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Abstract: This work presents the novel first-order comprehensive adjoint sensitivity analysis methodology
for critical points (1st-CASAM-CP), which enables the exact and efficient computation of the first-
order sensitivities of responses defined at critical points (maxima, minima, saddle points) of coupled
nonlinear models of physical systems characterized by imprecisely known parameters underlying the
models, boundaries, and interfaces between the coupled systems. Responses defined at critical points
are important in many applications, including system optimization, safety analyses and licensing.
For the design and licensing of nuclear reactors, such essentially important responses include the
maximum temperatures of the fuel and cladding in hot channels. The 1st-CASAM-CP presented
in this work makes it possible to determine, using a single large-scale “adjoint” computation, the
first-order sensitivities of the magnitude of a response defined at a critical point of a function in
the phase-space of the systems’ independent variables. In addition, the 1st-CASAM-CP enables
the computation of the sensitivities of the location in phase-space of the critical point at which the
respective response is located: one “adjoint” computation is required for each component of the
respective critical point in the phase-space of independent variables. By enabling the exact and
efficient computation of the sensitivities of responses and of their critical locations to imprecisely
known model parameters, boundaries, and interfaces, the 1st-CASAM-CP significantly extends
the practicality of analyzing crucially important responses for large-scale systems involving many
uncertain parameters, interfaces, and boundaries.

Keywords: critical points; coupled systems; adjoint sensitivity analysis; uncertain parameters;
uncertain interfaces; uncertain boundaries

1. Introduction

Computational models comprise independent and dependent variables, imprecisely
known parameters, imprecisely known internal interfaces and external boundaries, and
relations (equations) that relate all of these quantities to each other. The efficient computing
of the exact functional derivatives (called “sensitivities”) of the result of interest (called
“model response”) produced by the computational model has been of fundamental interest
for predicting the changes in the response induced by changes in the parameters. The
adjoint sensitivity analysis methodology for nonlinear systems introduced by Cacuci [1]
has become the most efficient tool for sensitivity analysis [2–5] of large-scale systems
involving a large number of parameters. Response sensitivities are also essential for
computing the uncertainties in responses induced by uncertainties in the parameters, data
assimilation [6–8], model calibration and predictive modeling [9].

Often, the result of interest produced by a computational model is located at a critical
point (e.g., maximum, minimum, saddle point, bifurcation point, etc.) of the respective re-
sponse in the phase-space of the model’s underlying independent variables. Such responses
occur in optimization problems and also in safety-related considerations. For example,
among the most important safety parameters for the licensing of nuclear reactors are the
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maximum fuel temperature, the maximum cladding temperature, the maximum admissible
heat flux, etc. For such model responses, variations in the imprecisely known parameters
and/or interfaces and/or boundaries will induce perturbations not only in the magnitude
of the respective response but will also cause the critical point of the perturbed response to
“move” in phase-space, i.e., to occur at another (perturbed) location in the phase-space of
the model’s independent variables, as opposed to re-occurring at the original location of
the critical point of the original, unperturbed model response. This fact has been recog-
nized by Cacuci [10] in his pioneering work on developing an adjoint sensitivity analysis
methodology for computing exactly and efficiently the sensitivities (functional derivatives)
of the magnitude of such a response—as well as the sensitivities of the respective critical
point(s)—with respect to the imprecisely known model parameters. The methodology
conceived in [10] has been successfully applied [11] to a large-scale computational tool
used for reactor physics and safety design, enabling the exact computation of the first-order
sensitivities of the magnitude of the maximum clad temperature (and several other similar
responses) to the many parameters underlying the computational model, as well as the
sensitivities of the location of the respective maximum to the respective model parameters.
Since the pioneering work described in [11], however, no other works have attempted to
compute sensitivities of the locations of responses defined at critical points to uncertain
model parameters. Furthermore, none of the works published thus far, including Cacuci’s
original work [10], have the capabilities of computing sensitivities of critical points with
respect to imprecisely known interfaces between coupled nonlinear subsystems and/or
with respect to their imprecisely known external boundaries in phase space. This work
alleviates this gap by extending the first-order comprehensive adjoint sensitivity analysis
methodology (1st-CASAM) recently developed by Cacuci [12], to enable the efficient and
exact computation of the first-order response sensitivities of model responses (of coupled
nonlinear physical systems) defined at critical points with respect to the systems’ impre-
cisely known parameters, interfaces between systems and domain boundaries. Thus, the
extended 1st-CASAM-CP presented in this work fundamentally generalizes all previously
published works on this topic, and includes the following novel characteristics:

(i) The system response considered in this work is a generic model response which
is defined at a critical point in the phase-space of the coupled nonlinear models’
independent variables. The critical point is defined implicitly as the location where
some (or all) of the first-order derivatives of the response with respect to some (or all)
of the models’ independent variables vanish.

(ii) The 1st-CASAM-CP enables the simultaneous, efficient, and exact computation of
the 1st-order sensitivities of the magnitude of the model’s response to the imprecisely
known parameters, interfaces, and domain boundaries of the coupled physical systems.

(iii) The 1st-CASAM-CP also enables the simultaneous, efficient, and exact computation of
the 1st-order sensitivities of the response’s critical point location (in the phase-space
of independent variables) to the imprecisely known parameters, domain interfaces
and boundaries of the coupled physical systems.

The application of the 1st-CASAM-CP developed in this work will be illustrated in an
accompanying work [13] by considering a nuclear reactor thermal-hydraulics safety bench-
mark [14–16] which models heat conduction in a heated rod coupled to convection heat
transport through a coolant that surrounded the rod. This benchmark [14–16] admits exact
closed-form solutions for the sensitivities of the temperature distribution in the coupled
rod/coolant system which can be used to benchmark thermal-hydraulics production codes.
This benchmark is of fundamental importance both to the simulation of heat transport
through reactor core channels, as well as to the design and operation of electrically heated
rods in experimental thermal-hydraulics facilities. In particular, this benchmark was used
to simulate the geometry of an advanced (“Generation-IV”) modular nuclear reactor [17]
while verifying the numerical results produced by the commercially available FLUENT
Adjoint Solver [18] and highlighting, in the process, various shortcomings of the current
version of this code.
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This work is structured as follows: Section 2 presents the mathematical definition
of a response located at its critical point in the phase-space of the independent variables
underlying two coupled generic nonlinear physical systems comprising imprecisely known
parameters, interfaces, and boundaries. Section 3 presents the extended 1st-CASAM-CP
for computing exactly and efficiently the first-order sensitivities of the magnitude of
the response and of its phase-space location of its critical point to the physical systems’
imprecisely known parameters, interfaces, and boundaries. The discussion presented in
Section 4 offers concluding remarks

2. Mathematical Modeling of a Response Defined at Critical Points of Two Generic
Coupled Nonlinear Physical Systems

The mathematical model of the physical system considered in this work comprises
two coupled nonlinear sub-systems which will be called “sub-system I” and, respectively,
“sub-system II”. These sub-systems are considered to be coupled to each other across a
common internal interface (boundary) in phase-space. The first subsystem is represented
mathematically as follows:

N(I)[u(x);α] = Q(I)(α; x) , x ∈ Ωx(α) (1)

Bold letters will be used in this work to denote matrices and vectors. The superscript
“I” will be used to denote quantities referring to “sub-system I.” Unless explicitly stated
otherwise, the vectors in this work are considered to be column vectors. The second
subsystem is represented mathematically as follows:

N(I I)[v(y);α] = Q(I I)(α; y) , y ∈ Ωy(α) (2)

The superscript “II” will be used to denote quantities referring to “sub-system II.” The
sub-systems are coupled through interface conditions. Furthermore, when Equations (1)
and (2) include differential operators, the interface conditions appear as internal boundary
conditions, which may need to be supplemented by conditions on the sub-systems’ external
boundaries, as well as initial/final conditions. Altogether, the interface, boundary and
initial (or final time) conditions can be represented in operator form as follows:

B[u(x), v(y);α; x, y] = 0, x ∈ ∂Ωx(α), y ∈ ∂Ωy(α) (3)

The quantities (operators, vectors, scalars) appearing in Equations (1)–(3) are de-
fined/described in Appendix A.

The system responses (i.e., quantities of interest) considered in previous works [12]
were generic function-valued operators of the model’s dependent variables and parameters.
In contradistinction to previous works [12], however, the specific response considered in
this work is a scalar-valued functional defined at a critical point of the model’s dependent
variable(s), including maxima, minima, saddle points or bifurcation points. A function
defined on the phase-space domain of “Sub-system I” will be denoted as F[u(x);α; x].
The critical point of F[u(x);α; x] will be denoted as ξ(α) , [ξ1(α), . . . , ξK(α)]

†, K ≤ Nx,
and is defined implicitly as the point at which the first-order partial derivatives of F with
respect to some or all of the independent variables xk , k = 1, . . . , K ≤ Nx, vanish, i.e.,{

∂F[u(x);α; x]
∂xk

}
ζ(α)

= 0, k = 1, . . . , K ≤ Nx (4)
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The value (i.e., magnitude) of the response at the critical pointξ(α) , [ξ1(α), . . . , ξK(α)]
†,

K ≤ Nx of F[u(x);α; x], which is defined implicitly by Equation (4), will be denoted as Rx
and is represented by the following functional:

Rx ,
Nx

∏
i=1

bi(α)∫
ai(α)

dxiF[u(x);α; x,]
K

∏
k=1

δ[xk − ξk(α)] , K ≤ Nx (5)

where the following definition has been used:

Nx

∏
i=1

bi(α)∫
ai(α)

dxi ,

b1(α)∫
a1(α)

dx1 . . .

bNx (α)∫
aNx (α)

dxNx (6)

The phase-space coordinates ξk(α), k = 1, . . . , K ≤ Nx, of the critical point ξ(α) ,
[ξ1(α), . . . , ξK(α)]

† of F[u(x);α; x] are imprecisely known since they are functions of the
uncertain values of the imprecisely known model parameters α , (α1, . . . , αZα)

† ∈ RZα .
Hence, the actual value/magnitude of the response Rx is also unknown. The nominal value
of the response at the critical point defined implicitly by Equation (4) will be denoted as
R0

x and is determined by computing this response at the nominal values α0 and u0(x), i.e.,

