances of the domain, however in numerical
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simulations, the domain is perfectly symmetric, so the origin of such disturbances was
related to some artificial noise [5,15].

Figure 1. Computational domain for the numerical simulations of the planar Food and Drug
Administration (FDA) nozzle.

Different inter-laboratory studies [10,11] showed discrepancies among the different
turbulent models. In the case with Reynolds number at the throat Ret = 500, the studies do
not recommend the use of turbulent models, as experimentally the flow was observed to
be laminar. Nevertheless, most of the laminar inlet-cases yielded satisfactory results. Cases
with higher Reynolds number (Ret = 2000, 3500) were laminar at the inlet, with a transition
to turbulence. In these cases, none of the turbulent models were optimal to recreate
the velocities and shear stresses. Although the international standards for implantable
circulatory support devices recognize that experimentally validated CFD simulations may
be used to characterize the flow fields, the ISO 14708-5 standard indicates that the use of
CFD should be limited to the design stage.

Understanding the flow bifurcations, characterized by the main flow patterns driving
the flow dynamics, is a good way to start modeling complex flows, providing as result
low-order models that are based on the physical insight of the problem studied [18].
These flow patterns can be identified using several techniques. Some of the most popular
include: (i) linear stability analysis, which identifies the evolution of a small disturbance
upon a base flow (generally steady) that is producing changes in the flow (i.e., flow
asymmetries or unsteadiness), and (ii) modal decompositions using data-driven methods,
which decompose the flow as an expansion of the highest amplitude modes driving the
flow dynamics.

The main objective of this paper is to characterize the flow structures on a planar FDA
nozzle using both linear stability analysis, to study the main flow bifurcations occurring at
Reynolds number Ret ≤ 1000 at the throat (steady flow), and a data-driven method named
higher-order dynamic mode decomposition (HODMD) [19], to identify the main flow
structures driving the flow dynamics at Ret = 3000 when the flow is unsteady and complex
(although still laminar, the flow is two-dimensional so the jet breakdown identified in
the literature in three-dimensional configurations is not identified). The linear stability
analysis would identify the main mechanism producing changes in the flow (i.e., symmetry
breaking, flow unsteadiness), and HODMD will show the mechanisms driving the non-
linear flow dynamics, which could be connected to the modes identified by linear stability
analysis. However, the origin of turbulence and jet breakdown usually reported in this
geometry, which seems to be a quite controversial topic [5,15–17], still cannot be related
with the present results, since the flow is two-dimensional and the Reynolds number is still
too low. Hence, this remains an open topic for future research. Nevertheless, the present
article provides a deeper insight into the flow physics in the FDA nozzle and presents
some specific and valuable knowledge regarding the flow instabilities occurring before the
turbulent breakdown.

Jotkar and Govindarajan [20] studied in detail the expansion area of the FDA nozzle,
using a geometry that was only composed by a short throat and the sudden expansion.
These authors carried out a parametric study of the expansion ratio and the divergence
angle between the two channels at Ret ≤ 300 (steady flow). They performed a linear
stability analysis and identified a pitchfork bifurcation, where a leading (steady) mode
was breaking the flow symmetry. These results were related to three different topology
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regimes: a symmetric flow characterized by two bubbles located in the upper and lower
part of the expansion (Regime I), an asymmetric flow (Regime II) and an asymmetric
flow with a third bubble identified in the top part of the pipe (Regime III). The flow
instability mode was connected with the origin of the second regime (pitchfork bifurcation).
These authors also performed a transient growth analysis [21] and the results obtained
suggested that there was a connection between Regime III and the optimal energetic
mode recovered. In the same line, Wang et al. [22] perform a linear stability analysis to
study the same geometry as in [20], but with the flow moving in the opposite direction.
In other words, these authors studied a sudden contraction, instead of a sudden expansion.
The authors identified the main global mode producing changes in the flow, and used
such information to optimize the geometry shape. Nevertheless, the results obtained in the
sudden contraction (flow topology and global instability mode), were different from the
ones obtained in the sudden expansion.