R0
x ,

Nx

∏
i=1

bi(α
0)∫

ai(α0)

dxiF
[
u0(x);α0; x,

] K

∏
k=1

δ
[

xk − ξk

(
α0
)]

, K ≤ Nx (7)

Similarly, when the system response is a scalar-valued functional defined at a crit-
ical point of a function G[v(y);α; y] pertaining to “Sub-system II,” the critical point of
G[v(y);α; y] will be denoted as η(α) , [η1(α), . . . , ηM(α)]†, M ≤ Ny, and is defined
implicitly as the point at which the first-order partial derivatives of G with respect to some
or all of the independent variables yj vanish, i.e.,:{

∂ G[v(y);α; y]
∂ym

}
η(α)

= 0, m = 1, . . . , M ≤ Ny (8)

The imprecisely known value of the response at the critical point of G[v(y);α; y],
determined implicitly by Equation (8), will be denoted as Ry and is defined as follows:

Ry ,
Ny

∏
i=1

di(α)∫
ci(α)

dyi G[v(y);α; y]
M

∏
m=1

δ[ym − ηm(α)] , M ≤ Ny (9)

The nominal value of the response at the critical point defined implicitly by Equation (9)
will be denoted as R0

y and is determined by computing this response at the nominal values
α0 and v0(y), i.e.,

R0
y ,

Ny

∏
i=1

di(α
0)∫

ci(α0)

dyi G
[
v0(y);α0; y

] M

∏
m=1

δ
[
ym − ηm

(
α0
)]

, M ≤ Zy (10)

3. Mathematical Framework of the 1st-CASAM-CP for Responses Defined at a
Critical Point

The true but unknown values of the parameters will differ from their known nominal
values by quantities denoted as δα , (δα1, . . . , δαZα), where δαi , αi − α0

i , i = 1, . . . , Zα.
In turn, the parameter variations δα will cause variations δu(x) , [δu1(x), . . . , δuNu(x)]

†
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and δv(y) , [δv1(y), . . . , δvNv(y)]
† in the state functions, respectively. Furthermore, the

variations δα, δu(x) and δv(y) will cause variations in the response Rx around the nominal
response value R0

x, as well as variations in the response Ry around the nominal value R0
y.

Sensitivity analysis aims at computing the functional derivatives (called “sensitivities”) of
the response under consideration to the imprecisely known parameters α. Subsequently,
these sensitivities can be used for a variety of purposes, including quantifying the uncer-
tainties induced in responses by the uncertainties in the model and boundary parameters,
combining the uncertainties in computed responses with uncertainties in measured re-
sponse (“data assimilation”) to obtain more accurate predictions of responses and/or
parameters (“model calibration,” “predictive modeling”), etc.

The 1st-order total sensitivity of a general vector-valued nonlinear operator V[u(x), v(y);α],
defined on the complete domain Ωx ∪Ωy on which the two coupled nonlinear systems are
defined [details are provided in Appendix A] is defined [1–5] by the first-order Gateaux-
(G-)variation of the respective operator. To simplify the notation in preparation for comput-
ing the G-variation of V[u(x), v(y);α], it is convenient to denote the functions appearing in
the arguments of V[u(x), v(y);α] as being the components of a vector e , [u(x), v(y);α]†,
which represents an arbitrary “point” in the combined phase-space of the state functions
and parameters. The point which corresponds to the nominal values of the state functions
and parameters in this phase space is denoted as e0 ,

[
u0(x), v0(y);α0]†. Analogously, it

is convenient to consider the variations in the model’s state functions and parameters to be
the components of a “vector of variations”, δe, defined as follows: δe , [δu(x), δv(y); δα]†.
With these notations, the first-order G-variation of V(e), denoted as δV

(
e0; δe

)
, of V(e) at

e0 in directions δe is defined is as follows:

δV
(

e0; δe
)
,
{

d
dε

V
[
u0(x) + εδu(x), v0(y) + εδv(x);α0 + εδα

]}
ε=0

(11)

The G-differential δV
(
e0; δe

)
is an operator defined on the same domain as R(e) and

has the same range as R(e). The G-differential δV
(
e0; δe

)
satisfies the relation V

(
e0 + εδe

)
−

V
(
e0) = δV

(
e0; δe

)
+ ∆(δe) , with lim

ε→0
[∆(εδe)]/ε = 0 . The existence of the G-variation

δV
(
e0; δe

)
does not guarantee its numerical computability. Numerical methods most often

require that δV
(
e0; δe

)
be linear in the variations δe in a neighborhood

(
e0 + εδe

)
around

e0. The necessary and sufficient conditions for the G-differential δV
(
e0; δe

)
of a nonlinear

operator V(e) to be linear in δe in a neighborhood
(
e0 + εδe

)
around e0, and thus admit

partial and total G-derivatives, are as follows:

(i) For an arbitrary variation δe, the operator V(e) must satisfy a weak Lipschitz condi-
tion at e0, i.e.,

‖V
(

e0 + εδe
)
−V

(
e0
)
‖ ≤ k‖εe0‖, k < ∞ (12)

(ii) For two arbitrary variations δe1 and δe2, the operator V(e) must satisfy the follow-
ing relation:

V
(

e0 + εδe1 + εδe2

)
−V

(
e0 + εδe1

)
−V

(
e0 + εδe2

)
+ V

(
e0
)
= o(ε) (13)

In practice, however, the conditions shown in Equations (12) and (13) are seldom used
directly. Rather, after the G-variation of the operator under consideration is obtained by
applying the definition provided in Equation (11) and the resulting operator is subsequently
verified (often by inspection) if it is linear (or not) in the variation δe. A G-variation
δV
(
e0; δe

)
which is linear in δe is called the G-differential of V(e) at e0 in directions δe.

The G-differential of V(e) is often denoted as DV
(
e0; δe

)
in order to emphasize its linearity

in δe and its identification with the total differential in customary calculus.
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3.1. First-Order Sensitivities of the Response Rx to the Imprecisely Known Model Parameters,
Internal and External Boundaries

Section 3.1. presents the derivations of the first-order adjoint sensitivity system needed
for the exact and efficient computation of the first-order sensitivities of the response Rx with
respect to the model’s uncertain parameters, including boundary and interface conditions.
Section 3.2. presents the derivations of the first-order adjoint sensitivity system needed
for the exact and efficient computation of the first-order sensitivities of the critical point
ξ(α) , [ξ1(α), . . . , ξK(α)]

†, K ≤ Nx at which the response Rx is defined.
The total sensitivity of the response Rx defined in Equation (6) with respect to vari-

ations in the parameters and state functions around their respective nominal values is
provided by the 1st-order G-variation of the response Rx; this first-order G-variation will
be denoted as δRx. The total sensitivity δRx is obtained, by definition, as follows:

δRx ,

 d
dε

b1(α
0+εδα)∫

a1(α0+εδα)

dx1 . . .
bNx (α

0+εδα)∫
aNx (α

0+εδα)

dxNx F
[
u0(x) + εδu(x);α0 + εδα; x

]
×

K
∏

k=1
δ
[
xk − ξk

(
α0 + εδα

)]}
ε=0

=
Zα

∑
p=1

{
∂Rx
∂αp

}
(u0,α0)

δαp = {δRx}dir + {δRx}ind,

(14)

where the so-called “indirect-effect term” {δRx}ind depends on the unknown variation
δu(x) and is defined as follows:

{δRx}ind ,
Nx

∏
i=1

bi(α
0)∫

ai(α0)

dxi

{[
∂F(u;α; x)

∂u
δu
] K

∏
k=1

δ[xk − ξk(α)]

}
(u0;α0)

, K ≤ Nx (15)

while the so-called “direct-effect term” {δRx}dir does not depend on the unknown variation
δu(x) but only depends on the parameter variations δα and is defined as follows:

{δRx}dir =
Zα

∑
p=1

{
∂Rdir

x
∂αp

}
(e0)

δαp =
Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi

{[
∂F(u;α;x)

∂α δα
] K

∏
k=1

δ[xk − ξk(α)]

}
(u0;α0)

+
Nx
∑

i=1

Nx
∏

j=1,j 6=i

bj(α
0)∫

aj(α0)

dxj

{
[F(u;α; x)]xi=bi(α0)

[
∂bi(α)

∂α δα
] K

∏
k=1

δ[xk − ξk(α)]

}
(u0,α0)

−
Nx
∑

i=1

Nx
∏

j=1,j 6=i

bj(α
0)∫

aj(α0)

dxj

{
[F(u;α; x)]xi=ai(α0)

[
∂ai(α)

∂α δα
] K

∏
k=1

δ[xk − ξk(α)]

}
(u0,α0)

−
K
∑

k=1

 Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi F(u;α; x)δ′[xk − ξk(α)]
(

∂ξk(α)
∂α δα

) K
∏

m=1,m 6=k
δ[xm − ξm(α)]


(u0;α0)

,

(16)

The following notations have been used for the various (column) vectors appearing in
Equations (15) and (16):

∂F(u;α; x)
∂u

,
[

∂F
∂u1

, . . . ,
∂F

∂uNu

]†
,

∂F(u;α; x)
∂u

δu =
Nu

∑
i=1

∂F(u;α; x)
∂ui

δui , (17)

∂F(u;α; x)
∂α

,
[

∂F
∂α1

, . . . ,
∂F

∂αZα

]†
;

∂F(u;α; x)
∂α

δα =
Zα

∑
p=1

∂F(u;α; x)
∂αp

δαp . (18)

The vectors ∂ξ j(α)/∂α, ∂bk(α)/∂α, and ∂ak(α)/∂α, which appear in Equation (16),
each have the same structure as the vector ∂F(α)/∂α defined in Equation (18). Thus,
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the partial derivative ∂Rdir
x /∂αp, which is implicitly defined in Equation (16), has the

following expression:

{
∂Rdir

x
∂αp

}
(e0)

=
Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi

{[
∂F(u;α;x)

∂αp

] K
∏

k=1
δ[xk − ξk(α)]

}
(u0;α0)

+
Nx
∑

i=1

Nx
∏

j=1,j 6=i

bj(α
0)∫

aj(α0)

dxj

{
[F(u;α; x)]xi=bi(α0)

∂bi(α)
∂αp

K
∏

k=1
δ[xk − ξk(α)]

}
(u0,α0)

−
Nx
∑

i=1

Nx
∏

j=1,j 6=i

bj(α
0)∫

aj(α0)

dxj

{
[F(u;α; x)]xi=ai(α0)

∂ai(α)
∂αp

K
∏

k=1
δ[xk − ξk(α)]

}
(u0,α0)

−
K
∑

k=1

 Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi F(u;α; x)δ′[xk − ξk(α)]
∂ξk(α)

∂αp

K
∏

m=1,m 6=k
δ[xm − ξm(α)]


(u0;α0)

.