This work extends the study performed by Jotkar and Govindarajan [20], where the
studied geometry is an FDA nozzle instead of a sudden expansion. Linear stability analysis
has been performed and the obtained results have been connected with different flow-
topology regimes. The three topology regimes and the pitchfork bifurcation identified
in the literature [20], has also been identified in the FDA nozzle. Moreover, additional
flow regimes have been found, one for the steady flow, and another one when the flow is
unsteady and the Reynolds number is intermediate. The present study carried out also
identifies a leading unsteady mode that is responsible for the flow unsteadiness. The mode
calculated was stable, but the critical Reynolds number defining the flow unsteadiness
has been approximated using linear regression. Finally, HODMD has been applied to
identify the main patterns in the FDA nozzle in the unsteady regime, providing a deeper
knowledge of the flow physics in this geometry, unknown up to now.

This article is organized as follows. Section 2 describes the FDA geometry and the
numerical simulations carried out to study the flow inside the FDA nozzle. Section 3
describes the methodology carried out to analyze the flow. Finally, the main results and
conclusions are presented in Sections 4 and 5.

2. Geometry Description and Numerical Simulations

Numerical simulations have been performed to model the flow inside the two-
dimensional Food-and-Drug-Administration (FDA) nozzle. The computational domain
of this geometry is presented in Figure 1. As seen, the domain, defined in the x − y
(streamwise-normal) plane, is modelled by an inlet tube of diameter 3D and length 9.33D,
and a throat of diameter D = 1 and length Lt = 10D, which are connected by a smooth
contraction. Downstream the throat, a sudden expansion leads to a pipe of diameter 3D
and length L = 22.5D. The origin of the reference system is located at the origin of the
expansion as presented in the figure. The geometry dimension and model are based on the
numerical model as presented in Ref. [12], which reproduces the experimental model in
the FDA nozzle.

In the conducted simulations, the flow moves from the left surface (inlet) to the right
surface (outlet). As seen in the figure, the top and bottom surfaces of the geometry model
the wall of the nozzle. The dynamics of an incompressible Newtonian flow inside an FDA
nozzle is governed by the Navier–Stokes equations:

∇ · v = 0, (1)

∂v
∂t

+ (v · ∇v) = −∇p +
1

Re
∆v, (2)

where v and p are the non-dimensional pressure and velocity vector (v = (vx, vy), with vx
and vy as the streamwise and wall-normal velocity components), and Re is the Reynolds
number, defined as Re = UD/ν, where U is the mean velocity at the inlet, D is the throat
diameter and ν the kinematic viscosity of the fluid. The Reynolds number at the throat
involves the mean velocity in this area, which is twice the inlet velocity, corresponding to
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Ret = 2Re. These two equations have been non-dimensionalized using D as the character-
istic length unit and D/U as the time unit.

Numerical simulations have been carried out using the numerical solver Nek5000
(version 19) [23], an open-source code that uses Legendre spectral elements as spatial
discretization. This code has been used to accurately simulate a number of complex flow
cases in the literature [24,25]. The inlet-velocity boundary condition is modelled using a
Poiseuille profile, as:

vx =
2
3

(
1− y2

(3/2)2

)
, (3)

vy = 0, (4)

where y ∈ [−1.5, 1.5], while Neumann boundary conditions are set for the pressure field.
For modelling the wall of the geometry, Dirichlet boundary conditions are imposed for
both velocity and pressure fields (vx = 0 , vy = 0 , p = 0). Finally, in the outlet surface,
for the direction normal to the outflow, the sum of pressure and viscous stress is zero. That
means ∇v ·~n = 0, as~n is the outward unit normal vector, and Dirichlet for the pressure.
The boundary parallel direction is treated as Dirichlet for both velocity and pressure.

The mesh was generated using Genbox, the native mesh generator for Nek5000. This
mesh contains 8650 spectral elements, each one discretized using eleven Gauss–Lobatto–
Legendre points (polynomial degree 10). A larger concentration of elements is located in
the area of the sudden expansion, to guarantee the good resolution of the results.

An explicit second-order extrapolation scheme for the time integration has been
used as the temporal discretization. A grid independence study has been carried out in
order to observe the influence of the polynomial degree on the simulations. Polynomial
degrees 8, 10 and 12 have been used to solve the problem, comparing the streamwise and
spanwise velocity components at 10 representative points along the domain. This study
has been carried out at Reynolds numbers 500, where the flow converges to a steady state,
and 1500, where the flow is unsteady. The variations in the velocity components in the
results obtained at Reynolds number 500 were found between the fifth and sixth significant
decimal digit, so the three cases compared show similar results. At Reynolds number
1500, larger differences were identified between the solution with polynomial degree 8,
and with polynomial degrees 10 and 12. Nevertheless, the largest differences in the velocity
vector identified between the results obtained with polynomial degrees 10 and 12 were
found between the second and third significant decimal digit. For simplicity (reduced
computational cost), the solution with polynomial degree 10 is selected to proceed with the
data analysis carried out in this article, assuming a relative error of ∼2–3% in the results
presented. This error is calculated comparing the L2 norm of the velocity vector in the
results obtained with polynomial degrees 10 and 12, considering the latter case as the
reference. Moreover, following the results presented in previous works [20,26–28], the base
flow has been validated comparing the main topology patterns describing the flow (the
separation bubble, described in detail below, in Section 4.1). As in the literature, the present
article compares the evolution of the size of the two bubbles as a function of the Reynolds
number. More specifically, it shows the position of the reattachment point of the flow.
Figure 2 shows that the numerical results from this article agrees with the literature.
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Figure 2. Reattachtment point xR of the separation bubble identified as main topology patterns in
the FDA geometry as a function of the Reynolds number at the throat (Ret = 2Re). Comparison of
the present numerical simulations with the literature [20,26–28].

3. Methodology

This section introduces the two methodologies employed to identify the main patterns
and bifurcations in the FDA nozzle: linear stability analysis and higher-order dynamic
mode decomposition. The first technique is used to identify the main bifurcations occurring
in the flow at low Reynolds number, when it is steady. The second method is a data-driven
technique that has been used to identify the main flow structures modeling the unsteady
flow in the FDA nozzle at intermediate Reynolds number.

3.1. Linear Stability Analysis

Linear stability theory (LST) studies the evolution of a small perturbation imposed
upon a base flow. Following the Reynolds decomposition, it is possible to decompose the
instantaneous flow field, defined by the state vector representing the velocity vector and
pressure fields as q(x, t) = (v(x, t), p(x, t)), as follows:

q(x, t) = Qb(x, t) + q̂(x, t), (5)

where Qb(x, t) is the base flow and q̂(x, t) represents the flow perturbations. The clas-
sical theory defines the base flow as a steady state [29,30], although in more recent con-
texts, the base flow is also considered as the mean flow from unsteady solutions [31].
The present article focuses on studying the first flow bifurcations, hence the base flow is a
steady solution.

Introducing (5) into the Navier–Stokes Equations (1) and (2), and linearizing them
over the base flow, it is possible to obtain the linear form of the Navier–Stokes equations,
defined as:

∇ · v̂ = 0, (6)

∂v̂
∂t

+ v̂ · ∇Vb + Vb · ∇v̂ = −∇p +
1

Re
∆v̂. (7)

Writing these equations as an initial value problem and taking into account the
separability between temporal and spatial coordinates, where the following Fourier decom-
position is introduced in time as q̂ = q̃e−iλt, we obtain the following generalized matrix
eigenvalue problem

Bq̃ = λAq̃, (8)
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with A and B being the matrices that collect information regarding the boundary conditions
of the problem. The eigenvectors q̃ define the shape of the most unstable modes leading
the flow motion, which are identified by means of the eigenvalues λ, defined as λ = σ + iω,
where ω is the oscillation frequency and σ is the growth rate. For values of σ > 0,
the solution of the system is unstable, producing changes in the flow (i.e., symmetry
breaking, flow unsteadiness, flow three-dimensionality), while for values of σ < 0, this
solution is stable and the flow remains as initially. Two types of solutions are possible.
In the first case, the flow is unstable, but the mode is steady (ω = 0), while in the second
case the mode oscillates with a frequency ω 6= 0. These are known as pitchfork and Hopf
bifurcations, respectively. The present paper identifies these two types of bifurcations,
originated by the presence of some artificial noise (small perturbation) in the base flow,
growing in time and producing changes in it. In the first case, when the leading mode
becomes unstable as a function of the rise in the Reynolds number (passes from σ < 0 to
σ > 0), the base flow modifies its shape, leading into a new base flow (also steady), while
in the second case, the base flow becomes unsteady. Studying further flow bifurcations
would require more complex analyses, such as Floquet stability analysis [32], which is
beyond the scope of this paper. Nevertheless, more complex flows (formed by a larger
number of frequencies) can be analyzed using more sophisticated techniques as introduced
in the following section.