(19)

As indicated by Equation (16), the “direct-effect” term {δRx}dir depends only on
the parameter variations δα and can therefore be computed immediately. On the other
hand, the “indirect-effect” term {δRx}ind depends indirectly on the parameter variations
δα through the yet unknown variation δu. The variations δu and δv(y) are related to
the parameter variations δα through the “first-level forward sensitivity system” (1st-LFSS),
which is obtained by G-differentiating the original equations that underly the coupled
nonlinear sub-systems I and II. Applying the definition of the first-order G-variation to
Equations (1)–(3) yields the following relations:{

d
dε

N(I)
[
u0(x) + εδu(x);α0 + εδα

]}
ε=0

=

{
d
dε

Q(I)
(
α0 + εδα; x

)}
ε=0

, x ∈ Ωx

(
α0
)

, (20){
d
dε

N(I I)
[
v0(y) + εδv(y);α0 + εδα

]}
ε=0

=

{
d
dε

Q(I I)
(
α0 + εδα; y

)}
ε=0

, y ∈ Ωy

(
α0
)

, (21){
d
dε

B
[
u0(x) + εδu(x), v0(y) + εδv(y);α0 + εδα; x, y

]}
ε=0

= 0, x ∈ ∂Ωx

(
α0
)

, y ∈ ∂Ωy

(
α0
)

. (22)

Performing in Equations (20)–(22) the differentiations with respect to ε and setting
ε = 0 in the resulting expression yields the following system of equations:

δN(I)
[
u0(x),α0; δu(x), δα

]
= δQ(I)

(
α0; δα

)
, x ∈ Ωx

(
α0
)

(23)

δN(I I)
[
v0(y),α0; δv(y), δα

]
= δQ(I I)

(
α0; δα

)
, y ∈ Ωy

(
α0
)

, (24)

δB
(

e0; δe
)
= 0, x ∈ ∂Ωx

(
α0
)

, y ∈ ∂Ωy

(
α0
)

(25)

The existence of the G-variations in Equations (23)–(25) does not guarantee their
numerical computability. Numerical methods most often require that these G-variations
be linear in the variations δe in a neighborhood

(
e0 + εδe

)
around e0, implying that the

operators N(I), Q(I), N(I I), Q(I I), B must satisfy the necessary and sufficient conditions
provided in Equations (12) and (13), which will henceforth be assumed to the case, so that
Equations (23)–(25) can be written in the following form:{[

∂N(I)(u;α)
∂u 0

0 ∂N(I I)(v;α)
∂v

]}
(e0)

(
δu(x)
δv(y)

)
=

{(
Q(1)

1 (u;α; δα)

Q(1)
2 (v;α; δα)

)}
(e0)

,

f or x ∈ Ωx
(
α0), y ∈ Ωy

(
α0), (26)

{
∂B[u(x),v(y);α;x,y]

∂u

}
(e0)

δu(x) +
{

∂B[u(x),v(y);α;x,y]
∂v

}
(e0)

δv(y)

+
{

∂B[u(x),v(y);α;x,y]
∂α

}
(e0)

δα = 0, x ∈ ∂Ωx
(
α0), y ∈ ∂Ωy

(
α0). (27)
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where {
Q(1)

1 (u;α; δα)
}
(u0;α0)

,

{
∂
[
Q(I)(α;x)−N(I) [u(x);α]

]
∂α

}
(u0;α0)

δα

=
Zα

∑
i=1

{
∂
[
Q(I)(α;x)−N(I) [u(x);α]

]
∂αi

}
(u0;α0)

δαi,
(28)

{
Q(1)

2 (v;α; δα)
}
(v0,α0)

,

{
∂
[
Q(I I)(α;y)−N(I I) [v(y);α]

]
∂α

}
(v0,α0)

δα

=
Zα

∑
i=1

{
∂
[
Q(I I)(α;y)−N(I I) [v(y);α]

]
∂αi

}
(v0,α0)

δαi,
(29)

The partial G-derivatives ∂N(I)[u(x);α]/∂u, ∂N(II)[v(y);α]/∂v, ∂B[u(x), v(y);α; x, y]/∂u,
∂B[u(x), v(y);α; x, y]/∂v, ∂N( I) [u(x);α]/∂α, ∂N( I I) [v(y);α]/∂α, ∂Q( I) [u(x);α]/∂α,
∂Q(I I)[u(x);α]/∂α and ∂B[u(x), v(y);α; x, y]/∂α, which appear in Equations (26)–(29), are
matrices of corresponding dimensions.

The 1st-LFSS, comprising Equations (26) and (27), could be solved to obtain the varia-
tions δu and δv in the state functions in terms of the parameter variations δα which appear
as sources in the 1st-LFSS equations. Subsequently, the variations δu and δv thus obtained
could be used to compute the total sensitivity ∂Rx using Equation (14). However, com-
puting repeatedly the 1st-LFSS for every possible parameter variation δαp, p = 1, . . . , Zα

becomes prohibitively expensive for large scale systems involving many uncertain pa-
rameters. These repeated computations can be circumvented by extending the concepts
underlying the “Adjoint Sensitivity Analysis Methodology” conceived by Cacuci [2,3] to
construct a “First-Level Adjoint Sensitivity System” (1st-LASS), the solution of which will
be independent of the variations δα, δu and δv. Subsequently, the solution of the 1st-LASS
will be used to compute the indirect-effect term {δRx}ind by constructing an equivalent
expression (for this indirect-effect term) which would not involve the unknown variations
δu and δv.

The construction of the requisite 1st-LASS is achieved by implementing the following
sequence of steps:

1. Consider the union of independent variables describing the combined domain Ωx ∪Ωy

to be the components of the following Nz-dimensional column vector z , [z1, . . . , zNz ]
†.

2. Introduce a Hilbert space pertaining to the domain Ωx ∪Ωy, denoted as H, comprising

square-integrable vector-valued elements of the form f(α)(z) ,
[
g(α)(x), h(α)(y)

]†
∈ H

and f(β)(z) ,
[
g(β)(x), h(β)(y)

]†
∈ H, where g(α)(x) ,

[
g(α)1 (x), . . . , g(α)Nu

(x)
]†

, g(β)(x) ,[
g(β)1 (x), . . . , g(β)Nu

(y)
]†

, h(α)(y) ,
[
h(α)1 (y), . . . , h(α)Nv

(y)
]†

, h(β)(y) ,
[
h(β)1 (y), . . . , h(β)Nv

(y)
]†

.

3. Define the inner product, denoted as
〈

f(α)(z), f(β)(z)
〉

, between two elements of H,
as follows:

〈
f(α)(z), f(β)(z)

〉
,

Nx

∏
i=1

bi(α
0)∫

ai(α0)

dxi

[
g(α)(x)·g(β)(x)

]
+

Ny

∏
i=1

di(α
0)∫

ci(α0)

dyi

[
h(α)(y)·h(β)(y)

]
(30)

where

g(α)(x)·g(β)(x) ,
Nu

∑
n=1

g(α)n (x)g(β)
n (x) (31)

h(α)(y)·h(β)(y) ,
Nv

∑
n=1

h(α)n (y)h(β)
n (y) (32)
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4. Use the definition provided in Equation (30) to form the inner product of Equation (26)

with a square-integrable vector ψ(1)(z) ,
[
ψ(I)(x),ψ(I I)(y)

]†
∈ H to obtain the

following relation:〈(
ψ(I)(x)
ψ(I I)(y)

)†

,

{[
∂N(I)(u;α)

∂u 0

0 ∂N(I I)(v;α)
∂v

]}
(e0)

(
δu(x)
δv(y)

)〉

=

〈(
ψ(I)(x)
ψ(I I)(y)

)†

,

{(
Q(1)

1 (u;α; δα)

Q(1)
2 (v;α; δα)

)}
(e0)

〉
.

(33)

5. Using the definition of the adjoint operator in the Hilbert space H, recast the left-side
of Equation (33) as follows:〈(

ψ(I)(x)
ψ(I I)(y)

)†

,

{[
∂N(I)(u;α)

∂u 0

0 ∂N(I I)(v;α)
∂v

]}
(e0)

(
δu(x)
δv(y)

)〉

=

〈(
δu(x)
δv(y)

)†

,
{[

A∗(u;α) 0
0 B∗(v;α)

]}
(e0)

(
ψ(I)(x)
ψ(I I)(y)

)〉

+

{
BC(1)

[
u(x); v(y);ψ(I)(x),ψ(I I)(y); δu(x), δv(y);α; x, y; δα

]
∂Ωx∪∂Ωy

}
(e0)

,

(34)

where the operator A∗(u;α) denotes the formal adjoint of ∂A(u;α)/∂u, the
operator B∗(v;α) denotes the formal adjoint of ∂B(v;α)/∂v, and where{

BC(1)
[
u(x); v(y);ψ(I)(x),ψ(I I)(y); δu(x), δv(y);α; x, y; δα

]
∂Ωx∪∂Ωy

}
(e0)

denotes the

bilinear concomitant evaluated on the combined (internal and external) boundary
δΩx ∪ δΩy.

6. Replace the left-side of Equation (33) with the right-side of Equation (34) and re-
arrange the resulting equation to obtain the following relation:〈(

δu(x)
δv(y)

)†

,
{[

A∗(u;α) 0
0 B∗(v;α)

]}
(e0)

(
ψ(I)(x)
ψ(I I)(y)

)〉

=

〈(
ψ(I)(x)
ψ(I I)(y)

)†

,

{(
Q(1)

1 (u;α; δα)

Q(1)
2 (v;α; δα)

)}
(e0)

〉

−
{

BC(1)
[
u(x); v(y);ψ(I)(x),ψ(I I)(y); δu(x), δv(y);α; x, y; δα

]
∂Ωx∪∂Ωy

}
(e0)

.