The linear stability analysis has been carried out using the module for linear stability
analysis of the solver Nek5000 [23], which uses the Arnoldi method implemented in the
software package ARPACK. More details about the numerical implementation of the code
can be found in Ref. [33]. The boundary conditions for the computation of the base flow
are the same as for the non-linear numerical simulations: the velocity inlet is modeled
with the Poiseuille profile as in Equations (3) and (4), no-slip boundary conditions are
used for the walls of the geometry and outflow conditions are used for the outlet surface,
namely, for the direction normal to the outflow, the sum of pressure and viscous stress
is zero. That means ∇v ·~n = 0, as ~n is the outward unit normal vector, and Dirichlet for
the pressure. The boundary parallel direction is treated as Dirichlet for both velocity and
pressure. The mesh used to solve the analysis is the same as in the numerical simulations
for the non-linear Navier–Stokes equations, previously described in Section 2. Hence the
mesh is composed of 8650 elements and the polynomial order for the Legendre spectral
elements is 10. The results obtained in this article are in good agreement with the results
presented in Ref. [20], where they perform the linear stability analysis to study a sudden
expansion geometry (same as the FDA but without the convergent part of the channel).
More details will be presented in Section 4.2.

3.2. Higher-Order Dynamic Mode Decomposition

Higher-order dynamic mode decomposition (HODMD) [19] is a data-driven method
used in flow dynamics to identify flow patterns. HODMD is an extension of dynamic
mode decomposition (DMD) [34] introduced for the analysis of complex flows, such as
noisy experiments [35,36], transitional flows [37], turbulent flows [38], et cetera, to either
study the flow physics [39] or to create reduced order models [40,41].

Similarly to DMD, HODMD decomposes the original data vk (snapshot) as an expan-
sion of DMD modes in the following way:

vk ' vDMD
k ≡

M

∑
m=1

amume(δm+iωm)(k−1)∆t, k = 1, . . . , K, (9)

where um are the DMD modes, and ωm, δm, am are their corresponding frequencies, growth
rates and amplitudes, respectively. The number of terms, M, can be referred to as the
spectral complexity and K as the temporal dimension (generally K represents the number
of snapshots in the data analyzed). The number of DMD modes retained in the expansion
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(M) depends on a tolerance ε1, which is a parameter tunable as a function of the desired
accuracy to reconstruct the original data using the previous DMD expansion.

The algorithm is described in detail in Ref. [19] (see Ref. [42] to download the code
and to find more details about the way of applying the method). This algorithm can be
summarized in two main steps. Initially, the data are collected into a snapshot matrix.
The first step applies a singular value decomposition (SVD) to the initial data with the aim
of reducing the spatial redundancies, removing the noise (in experiments), or retaining
the large size flow structures (in turbulent flows). A second tolerance (tunable) ε defines
the number of SVD modes retained, representing the main flow dynamics. A DMD-like
algorithm is then applied to this (clean) data in the second step. This algorithm uses d time-
delayed snapshots from the snapshot matrix, resulting in a similar process to the sliding
window from the power spectral density (PSD) analysis. This second step is called the
DMD-d algorithm, where d is a tunable parameter. At this step, the tolerance ε1 (previously
mentioned) defines the number of M DMD modes retained in the expansion (9).

HODMD will be applied to identify the main patterns in the non-linear solution of
the numerical simulations carried out in the FDA geometry. The high complexity of the
data analyzed (a large number of involved frequencies) makes HODMD (a more robust
approach of DMD [39] introduced for the analysis of complex flows [36,38]) a suitable tool
to identify the main frequencies driving the flow dynamics.

4. Results
4.1. Flow Topology

The evolution of the main topology patterns in the FDA nozzle has been studied in
detail in the solution of the numerical simulations obtained at different Reynolds numbers
ranging in the interval Re ∈ [30, 500]. At this conditions the flow is steady, hence the
solutions presented below will be used as the base flow for the linear stability analysis
that is performed in the following section. Figure 3 shows the evolution of the streamwise
velocity and the streamlines in the results obtained (all represented by a laminar flow,
let us remember that the flow presented in this article is two-dimensional, hence we do
not expect the jet breakdown, connected with three-dimensional effects occurring in the
azimuthal component). As in the work presented by Jotkar and Govindarajan [20], it is
possible to identify three different regimes, although, as mentioned before, the geometry
studied in the present article is slightly different from the one presented in the literature,
which is a geometry only composed by the throat and the expansion regions of the FDA
nozzle (the smooth contraction is missing).

In Regime I (Re = 30 and 40) the flow is symmetric. Two identical bubbles are
identified in the top and bottom corners of the expansion of the geometry. At Re = 45
(Ret = 90), the flow is not symmetric anymore and the size of the bubbles change: the
bubble of the top shrinks while the bubble of the bottom increases its size. This symmetry
breaking defines the origin of Regime II. The critical Reynolds numbers distinguishing
regimes I and II is Rec ' 42.5 (in between Re = 40 and Re = 45), in good agreement with
the literature [20], where this critical Reynolds number was estimated as Ret ' 80 (Re ' 40)
by linear stability analysis.
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Figure 3. Streamwise velocity (color map presented on the right figure) and streamlines showing the
evolution of the flow field at different Reynolds numbers (marked as Re in each panel). Zoomed-in
view for x ∈ [−2, 22.5].

The presence of a third small bubble in the top part of the domain, in the middle part of
the pipe, at Re ' 80 (Ret ' 160), defines the origin of Regime III. For simplicity, this small
bubble is called as top-middle bubble. The critical Reynolds number that differentiates
Regimes II and III is Rec ' 75 (Ret ' 150), again in good agreement with the results
presented in Ref. [20]. The size of the bottom and top-middle bubbles increases with the
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Reynolds number, while the small bubble of the top corner of the expansion maintains its
size since the beginning of Regime II. Additionally, the top-middle bubble moves forward
for larger Reynolds numbers. At Re = 200 (Ret ' 400) it is possible to identify a new
flow regime, i.e., Regime IV. The critical Reynolds number defining the origin of this
regime is located at some point defined in the interval 100 < Rec < 200. In Regime IV,
the small bubble of the top corner also starts increasing its size. Simultaneously, the bottom
bubble slightly changes its topology, stretching out and splitting into two parts, giving
rise to the presence of a new bubble, as it is confirmed at Re = 500, where the bottom
bubble is divided into three small bubbles. Moreover, a new bubble is identified adjacent
to one of these three bubbles, reaching the bottom of the pipe. The higher complexity
of the flow in this area suggests that new flow bifurcations could promote the presence
of vortex shedding in this part of the geometry at higher Reynolds numbers, which are
related to the unsteadiness of the flow, as it will be presented in Section 4.3. Regarding the
top-middle bubble, at Re ≥ 200 this bubble moves towards the output of the domain when
the Reynolds number increases, probably vanishing for larger values of Re. The size of the
three bubbles have been compared with the previous work [20], measuring the streamwise
extent of the recirculation zones as a function of the Reynolds number (see Figure 2).

Finally, Figure 4 shows the streamwise velocity field and the streamlines in the flow at
Re = 1500 (Ret = 3000).

Figure 4. Same as Figure 3 for Re = 1500 (Ret = 3000). Representative snapshot of the unsteady flow.

In these conditions, the flow is unsteady, hence the figure shows a representative
snapshot. As can be observed, in this regime the three bubbles identified in the previous
regimes are missing. The steady flow presented in the previous regimes breaks into a
vortex street, which is distributed through all the pipe.

4.2. Linear Stability Analysis

The linear stability analysis has been performed to study the evolution of the growing
small disturbances on the flow. The linear global modes have been calculated at different
Reynolds numbers, identifying the critical Reynolds number at which the flow becomes
unstable, and consequently changes its initial state.