(35)

Require the left-side of Equation (35) to represent the indirect-effect term {δRx}ind

defined in Equation (15), which can be fulfilled by requiring the yet undetermined (adjoint)
functions ψ(I)(x) and ψ(I I)(y) to satisfy the following (adjoint) equations:

{A∗(u;α) }(e0)ψ
(I)(x) =

{
∂F(u;α; x)

∂u

K

∏
k=1

δ[xk − ξk(α)]

}
(u0;α0)

, K ≤ Nx, (36)

{B∗(v;α) }(e0)ψ
(I I)(y) = 0 (37)

7. The boundary, interface, and initial/final conditions for the functions ψ(I)(x) and
ψ(I I)(y) are now determined as follows:

(i) The boundary, interface and initial/final conditions given in Equation (27) are
substituted into the bilinear concomitant in Equation (35).
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(ii) The remaining unknown boundary, interface and initial/final conditions in-
volving the functions δu(x) and δv(y) are eliminated from {BC(1)[u(x); v(y);
ψ(I)(x),ψ(I I)(y); δu(x), δv(y);α; x, y; δα ]

∂Ωx∪∂Ωy
}(e0) by selecting boundary,

interface and initial/final conditions for the adjoint functions ψ(I)(x) and
ψ(I I)(y) such that: (a) the selected conditions for these adjoint functions must
be independent of unknown values of δu(x), δv(y) and δα; and (b) Equations
(36) and (37) are well posed in conjunction with the boundary conditions
chosen for the adjoint functions ψ(I)(x) and ψ(I I)(y).

(iii) In operator form, the boundary, interface, and initial/final conditions thus
obtained for the adjoint functions ψ(I)(x) and ψ(I I)(y) can be represented
as follows:{

C(1)
A

[
u(x); v(y);ψ(I)(x),ψ(I I)(y);α; x, y

]}
(e0)

= 0, x ∈ ∂Ωx, y ∈ ∂Ωy (38)

where the subscript “A“ indicates “adjoint” and the superscript “(1)” indicates
“first-level.” The system of equations represented by Equations (36) and (37)
together with the boundary/interface and initial/final time conditions rep-
resented by Equation (38) constitute the 1st-Level Adjoint Sensitivity System
(1st-LASS). It is important to note that the 1st-LASS is independent of the pa-
rameter variations δα and therefore needs to be solved only once to determine
the (1st-level) adjoint functions ψ(I)(x) and ψ(I I)(y).

8. The selection of the boundary conditions for the adjoint functionsψ(I)(x) andψ(I I)(y)
represented by Equation (38) eliminates the appearance of any unknown values of
the variations δu(x) and δv(y) in the bilinear concomitant in Equation (35), reducing
it to a residual quantity that contains boundary terms involving only known values
of δα, u(x), v(y), ψ(I)(x), ψ(I I)(y), and α. This residual bilinear concomitant will

be denoted as

{
P̂(1)

[
u(x); v(y);ψ(I)(x),ψ(I I)(y);α; x, y; δα

]
δ Ωx∪δ Ωy

}
(e0)

. In general,

this residual bilinear concomitant does not automatically vanish, although it may
do so in particular instances. If necessary, this residual bilinear concomitant could
be forced to vanish by considering extensions, in the operator sense, of the linear
operators A∗(u;α) and/or B∗(v;α).

9. Using Equation (35) in conjunction with Equations (36) and (37) in Equation (15)
yields the following expression for the indirect-effect term {δRx}ind:

{δRx}ind =
Zα

∑
p=1

{
∂Rind

x
∂αp

}
(e0)

δαp =

〈(
ψ(I)(x)
ψ(I I)(y)

)†

,

{(
Q(1)

1 (u;α; δα)

Q(1)
2 (v;α; δα)

)}
(e0)

〉

−
{

P̂(1)
[
u(x); v(y);ψ(I)(x),ψ(I I)(y);α; x, y; δα

]
∂Ωx∪∂Ωy

}
(e0)

,

(39)

where

{
∂Rind

x
∂αp

}
(e0)

=
Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi

{
ψ(I)(x) ·

∂
[
Q(I)(α;x)−N(I) [u(x);α]

]
∂αp

}
(u0;α0)

+
Ny

∏
i=1

di(α
0)∫

ci(α0)

dyi

{
ψ(I I)(y) ·

∂
[
Q(I I)(α;y)−N(I I) [v(y);α]

]
∂αp

}
(v0;α0)

−
{

∂
∂αp

P̂(1)
[
u(x); v(y);ψ(I)(x),ψ(I I)(y);α; x, y; δα

]
∂Ωx∪∂Ωy

}
(e0)

.

(40)
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As the expression in Equation (39) indicates, the desired elimination of the unknown
variations δu and δv from the expression of {δRx}ind has been accomplished by having
used the adjoint functions ψ(I)(x) and ψ(I I)(y).

The complete expression for computing exactly and efficiently the partial sensitivities
∂Rx/∂αp of the response Rx with respect to an uncertain parameter αp at the nominal values(
u0;α0) is obtained by adding Equations (19) and (40) according to Equation (14), i.e.,{

∂Rx

∂αp

}
(e0)

=

{
∂Rdir

x
∂αp

+
∂Rind

x
∂αp

}
(e0)

, p = 1, . . . , Zα . (41)

3.2. First-Order Sensitivities of the Critical Point of Rx to the Imprecisely Known Model
Parameters, Internal and External Boundaries

The implicit definition provided by Equation (4) for the critical point ξ(α) ,
[ξ1(α), . . . , ξK(α)]

† of F[u(x);α; x] can be written in the following equivalent form:

Nx

∏
i=1

bi(α)∫
ai(α)

dxi
∂F[u(x);α; x]

∂xk

K

∏
j=1

δ
[
xj − ξ j(α)

]
= 0, k = 1, . . . , K ≤ Nx. (42)

Taking the first-order G-variation of Equation (42) at e0 in directions δe yields the
following expression:  d

dε

Nx
∏
i=1

bi(α
0+εδα)∫

ai(α0+εδα)

dxi
∂F[u0(x)+εδu(x);α0+εδα;x]

∂xk

×
K
∏

m=1
δ
[
xm − ξm

(
α0 + εδα

)]}
ε=0

= 0, k = 1, . . . , K ≤ Nx.

(43)

Carrying out the differentiations indicated in Equation (43) leads to the following relation:

0 =
Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi

{
∂

∂xk

[
∂F(u;α;x)

∂α δα+ ∂F(u;α;x)
∂u δu

]}
(u0;α0)

K
∏

m=1
δ
[
xm − ξm

(
α0)]

+
Nx
∑

i=1

Nx
∏

j=1,j 6=i

bj(α
0)∫

aj(α0)

dxj

{[
∂F[u(x);α;x]

∂xk

]
xi=bi(α0)

[
∂bi(α)

∂α δα
] K

∏
m=1

δ[xm − ξm(α)]

}
(u0,α0)

−
Nx
∑

i=1

Nx
∏

j=1,j 6=i

bj(α
0)∫

aj(α0)

dxj

{[
∂F[u(x);α;x]

∂xk

]
xi=ai(α0)

[
∂ai(α)

∂αi
δα
] K

∏
m=1

δ[xm − ξm(α)]

}
(u0,α0)

−
K
∑

j=1

 Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxj
∂F[u(x);α;x]

∂xk
δ′
[
xj − ξ j(α)

][ ∂ξ j(α)

∂α δα
] K

∏
m=1,m 6=j

δ[xm − ξm(α)]


(u0;α0)

.

f or k = 1, . . . , K ≤ Nx.

(44)

After having determined the variations δu, which are needed in order to evaluate the
second term on the right-side of Equation (44), the K× K system of equations represented
by Equation (44) can be solved, in principle, to compute each of the sensitivities ∂ξk(α)/∂αp

of the components of the location ξ(α) , [ξ1(α), . . . , ξK(α)]
† of the critical point of in

phase-space. However, the determination of δu requires solving the δα-dependent 1st-
LFSS, cf. Equations (26) and (27), for each parameter variation δαp, which is prohibitively
expensive computationally for large systems with many parameter variations.

To avoid the need for having to solve repeatedly the δα-dependent 1st-LFSS, cf.
Equations (26) and (27), for each parameter variation δαi , the term containing δu in
Equation (44) can be expressed in terms of adjoint functions that will be the solutions of a
δα-independent first-level adjoint sensitivity system (1st-LASS), which will be constructed
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next by following the same procedure as the one that led to Equations (36)–(38). The
following well-known relation

−
∫

g(x, y)δ′(x− ξ) dx =
∫

∂g(x, y)
∂x

δ(x− ξ)dx (45)

is used to recast the last term on the right-side of Equation (44) as follows:

−
K
∑

j=1

 Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi
∂F[u(x);α;x]

∂xk
δ′
[
xj − ξ j(α)

][ ∂ξ j(α)

∂α δα
] K

∏
m=1,m 6=j

δ[xm − ξm(α)]


(u0;α0)

=
K
∑

j=1

Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi

{
∂2F(u;α;x)

∂xk∂xj

dξ j(α)

dα δα
}
(u0;α0;xj=ξ j)

K
∏

m=1
δ
[
xm − ξm

(
α0)] .

(46)

The relation provided in Equation (45) is also used in order to recast the term contain-
ing δu in Equation (44) into the following form:

−
Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi

{
∂

∂xk

[
∂F(u;α;x)

∂u δu
]}

(u0;α0)

K
∏

m=1
δ
[
xm − ξm

(
α0)]

=
Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi

{
∂F(u;α;x)

∂u δu
}
(u0;α0)

δ′
[
xk − ξk

(
α0)] K

∏
m=1,m 6=k

δ
[
xm − ξm

(
α0)]. (47)

The right-side of Equation (47) is similar to the expression of the indirect-effect term
defined in Equation (15), with the following correspondence indicated below by the
symbol “⇔”: {

∂F(u;α;x)
∂u δu

}
(u0;α0)

δ′
[
xk − ξk

(
α0)] K

∏
m=1,m 6=k

δ
[
xm − ξm

(
α0)]

⇔
{

∂F(u;α;x)
∂u δu

}
(u0;α0)

K
∏

k=1
δ
[
xk − ξk

(
α0)]. (48)

Based on the correspondence indicated in Equation (48) and applying the same
procedure as already outlined in Section 3.1 for expressing the indirect-effect term defined in
Equation (15) leads to the following expression for the functional defined in Equation (47):

Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi

{
∂F(u;α;x)

∂u δu
}
(u0;α0)

δ′
[
xk − ξk

(
α0)] K

∏
m=1,m 6=k

δ
[
xm − ξm

(
α0)]

=

〈(
ϕ

(I)
k (x)

ϕ
(I I)
k (y)

)†

,

{(
Q(1)

1 (u;α; δα)

Q(1)
2 (v;α; δα)

)}
(e0)

〉

−
{

P̂(1)
[
u(x); v(y);ϕ(I)

k (x),ϕ(I I)
k (y);α; x, y; δα

]
∂Ωx∪∂Ωy

}
(e0)

, k = 1, . . . , K ≤ Nx ,

(49)

where the adjoint functionsϕ(I)
i (x) andϕ(I I)

i (y) are the solutions of the following first-level
adjoint sensitivity system (1st-LASS), for each k = 1, . . . , K ≤ Nx:

{A∗(u;α) }(e0)ϕ
(I)
k (x) =

{
∂F(u;α;x)

∂u

}
(u0;α0)

δ′
[
xk − ξk

(
α0)] K

∏
m=1,m 6=k

δ
[
xm − ξm

(
α0)], (50)

{B∗(v;α) }(e0)ϕ
(I I)
k (y) = 0 (51){

C(1)
A

[
u(x); v(y);ϕ(I)

k (x),ϕ(I I)
k (y);α; x, y

]}
(e0)

= 0, x ∈ ∂Ωx, y ∈ ∂Ωy (52)
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Replacing the results obtained in Equations (46) and (49) in Equation (44) and rear-
ranging the terms in the resulting relations yields the following equation:〈(

ϕ
(I)
k (x)

ϕ
(I I)
k (y)

)†

,

{(
Q(1)

1 (u;α; δα)

Q(1)
2 (v;α; δα)

)}
(e0)

〉

−
{

P̂(1)
[
u(x); v(y);ϕ(I)

k (x),ϕ(I I)
k (y);α; x, y; δα

]
∂Ωx∪∂Ωy

}
(e0)

−
Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi

{
∂

∂xk

[
∂F(u;α;x)

∂α δα
]}

(u0;α0)

K
∏

m=1
δ
[
xm − ξm

(
α0)]

−
Nx
∑

i=1

Nx
∏

j=1,j 6=i

bj(α
0)∫

aj(α0)

dxj

{[
∂F[u(x);α;x]

∂xk

]
xi=bi(α0)

[
∂bi(α)

∂α δα
] K

∏
m=1

δ[xm − ξm(α)]

}
(u0,α0)

+
Nx
∑

i=1

Nx
∏

j=1,j 6=i

bj(α
0)∫

aj(α0)

dxj

{[
∂F[u(x);α;x]

∂xk

]
xi=ai(α0)

[
∂ai(α)

∂α δα
] K

∏
m=1

δ[xm − ξm(α)]

}
(u0,α0)

=
K
∑

j=1

Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi

{
∂2F(u;α;x)

∂xk∂xj

∂ξ j(α)

∂α δα
}
(u0;α0;xj=ξ j)

K
∏

m=1
δ
[
xm − ξm

(
α0)] .

f or k = 1, . . . , K ≤ Nx.

(53)

Replacing (∂/∂α)δα =
Zα

∑
p=1

(
∂/∂αp

)
δαp in Equation (53) and collecting the expressions

multiplying the parameter variations δαp in the resulting relation leads to a K× K system
of equations for determining the sensitivities

(
∂ξk/∂αp

)
, k = 1, . . . , K ≤ Nx, for each

parameter αp, p = 1, . . . , Zα. This K× K system of equations can be written in matrix form
as follows:

Hθ(p) = s(p), H ,

 h11 · h1K
· · ·

hK1 · hKK

, θ(p) ,

 θ
(p)
1
·

θ
(p)
K

, s(p) ,

 s(p)
1
·

s(p)
K

, (54)

where:

(a) the matrix H denotes the Hessian of the function F(u;α; x) computed at the nomi-
nal value ξ

(
α0) of the critical point of F(u;α; x); the components of H are defined

as follows:

hk` ,
Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi

{
∂2F(u;α;x)

∂xk∂x`

K
∏

m=1
δ[xm − ξm(α)]

}
(u0;α0)

; k, ` = 1, . . . K ≤ Nx; (55)

(b) the components of the vectors θ(p) and s(p), respectively, are defined as follows:

θ
(p)
k , ∂ξk(α)/∂αp ; k = 1, . . . , K ≤ Nx; p = 1, . . . , Zα (56)
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s(p)
k =

Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi

{
ϕ

(I)
k (x) ·

∂
[
Q(I)(α;x)−N(I) [u(x);α]

]
∂αp

}
(u0;α0)

+
Ny

∏
i=1

di(α
0)∫

ci(α0)

dyi

{
ϕ

(I I)
k (y) ·

∂
[
Q(I I)(α;y)−N(I I) [v(y);α]

]
∂αp

}
(v0;α0)

−
{

∂
∂αp

P̂(1)
[
u(x); v(y);ϕ(I)

k (x),ϕ(I I)
k (y);α; x, y; δα

]
∂Ωx∪∂Ωy

}
(e0)

−
Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi

{
∂

∂xk

∂F(u;α;x)
∂αp

}
(u0;α0)

K
∏

m=1
δ
[
xm − ξm

(
α0)]

−
Nx
∑

i=1

Nx
∏

j=1,j 6=i

bj(α
0)∫

aj(α0)

dxj

{[
∂F[u(x);α;x]

∂xk

∂bi(α)
∂αp

]
xi=bi(α0)

K
∏

m=1
δ[xm − ξm(α)]

}
(u0,α0)

+
Nx
∑

i=1

Nx
∏

j=1,j 6=i

bj(α
0)∫

aj(α0)

dxj

{[
∂F[u(x);α;x]

∂xk

∂ai(α)
∂αp

]
xi=ai(α0)

K
∏

m=1
δ[xm − ξm(α)]

}
(u0,α0)

k = 1, . . . K ≤ Nx; p = 1, . . . , Zα .

(57)

Evidently, the sensitivities θ
(p)
k , ∂ξk(α)/∂αp ; k = 1, . . . , K ≤ Nx of the critical point

ξ(α) , [ξ1(α), . . . , ξK(α)]
† with respect to the uncertain parameter αp are computed at the

nominal value ξ
(
α0) by solving Equation (54) to obtain:

θ(p) = H−1s(p), p = 1, . . . , Zα (58)

Examining the structure of Equation (58) reveals the following important characteristics:

1. The matrix H, which is the only matrix that needs to be inverted, does not depend on
the parameters variations and has very small dimensions (its dimensions are at most
equal to the number of the independent variables that characterize “subsystem I”).
Therefore, H can be inverted once and for all, and its inverse can be easily stored for
using it as many times (i.e., Zα-times) as there are system parameters.

2. Before computing the right-side of Equation (58), it is necessary to determine

the adjoint functions ϕ(I)
k (x) and ϕ(I I)

k (y) by solving the 1st-LASS comprising
Equations (50)–(52). Solving the 1st-LASS represents a “large-scale” computation, of
the same size as solving the original system represented by Equations (1)–(3). Solving
the 1st-LASS is expected to be less intensive computationally than solving the original
system, since Equations (50)–(52) are linear in the dependent variables, whereas
Equations (1)–(3) are nonlinear in the dependent variables. It is also important to note
that the 1st-LASS is independent of parameter variations. The 1st-LASS needs to be
solved once for each component of the critical point in the phase-space of independent
variables, which is a relatively small number (e.g., the 1st-LASS need to be solved
once for one-dimensional systems, at most twice for two-dimensional systems, at
most three times for three-dimensional systems, etc.).

3. Only the right-side of Equation (58) depends on derivatives of various quantities with
respect to the parameters, so it would need to be computed anew for each parameter.
However, these computations involve only integrals over various quantities. These
integrals can be computed efficiently and inexpensively using quadrature formulas
(as opposed to needing to solve large-scale differential equations).

The derivations of the first-order adjoint sensitivity system needed for the exact and
efficient computation of the first-order sensitivities of the response Ry and of the critical
point ξ(α) , [ξ1(α), . . . , ξ I(α)]

†, I ≤ Nx at which the response Ry is defined (with respect
to the model’s uncertain parameters, including boundary and interface conditions) are
similar to those presented in Section 3.1 and are therefore presented in Appendix B, for
convenient reference.
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4. Discussion

This work has presented the mathematical framework of the extended “first-order
comprehensive adjoint sensitivity analysis methodology for critical points” (1st-CASAM-
CP), which enables the exact and efficient computation of the first-order sensitivities of
responses defined at critical points of coupled nonlinear systems characterized by im-
precisely known parameters, interfaces, and boundaries. It has been shown that the
computation of the first-order response sensitivities of the magnitude of a response defined
at a critical point of a function in the phase-space of the systems’ independent variables
requires a single large-scale computations of the 1st-LASS which corresponds to the mag-
nitude of the critical point. Solving the 1st-LASS represents a “large-scale” computation
which is not more extensive than solving the original coupled systems, since the 1st-LASS
is linear in the dependent variables, whereas the original coupled systems nonlinear in the
dependent variables. Furthermore, the computation of the sensitivities of the location in
phase-space of each critical point requires solving one 1st-LASS for each of the components,
in the phase-space of independent variables, of the respective critical point. Noteworthy,
the 1st-LASS needed to solve in order to obtain the respective adjoint sensitivity functions
have the same operators on their right-sides; only the sources on the left-sides of the
respective 1st-LASS differ from each other. Hence, the same solver can be used to solve
all of the requisite 1st-LASS (as opposed to needing to develop a different solver for each
1st-LASS) to compute all of the respective adjoint functions. Of course, the computational
effort and resources needed to solve the requisite 1st-LASS are significantly less expensive
than attempting the compute the sensitivities of critical points by brute-force forward
re-computations using the model of the coupled nonlinear systems with altered parame-
ter values in conjunction with finite-difference schemes, which would require at least as
many large-scale computations as there are uncertain parameters in the coupled nonlinear
systems. Computing higher-order sensitivities