In the conducted calculations, four different modes were identified, i.e., two steady
modes, and two unsteady modes, which are stable in the calculations performed, al-
though the critical Reynolds numbers at which these modes will become unstable have
been approximated by means of linear regression. The steady modes identified are related
with variations in the base flow, while one of the two identified unsteady modes will
be responsible for the transition from steady to unsteady flow. Figure 5 top shows the
evolution of the growth rate of the four leading modes identified as a function of the
Reynolds number, while the bottom figure shows the evolution of the frequency of the two
unsteady modes. For simplicity, the two steady modes are called as mode A and mode B,
while the two unsteady modes are the mode 1 and mode 2.
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Figure 5. Growth rate (top) and frequency (bottom) vs. Reynold number for the eigenvalues
associated with the four leading modes identified in the linear stability analysis.

Starting from the top figure, which follows the evolution of the growth rates, it is
possible to see that the first flow bifurcation is driven by mode A, which is steady. This mode
becomes unstable at Re ' 40 (Ret ' 80), which is connected to the symmetry breaking,
detailed in the topological changes presented Figure 3. The mechanism producing this flow
instability is a pitchfork bifurcation. This result is in good agreement with the literature [20],
as well as the evolution of mode B, which is always stable in the calculations performed,
since it is recovered using a time stepper code. Following a linear regression tendency to
extrapolate the results obtained, the critical Reynolds number of mode B, mode 1 and mode
2 is ∼130, ∼740 and ∼1000. Although at Re = 200 the growth rate of mode 1 and mode 2
is similar, following the tendency of these modes at larger Reynolds numbers it is found
that mode 1 is more unstable than mode 2, hence it is expected that mode 1 would be the
main mechanism triggering the flow unsteadiness. Figure 5, bottom, shows the evolution
of the frequency as a function of the Reynolds number in mode 1 and mode 2. As observed,
the frequency of mode 1 is smaller than that frequency of mode 2, suggesting that the main
changes produced in the flow would be driven by a low-frequency mode. In the figure,
the frequencies of modes 1 and 2 are extrapolated using a linear regression to estimate the
frequency of these modes at their corresponding critical Reynolds number. Following this
tendency, the frequency of mode 1 at Re ' 740 is ω ' 0.038 and for mode 2 at Re ' 1000 is
ω ' 0.095.

Figure 6 shows the streamwise velocity components and the streamlines of mode A
calculated at different Reynolds numbers, before and after the critical Reynolds number
of this mode. As mentioned above, this mode is responsible for the symmetry breaking
produced in the flow. The shape of this mode is in good agreement with the results
presented by Jotkar and Govindarajan [20].

The highest activity of mode A is located near the expansion region. The mode is
symmetric below the critical Reynolds number, although the symmetry breaks for values
above such Reynolds number. The changes in the shape of the mode and its location justifies
once more that this mode is the main mechanism triggering the symmetry breaking shown
in Figure 3, where the bottom bubble increases its size. This is also in good connection with
the shape of this mode at Re = 45, where the lower part of the mode presents a small area
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where the intensity of its activity is attenuated in the region where the large size bottom
bubble would be located.

The mode B is presented in Figure 7. The highest intensity of mode B is located in the
mid part of the channel, in 8.5 ≤ x/D ≤ 18.

Figure 6. Streamwise velocity component (color map presented on the right figure) and streamlines in
mode A for Re = 30 (top) and Re = 45 (bottom). Mode A becomes unstable at Re = 40. Zoomed-in
view for x ∈ [−2, 22.5].

Figure 7. Streamwise velocity component (color map presented on the right figure) and streamlines
in mode B for Re = 30 (top), Re = 45 (center) and Re = 100 (bottom). The mode is always stable at
the present flow conditions. Zoomed-in view for x ∈ [−2, 22.5].

This mode is symmetric with respect to the mid part of the channel at Re = 30 and 45
(below and above the critical Reynolds number of the first flow bifurcation). At Re = 100
the mode inclines itself, although the main activity is maintained in the same area as before.
At this flow conditions, the streamlines of the mode show a small bubble adjacent to the
mode, reaching the bottom wall of the pipe. Although the shape of the mode changes
with the Reynolds number, the regime identified in Figure 3 corresponds to Regime III
in the three cases presented. This suggests that the changes in the shape of the mode are
connected with the larger size and the position of the top-middle bubble, which travels
downstream as Re increases, leading to the new Regime IV shown in Figure 3 at Re = 200.

Finally, Figure 8 shows mode 1, the most unstable of the two unsteady modes identi-
fied.

The main activity of the mode is in the mid part of the channel, in both cases just
upstream the main core of the bottom bubble from Figure 3. The region of highest activity
of the mode at Re = 200 is smaller than at Re = 500, suggesting that the influence of the
mode over the entire flow field increases when it becomes more unstable. This suggests the
connection of this mode with the origin of the vortex street identified in the entire length of
the pipe at Re = 1500, as previously presented in Figure 4.



Fluids 2021, 6, 4 12 of 16

A parametric study has been carried out, changing the value of the Krylov subspace,
with values of 1000, 2000 and 4000. The variations in the eigenvalues among the three cases
were found between the sixth and seventh decimal digit, so did the eigenmodes.

Figure 8. Streamwise velocity component (color map presented on the right figure) and streamlines
of mode 1 for Re = 200 (top) and Re = 500 (bottom). The mode is always stable at the present flow
conditions. Zoomed-in view for x ∈ [−2, 22.5].

4.3. Flow Structures in the Unsteady Flow

This last section identifies the main structures in the flow presented in Figure 4. This
flow has been obtained solving the non-linear Navier stokes equations at Reynolds number
1500 (Ret = 3000), resulting in an unsteady flow. As described in Section 4.1, the topology
of this flow is quite different to the one presented at low Reynolds number, when the
flow was steady. Hence the global modes identified in this case may differ from the ones
identified in the previous section by linear stability analysis.

HODMD has been applied to analyze a set of 600 snapshots equidistant in time
with ∆t = 0.3. To ensure that the flow was saturated (the numerical simulations were
converged), avoiding in this way the presence of transitional (growing or decaying) modes,
these snapshots were collected after running the code for 1000 time units. Hence, the data
analyzed are contained in the time interval t ∈ [1001, 1181].

HODMD was calibrated first to ensure the high accuracy of the results presented.
Hence, various analyses were performed using the tolerances ε = ε1 = 10−2 and 5× 10−2,
which provide more and less accurate results, respectively, and the parameters d = 100,
120 and 150. Figure 9 shows the frequencies as a function of the amplitudes of the DMD
modes identified with the different tolerances. The top figure shows all the results obtained.
As can be observed, the spectrum is noisy, and it is difficult to identify the leading modes.

The top part of the figure shows a zoomed-in view for the low-frequency modes.
The less accurate tolerance, ε = ε1 = 5× 10−2, retains a smaller number of modes with
frequency smaller than ω = 2 in all the cases. In this figure it is possible to identify
only a few modes that are robust. The robust modes are the ones presenting similar
frequencies and amplitudes in all the tests carried out, forming clusters of modes. Based
on previous work [38] these modes can be considered as the physical modes driving the
flow. The frequency of the robust modes is ω = 0, for the one with the highest amplitude,
representing the mean flow, and ω = 0.35, ω = 0.5 and ω = 0.93 for the unsteady
remaining robust modes. Let us note that in the spectrum it is possible to identify a
larger number of modes considering only the results with the more accurate tolerance
ε = ε1 = 10−2, which would complement the results presented. Nevertheless, the present
article only intends to identify the highest amplitude modes to give a general description
of the main patterns driving the flow. Studying in detail the spectrum and identifying more
relevant modes describing the flow remains as an open topic for future research, with the
aim of using this information to create novel accurate reduced-order models based on the
physical insight of the flow.
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Figure 9. Frequencies vs. amplitudes representing the dynamic mode decomposition (DMD) modes
in the plannar FDA nozzle. Top: complete spectrum. Bottom: blow up of the region with frequencies
between 0 and 2.

Figure 10 shows the real part of the streamwise component of the main DMD modes.