In the accompanying work [13], the unique features of the 1st-CASAM-CP presented
in this work will be illustrated by applying it to a nuclear reactor thermal-hydraulics
safety benchmark [14–16] which has been used for the verification of the “FLUENT Adjoint
Solver” [18].
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Appendix A. Mathematical Modeling of Two Coupled Nonlinear Systems Comprising
Uncertain Parameters, Internal Interfaces and External Boundaries

The quantities appearing in the definitions of Subsystems and II, cf. Equations (1)–(3)
are defined as follows:

1. α , (α1, . . . , αZα)
† ∈ RZα denotes a column vector having Zα scalar-valued compo-

nents representing all of the imprecisely known internal and boundary parameters of
the physical systems, including imprecisely known parameters that characterize the
interface and boundary conditions. Some of these parameters are common to both
physical systems, e.g., the parameters that characterize common interfaces. These
scalar parameters are considered to be subject to both random and systematic uncer-
tainties, as is usually the case in practical applications. In order to use such parameters
in practical computations, which is the scope of the methodology presented in this
work, they are considered to be either “uncertain” or “imprecisely known.” “Uncer-
tain” parameters are usually considered to follow a probability distribution having
a known “mean value” and a known “standard deviation.” On the other hand, the
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actual values of “imperfectly known” parameters are unknown. To enable the use of
such parameters in computations, “expert opinion” is invoked to assign each such
imprecisely known parameters a “nominal value” (which plays the role of a “mean
value”) and a “range of variation” (which plays the role of a standard deviation).
For practical computations, the actual origin of the parameter’s nominal (or mean)
value and of its assigned standard deviation is immaterial, which is why the qualifiers
“uncertain” and “imprecisely known” are often used interchangeably. In this work,
the superscript “zero” will be used in this work to denote the known nominal or
mean values of various quantities. In particular, the vector of nominal and/or mean

parameter values will be denoted as α0 ,
(

α0
1, . . . , α0

Zα

)†
. The symbol “,” will be

used to denote “is defined as” or “is by definition equal to” and transposition will be
indicated by a dagger (†) superscript.

2. x , (x1, . . . , xZx )
† ∈ RZx denotes the phase-space position vector, of dimension

Zx, of independent variables for the system defined in Equation (1). The vector
of independent variables x is defined on a phase-space domain denoted as Ωx(α),
Ωx(α) , {−∞ ≤ ai(α) ≤ xi ≤ bi(α) ≤ ∞; i = 1, . . . , Zx}, and is therefore consid-
ered to depend on the uncertain parameters α The lower-valued imprecisely known
boundary-point of the independent variable is denoted as ai(α), while the upper-
valued imprecisely known boundary-point of the independent variable is denoted as
bi(α). For physical systems modeled by diffusion theory, for example, the “vacuum
boundary condition” requires that the particle flux vanish at the “extrapolated bound-
ary” of the spatial domain facing the vacuum; the “extrapolated boundary” depends
on the imprecisely known geometrical dimensions of the system’s domain in space
and also on the system’s microscopic transport cross sections and atomic number
densities. The boundary ∂Ωx(α) , {a(α) ∪ b(α)} of the domain Ωx(α) comprises
all of the endpoints a(α) , [a1(α), . . . , aZx (α)]

† and b(α) , [b1(α), . . . , bZx (α)]
† of

the intervals on which the respective components of x are defined. It may happen
that some components ai(α) and/or bj(α) are infinite, in which case they would not
depend on any imprecisely known parameters.

3. u(x) , [u1(x), . . . , uZu(x)]
† denotes a Zu-dimensional column vector whose compo-

nents represent the system dependent variables (also called “state functions”) that
characterise “subsystem I” defined in Equation (1).

4. N(I)[u(x);α] ,
[

N(I)
1 (u;α), . . . , N(I)

i (u;α), . . . , N(I)
Zu

(u;α)
]†

, i = 1, . . . , Zu, which
appears in Equation (1) denotes a column vector of dimensions Zu whose components
are operators that act nonlinearly on u(x) and α.

5. Q(I)(α; x) ,
[

Q(I)
1 (α; x), . . . , Q(I)

Zu
(α; x)

]†
denotes a Zu-dimensional column vector

whose elements represent inhomogeneous source terms that depend either linearly or
nonlinearly on α. The components of Q(I)(α; x) may involve operators (rather than
just finite-dimensional functions) and distributions acting on α and x.

6. y ,
(

y1, . . . , yZy

)†
∈ RZy denotes the Zy-dimensional phase-space position vector of

independent variables for the physical system defined in Equation (2). The vector of
independent variables y is defined on a phase-space domain denoted as Ωy(α), which
is defined as follows: Ωy(α) ,

{
−∞ ≤ cj(α) ≤ yj ≤ dj(α) ≤ ∞; j = 1, . . . , Zy

}
. The

lower-valued imprecisely known boundary-point of the independent variable yi is
denoted as cj(α), while the upper-valued imprecisely known boundary-point of the
independent variable yi is denoted as dj(α). Some or all of the points cj(α) may
coincide with the points bj(α). Also, some components of y may coincide with some
components of x, in which case the respective lower and upper boundary points
for the respective coinciding independent variables would also coincide correspond-
ingly. The boundary ∂Ωy(α) , {c(α) ∪ d(α)} of the domain Ωy(α) comprises all of
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the endpoints c(α) ,
[
c1(α), . . . , cZy(α)

]†
and d(α) ,

[
d1(α), . . . , dZy(α)

]†
of the

intervals on which the respective components of y are defined.
7. v(y) , [v1(y), . . . , vZv(y)]

† denotes a Zv-dimensional column vector whose compo-
nents represent the dependent variables of “subsystem II” represented by Equation (2).

8. N(I I)[u(x);α] ,
[

N(I I)
1 (u;α), . . . , N(I I)

i (u;α), . . . , N(I I)
Zv

(u;α)
]†

, i = 1, . . . , Zv, de-
notes a column vector of dimensions Zv whose components are operators acting
nonlinearly on v(y) and α.

9. Q(I I)(α; y) ,
[

Q(I I)
1 (α; y), . . . , Q(I I)

Zv
(α; y)

]†
denotes a Zv-dimensional column vector

whose elements represent inhomogeneous source terms that depend either linearly
or nonlinearly on α. The components of Q(I I)(α; y) may involve operators and
distributions acting on α and y.

10. The vector-valued operator B[u(x), v(y);α; x, y] comprises all of the boundary, inter-
face, and initial/final conditions for the coupled physical systems. If the boundary,
interface and/or initial/final conditions are inhomogeneous, which is most often the
case, then B[0, 0;α; x, y] 6= 0.

Since Q(I)(α; x) and Q(I I)(α; y) may involve operators and distributions acting on α
and y, all of the equalities in this work, including Equations (1)–(3), are considered to hold
in the weak (“distributional”) sense.

The nominal (or “base-case”) solutions of Equations (1)–(3) are denoted as u0(x) and
v0(y), and are obtained by solving these equations at the nominal parameter values α0, i.e.,

N(I)
[
u0(x);α0

]
= Q(I)

(
α0; x

)
, x ∈ Ωx

(
α0
)

(A1)

N(I I)
[
v0(y);α0

]
= Q(I I)

(
α0; y

)
, y ∈ Ωy

(
α0
)

(A2)

B
[
u0(x), v0(y);α0; x, y

]
= 0, x ∈ ∂Ωx

(
α0
)

, y ∈ ∂Ωy

(
α0
)

(A3)

The response considered in this work is a generic nonlinear function-valued operator,
denoted as follows:

R[u(x), v(y);α; x, y] (A4)

The nominal value of the response, denoted as R0 , R
[
u0(x), v0(y);α0; x, y

]
, is deter-

mined by computing the response at the nominal values α0, u0(x) and v0(y). The true val-
ues of imprecisely known model, interface and boundary parameters may differ from their
nominal (average, or “base-case”) values by variations denoted as δα , (δα1, . . . , δαNα),
where δαi , αi− α0

i , i = 1, . . . , Nα. In turn, the parameter variations δαwill cause variations
δu(x) , [δu1(x), . . . , δuZu(x)]

† and δv(y) , [δv1(y), . . . , δvZv(y)]
† in the state functions.

All of these variations will cause variations in the response R[u(x), v(y);α; x, y] around
the nominal response value R0. Sensitivity analysis aims at computing the functional
derivatives (called “sensitivities”) of the response to the imprecisely known parameters α.
Subsequently, these sensitivities can be used for a variety of purposes, including quantify-
ing the uncertainties induced in responses by the uncertainties in the model and boundary
parameters, combining the uncertainties in computed responses with uncertainties in
measured response (“data assimilation”) to obtain more accurate predictions of responses
and/or parameters (“model calibration,” “predictive modeling”, etc.).

As has been shown by Cacuci [1], the most general definition of the 1st-order total
sensitivity of a model response to parameter variations is provided by the first-order
“Gateaux-variation” (G-variation) of the response under consideration. To determine
the first G-variation of the response R[u(x), v(y);α; x, y], it is convenient to denote the
functions appearing in the argument of the response as being the components of a vector
e , [u(x), v(y);α]†, which represents an arbitrary “point” in the combined phase-space of
the state functions and parameters. The point which corresponds to the nominal values of
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the state functions and parameters in this phase space is denoted as e0 ,
[
u0(x), v0(y);α0]†.

The variations in the model’s state functions and parameters are considered to be the
components of a “vector of variations”, δe, defined as follows: δe , [δu(x), δv(y); δα]†.
The 1st-order Gateaux- (G-) variation of the response R(e), which will be denoted as
δR
(
e0; δe

)
, for arbitrary variations δe in the model parameters and state functions in a

neighborhood
(
e0 + εδe

)
around e0, is obtained, by definition, as follows:

δR
(

e0; δe
)
,
{

d
dε

R
[
u0(x) + εδu(x), v0(y) + εδv(y);α0 + εδα; x, y

]}
ε=0

(A5)

Appendix B. 1st-CASAM-CP Computation of the Sensitivities of Ry and of Its
Corresponding Critical Point η(α) , [η1(α), . . . , ηM(α)]†, M ≤ Ny

The total sensitivity of the response Ry defined in Equation (9) with respect to vari-
ations in the parameters and state functions around their respective nominal values is
provided by the 1st-order G-variation denoted as δRy of the response Ry. The total sensi-
tivity δRy is obtained, by definition, as follows:

δRy ,

 d1(α
0+εδα)∫

c1(α0+εδα)

dy1 . . .
dNy (α

0+εδα)∫
cNy (α

0+εδα)

dyNy G
[
v0(x) + εδv(x);α0 + εδα; y

]
×

J
∏
j=1

δ
[
yj − ηj

(
α0 + εδα

)]}
ε=0

=
{

δRy
}dir

+
{

δRy
}ind ,

(A6)

where the “indirect-effect term”
{

δRy
}ind depends on the unknown variation δv(x) and is

defined as follows:

{
δRy

}ind ,
Ny

∏
i=1

di(α
0)∫

ci(α0)

dyi

{[
∂G(v;α; y)

∂v
δv
] M

∏
m=1

δ[xm − ηm(α)]

}
(v0;α0)

, M ≤ Ny (A7)

while so-called “direct-effect term”
{

δRy
}dir does not depend on the unknown variation

δv(x) but depends on the vector of parameter variation δα, and is defined as follows:

{
δRy

}dir
=

Zα

∑
p=1

{
∂Rdir

y

∂αp

}
(e0)

δαp (A8)

where {
∂Rdir

y
∂αp

}
(e0)

,
Ny

∏
i=1

di(α
0)∫

ci(α0)

dyi

{
∂G(v;α;y)

∂αp

M
∏

m=1
δ[ym − ηm(α)]

}
(v0;α0)

−
M
∑

m=1

 Ny

∏
i=1

di(α
0)∫

ci(α0)

dyi G(v;α; y)δ′[ym − ηm(α)]
∂ηm(α)

∂αp

M
∏

j=1,j 6=m
δ
[
yj − ηj(α)

]
(v0;α0)

+
Ny

∑
i=1

Ny

∏
j=1,j 6=i

dj(α
0)∫

cj(α0)

dyj

{
[G(v;α; y)]yi=di(α0)

∂di(α)
∂αp

M
∏

m=1
δ[ym − ηm(α)]

}
(v0,α0)

−
Ny

∑
i=1

Ny

∏
j=1,j 6=i

dj(α
0)∫

cj(α0)

dyj

{
[G(v;α; y)]yi=ci(α0)

∂ci(α)
∂αp

M
∏

m=1
δ[ym − ηm(α)]

}
(v0,α0)

.

(A9)

The dependence on the unknown variation δv(x) of the “indirect-effect term”
{

δRy
}ind

defined in Equation (A7) will be eliminated next by constructing an appropriate 1st-LASS
by following the same logical path as that outlined in Section 3, namely:
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1. Use the definition provided in Equation (30) to form the inner product of Equation (26)

with a square-integrable vector f(1)(z) ,
[
f(I)(x), f(I I)(y)

]†
∈ H to obtain the

following relation:〈(
f(I)(x)
f(I I)(y)

)†

,

{[
∂N(I)(u;α)

∂u 0

0 ∂N(I I)(v;α)
∂v

]}
(e0)

(
δu(x)
δv(y)

)〉

=

〈(
f(I)(x)
f(I I)(y)

)†

,

{(
Q(1)

1 (u;α; δα)

Q(1)
2 (v;α; δα)

)}
(e0)

〉
.

(A10)

2. Using the definition of the adjoint operator in the Hilbert space H, recast the left-side
of Equation (A10) as follows:〈(

f(I)(x)
f(I I)(y)

)†

,

{[
∂N(I)(u;α)

∂u 0

0 ∂N(I I)(v;α)
∂v

]}
(e0)

(
δu(x)
δv(y)

)〉

=

〈(
δu(x)
δv(y)

)†

,
{[

A∗(u;α) 0
0 B∗(v;α)

]}
(e0)

(
f(I)(x)
f(I I)(y)

)〉

+

{
BC(1)

[
u(x); v(y); f(I)(x), f(I I)(y); δu(x), δv(y);α; x, y; δα

]
∂Ωx∪∂Ωy

}
(e0)

,

(A11)

where

{
BC(1)

[
u(x); v(y); f(I)(x), f(I I)(y); δu(x), δv(y);α; x, y; δα

]
∂Ωx∪∂Ωy

}
(e0)

denotes

the bilinear concomitant evaluated on the combined (internal and external) boundary
δΩx ∪ δΩy, which has the same formal expression as in Equation (34), except that the

vector ψ(1)(z) ,
[
ψ(I)(x),ψ(I I)(y)

]†
∈ H is replaced correspondingly by the vector

f(1)(z) ,
[
f(I)(x), f(I I)(y)

]†
∈ H.

3. Replace the left-side of Equation (A11) with the right-side of Equation (34) and re-
arrange the resulting equation to obtain the following relation:〈(

δu(x)
δv(y)

)†

,
{[

A∗(u;α) 0
0 B∗(v;α)

]}
(e0)

(
f(I)(x)
f(I I)(y)

)〉

=

〈(
f(I)(x)
f(I I)(y)

)†

,

{(
Q(1)

1 (u;α; δα)

Q(1)
2 (v;α; δα)

)}
(e0)

〉

−
{

BC(1)
[
u(x); v(y); f(I)(x), f(I I)(y); δu(x), δv(y);α; x, y; δα

]
∂Ωx∪∂Ωy

}
(e0)

.

(A12)

4. Require the left-side of Equation (35) to represent the indirect-effect term
{

δRy
}ind

defined in Equation (15), which can be fulfilled by requiring the yet undetermined
(adjoint) functions ψ(I)(x) and ψ(I I)(y) to satisfy the following (adjoint) equations:

{A∗(u;α) }(e0)f
(I)(x) = 0 (A13)

{B∗(v;α) }(e0)f
(I I)(y) =

{
∂G(v;α; y)

∂v

M

∏
m=1

δ[xm − ηm(α)]

}
(v0;α0)

, M ≤ Ny (A14)

5. The boundary, interface, and initial/final conditions for the functions f(I)(x) and
f(I I)(y) are determined now as follows:
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(i) The boundary, interface and initial/final conditions given in Equation (27) are
substituted into the bilinear concomitant in Equation (A12).

(ii) The remaining unknown boundary, interface and initial/final conditions
involving the functions δu(x) and δv(y) are eliminated from {BC(1)[u(x);
v(y); f (I)(x), f (I I)(y); δu(x), δv(y);α; x, y; δα ]

∂Ωx∪∂Ωy
}(e0) by selecting bound-

ary, interface and initial/final conditions for the adjoint functions ψ(I)(x)
and ψ(I I)(y) such that: (a) the selected conditions for these adjoint functions
must be independent of unknown values of δu(x), δv(y) and δα; and (b)
Equations (A13) and (14) are well posed in conjunction with the boundary
conditions chosen for the adjoint functions f(I)(x) and f(I I)(y).

(iii) In operator form, the boundary, interface and initial/final conditions thus ob-
tained for the adjoint functions f(I)(x) and f(I I)(y) can be represented as follows:{

C(1)
A

[
u(x); v(y); f(I)(x), f(I I)(y);α; x, y

]}
(e0)

= 0, x ∈ ∂Ωx, y ∈ ∂Ωy (A15)

6. The selection of the boundary conditions for the adjoint functionsψ(I)(x) andψ(I I)(y)
represented by Equation (A15) eliminates the appearance of any unknown values
of the variations δu(x) and δv(y) in the bilinear concomitant in Equation (A12),
reducing it to a residual quantity that contains boundary terms involving only
known values of δα, u(x), v(y), f(I)(x), f(I I)(y), and α, which will be denoted as{

P̂(1)
[
u(x); v(y); f(I)(x), f(I I)(y);α; x, y; δα

]
δ Ωx∪δ Ωy

}
(e0)

.

7. Using Equation (A12) in conjunction with Equations (A13)–(A15) in Equation (A7)

yields the following expression for the indirect-effect term
{

δRy
}ind:

{
δRy

}ind
=

Zα

∑
p=1

{
∂Rind

y
∂αp

}
(e0)

δαp =

〈(
f(I)(x)
f(I I)(y)

)†

,

{(
Q(1)

1 (u;α; δα)

Q(1)
2 (v;α; δα)

)}
(e0)

〉

−
{

P̂(1)
[
u(x); v(y); f(I)(x), f(I I)(y);α; x, y; δα

]
∂Ωx∪∂Ωy

}
(e0)

,

(A16)

where{
∂Rind

y
∂αp

}
(e0)

=
Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi

{
f(I)(x) ·

∂
[
Q(I)(α;x)−N(I) [u(x);α]

]
∂αp

}
(u0;α0)

+
Ny

∏
i=1

di(α
0)∫

ci(α0)

dyi

{
f(I I)(y) ·

∂
[
Q(I I)(α;y)−N(I I) [v(y);α]

]
∂αp

}
(v0;α0)

−
{

∂
∂αp

P̂(1)
[
u(x); v(y); f(I)(x), f(I I)(y);α; x, y; δα

]
∂Ωx∪∂Ωy

}
(e0)

.

(A17)

As the expression in Equation (A17) indicates, the desired elimination of the unknown
variations δu and δv from the expression of

{
δRy

}ind has been accomplished by having
used the adjoint functions f(I)(x) and f(I I)(y).