Figure 10. Real part of the streamwise velocity component (color map presented on the bottom
figure) of the DMD modes. From top to bottom: ω = 0, 0.35, 0.5 and 0.93. The modes are normalized
with their maximum value. Zoomed-in view for x ∈ [0, 22.5]

The mode representing the mean flow is asymmetric, in good agreement with the
first flow bifurcation studied by means of the linear stability analysis in the previous
section. The remaining modes describe a vortex street whose main activity starts when the
main activity of the steady mode finishes. Although, depending on the frequency of the
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mode, the main activity and the shape of the vortex street is slightly different. These three
unsteady modes describe the main dynamics driving the flow in the vortex street identified
in the expansion of the FDA nozzle presented in Figure 4. Controlling the presence of these
modes (and also the presence of the linear stability modes, which are identified first), could
aid the construction of new medical devices that minimize their damage produced in the
human body. However, this remains as an open topic for future research.

5. Conclusions

This article studies in detail the main flow patterns and bifurcations described in the
FDA nozzle, a benchmark nozzle that resembles an idealized medical device introduced in
‘The critical path initiative’ program [4] created by the United States.

Numerical simulations have been performed at several Reynolds numbers using
the solver Nek5000 [23], obtaining steady solutions with different flow topologies in the
expansion of the geometry. The results obtained have been validated with the literature [20].
Depending on the flow topology, four different regimes have been identified as a function
of the Reynolds number. Starting from low to high Reynolds number it is possible to define
Regimes I–IV. In Regime I, the flow is symmetric. This regime is characterized by the
presence of two small bubbles located in the upper and bottom corners of the expansion.
Regime II is introduced by a symmetry breaking, where the upper bubble shrinks while the
bottom bubble enlarges. In Regime III, a third bubble is identified in the upper part of the
expansion, in the middle part of the pipe, reaching the top wall. Finally, at higher Reynolds
number it is possible to identify Regime IV, where the bubble of the upper–middle part
moves downstream, partially leaving the domain, and the bottom bubble splits into several
small bubbles. These topology patterns have been compared with other results obtained at
larger Reynolds numbers, when the flow is unsteady. In these conditions a vortex street is
identified distributed along the entire length of the pipe, starting on the expansion area.

Linear stability analysis has been performed to identify the leading flow bifurcations
and its connection with the changes in the topology of the flow. From this analysis, three
leading modes have been identified: two steady modes and one unsteady mode. The first
leading mode is steady. This mode is considered as the main mechanism triggering the
symmetry breaking previously described, considered as the origin of Regime II. The mode
represents a pitchfork bifurcation. The second leading mode is also steady. This mode is
always stable in the calculations performed, but the critical Reynolds numbers that define
the stability limit of this mode have been estimated extrapolating the results obtained
using linear regression. This second mode has been related to the presence of the top
bubble identified in the topological Regime III. Finally, the third mode is a low-frequency
mode, which is the main mechanism triggering the flow unsteadiness. This mode is always
stable in the conducted calculations, although as in the previous case, the critical Reynolds
number defining the origin of the flow unsteadiness is estimated by linear regression.
The highest intensity of this mode is located upstream the small bottom bubbles defined in
Regime IV.

Finally, the unsteady solution of the flow calculated at high Reynolds numbers has
been studied in detail. The main flow patterns have been identified using HODMD, which
provides the leading DMD modes describing the flow. The flow analyzed is composed
of a vortex street distributed through all the pipe defining the expansion of the geometry.
This topology is totally different from the steady laminar flow studied with the linear
stability analysis, therefore, the DMD modes identified by the method are different from
the ones of the linear analysis. HODMD identifies four leading modes, which model the
main dynamics of the flow. The most relevant mode is steady, representing an asymmetric
solution (the mean flow), in good agreement with the first linear stability mode found at
low Reynolds number, which was triggering this symmetry breaking. The three remaining
modes are unsteady, and represent the vortex street distributed along the pipe. These
modes present a similar shape, although their region of highest intensity slightly changes
among them. HODMD also identifies other relevant modes, which are not studied in
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detail in the present paper, because their (spatial) amplitude is small. This paper intends
to identify the driving dynamics of the flow field, rather than creating a reduced-order
model of the flow. Nevertheless, studying in detail this solution remains an open topic for
future research.
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