The complete expression for computing exactly and efficiently the partial sensitivities
∂Ry/∂αp of the response Ry with respect to an uncertain parameter αp at the nominal values(
u0;α0) is obtained by adding Equations (A17) and (A19) according to Equation (A6), i.e.,{

∂Ry

∂αp

}
(e0)

=

{
∂Rdir

y

∂αp
+

∂Rind
y

∂αp

}
(e0)

, p = 1, . . . , Zα . (A18)
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The implicit definition provided by Equation (8) for the critical point η(α) ,
[η1(α), . . . , ηM(α)]†, M ≤ Ny of F[u(x);α; x] can be written in the following equivalent
form:

Ny

∏
i=1

di(α)∫
ci(α)

dyi
∂ G[v(y);α; y]

∂ym

M

∏
j=1

δ
[
yj − ηj(α)

]
= 0, m = 1, . . . , M ≤ Ny. (A19)

Taking the first-order G-variation of Equation (A19) at e0 in an arbitrary direction δe
yields the following expression: d

dε

Ny

∏
i=1

di(α
0+εδα)∫

ci(α0+εδα)

dyi
∂G[v0(y)+εδv;α0+εδα;y]

∂ym

×
M
∏
j=1

δ
[
yj − ηj

(
α0 + εδα

)]}
ε=0

= 0, m = 1, . . . , M ≤ Ny .

(A20)

Carrying out the differentiations indicated in Equation (A20) leads to the following relation:

0 =
Ny

∏
i=1

di(α
0)∫

ci(α0)

dyi

{
∂

∂ym

[
∂G(v;α;y)

∂α δα+ ∂G(v;α;y)
∂v δv

]}
(v0;α0)

M
∏
j=1

δ
[
yj − ηj

(
α0)]

+
Ny

∑
i=1

Ny

∏
j=1,j 6=i

dj(α
0)∫

cj(α0)

dyj

{[
∂G(v;α;y)

∂ym

]
yi=di(α0)

[
∂di(α)

∂α δα
] M

∏
j=1

δ
[
yj − ηj(α)

]}
(v0,α0)

−
Ny

∑
i=1

Ny

∏
j=1,j 6=i

dj(α
0)∫

cj(α0)

dyj

{[
∂G(v;α;y)

∂ym

]
xi=ai(α0)

[
∂ci(α)

∂α δα
] M

∏
j=1

δ
[
yj − ηj(α)

]}
(v0,α0)

−
M
∑

j=1

 Ny

∏
i=1

di(α
0)∫

ci(α0)

dyi
∂G(v;α;y)

∂ym
δ′
[
yj − ηj(α)

][ ∂ηj(α)

∂α δα
] M

∏
m=1,m 6=j

δ[ym − ηm(α)]


(v0;α0)

,

f or m = 1, . . . , M ≤ Ny.

(A21)

After having determined the variations δv, which are needed in order to evaluate
the second term on the right-side of Equation (A21), the M × M system of equations
represented by Equation (44) can be solved, in principle, to compute each of the sensitivities
∂ηm(α)/∂αp of the components of the location η(α) , [η1(α), . . . , ηM(α)]†, M ≤ Ny of
the critical point of in phase-space. However, the determination of δv requires solving
the δα-dependent 1st-LFSS, cf. Equations (26) and (27), for each parameter variation δαp,
which is prohibitively expensive computationally for large systems with many parameter
variations. To avoid the need for having to solve repeatedly the δα-dependent 1st-LFSS,
cf. Equations (26) and (27), for each parameter variation δαi, the term containing δv in
Equation (44) can be expressed in terms of adjoint functions that will be the solutions of a
δα-independent first-level adjoint sensitivity system (1st-LASS), which will be constructed
next by following the same procedure as the one that led to Equations (36)–(38).

The relation provided in Equation (45) is used in order to recast the terms in Equation (A21)
which contain the quantities δv and, respectively, δ′

[
y j − ηj(α)

]
, into the following

respective forms:

Ny

∏
i=1

di(α
0)∫

ci(α0)

dyi

{
∂

∂ym

[
∂G(v;α;y)

∂v δv
]}

(v0;α0)

M
∏
j=1

δ
[
yj − ηj

(
α0)]

= −
Ny

∏
i=1

di(α
0)∫

ci(α0)

dyi

{
∂G(v;α;y)

∂v δv
}
(v0;α0)

δ′
[
ym − ηm

(
α0)] M

∏
j=1,j 6=m

δ
[
yj − ηj

(
α0)] ,

(A22)
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and, respectively,

Ny

∏
i=1

 di(α
0)∫

ci(α0)

dyi
∂G(v;α;y)

∂ym
δ′
[
yj − ηj(α)

][ ∂ηj(α)

∂α δα
] M

∏
m=1,m 6=j

δ[ym − ηm(α)]


(v0;α0)

=
Ny

∏
i=1

 di(α
0)∫

ci(α0)

dyi
∂2G(v;α;y)

∂ym∂yj

[
∂ηj(α)

∂α δα
] M

∏
m=1

δ[ym − ηm(α)]


(v0;α0)

.

(A23)

The appearance of the unknown variations δv in the functional defined by Equation (A22)
is eliminated by using a 1st-LASS which is constructed by applying the general principles
outlined in Section 3.1. Since the sequence of operations is similar to that in Section 3.1, it
will not be repeated here. The final result is:

Ny

∏
i=1

di(α
0)∫

ci(α0)

dyi

{
∂G(v;α;y)

∂v δv
}
(v0;α0)

δ′
[
ym − ηm

(
α0)] M

∏
j=1,j 6=m

δ
[
yj − ηj

(
α0)]

=

〈(
g(I)

m (x)
g(I I)

m (y)

)†

,

{(
Q(1)

1 (u;α; δα)

Q(1)
2 (v;α; δα)

)}
(e0)

〉

−
{

P̂(1)
[
u(x); v(y); g(I)

m (x), g(I I)
m (y);α; x, y; δα

]
∂Ωx∪∂Ωy

}
(e0)

, m = 1, . . . , M ≤ Ny ,

(A24)

where the adjoint functions g(I)
m (x) and g(I I)

m (y) are the solutions of the following first-level
adjoint sensitivity system (1st-LASS), for each m = 1, . . . , M ≤ Ny:

{A∗(u;α) }(e0)g
(I)
m (x) = 0 (A25)

{B∗(v;α) }(e0)g
(I I)
m (y) =

{
∂G(v;α;y)

∂v δv
}
(v0;α0)

δ′
[
ym − ηm

(
α0)] M

∏
j=1,j 6=m

δ
[
yj − ηj

(
α0)] (A26)

{
C(1)

A

[
u(x); v(y); g(I)

m (x), g(I I)
m (y);α; x, y

]}
(e0)

= 0, x ∈ ∂Ωx, y ∈ ∂Ωy (A27)

Replacing the results obtained in Equations (A24) and (A23) in Equation (A21) and
rearranging the terms in the resulting relations yields the following equation:

M
∑

j=1

Ny

∏
i=1

 di(α
0)∫

ci(α0)

dyi
∂2G(v;α;y)

∂ym∂yj

[
∂ηj(α)

∂α δα
] M

∏
m=1

δ[ym − ηm(α)]


(v0;α0)

=

〈(
g(I)

m (x)
g(I I)

m (y)

)†

,

{(
Q(1)

1 (u;α; δα)

Q(1)
2 (v;α; δα)

)}
(e0)

〉

−
{

P̂(1)
[
u(x); v(y); g(I)

m (x), g(I I)
m (y);α; x, y; δα

]
∂Ωx∪∂Ωy

}
(e0)

−
Ny

∏
i=1

di(α
0)∫

ci(α0)

dyi

{
∂

∂ym

∂G(v;α;y)
∂α δα

}
(v0;α0)

M
∏
j=1

δ
[
yj − ηj

(
α0)]

−
Ny

∑
i=1

Ny

∏
j=1,j 6=i

dj(α
0)∫

cj(α0)

dyj

{[
∂G(v;α;y)

∂ym

]
yi=di(α0)

[
∂di(α)

∂α δα
] M

∏
j=1

δ
[
yj − ηj(α)

]}
(v0,α0)

+
Ny

∑
i=1

Ny

∏
j=1,j 6=i

dj(α
0)∫

cj(α0)

dyj

{[
∂G(v;α;y)

∂ym

]
xi=ai(α0)

[
∂ci(α)

∂α δα
] M

∏
j=1

δ
[
yj − ηj(α)

]}
(v0,α0)

,

f or m = 1, . . . , M ≤ Ny.

(A28)
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Replacing (∂/∂α)δα =
Zα

∑
p=1

(
∂/∂αp

)
δαp in Equation (53) and collecting the expressions

multiplying the parameter variations δαp in the resulting relation leads to an M×M system
of equations for determining the sensitivities

(
∂ηm/∂αp

)
, m = 1, . . . , M ≤ Ny, for each

parameter αp, p = 1, . . . , Zα. This M×M system of equations can be written in matrix
form as follows:

Tτ(p) = q(p), T ,

 t11 · t1M
· · ·

tM1 · tMM

, τ(p) ,

 τ
(p)
1
·

τ
(p)
M

, q(p) ,

 q(p)
1
·

q(p)
M

, (A29)

where:

(a) the matrix T denotes the Hessian of the function G(v;α; y) computed at the nominal
value η

(
α0) of the critical point of G(v;α; y), and has components defined as follows:

tk` ,
Ny

∏
i=1

di(α
0)∫

bi(α0)

dyi

{
∂2G(v;α;y)

∂yk∂y`

K
∏

m=1
δ[ym − ηm(α)]

}
(v0;α0)

; k, ` = 1, . . . M ≤ Ny; (A30)

(b) the components of the vectors τ(p) and q(p), respectively, are defined as follows:

τ
(p)
k , ∂ηk(α)/∂αp ; k = 1, . . . , M ≤ Ny; p = 1, . . . , Zα (A31)

q(p)
k =

Nx
∏
i=1

bi(α
0)∫

ai(α0)

dxi

{
g(I)

k (x) ·
∂
[
Q(I)(α;x)−N(I) [u(x);α]

]
∂αp

}
(u0;α0)

+
Ny

∏
i=1

di(α
0)∫

ci(α0)

dyi

{
g(I I)

k (y) ·
∂
[
Q(I I)(α;y)−N(I I) [v(y);α]

]
∂αp

}
(v0;α0)

−
{

∂
∂αp

P̂(1)
[
u(x); v(y); g(I)

k (x), g(I I)
k (y);α; x, y; δα

]
∂Ωx∪∂Ωy

}
(e0)

−
Ny

∏
i=1

di(α
0)∫

ci(α0)

dyi

{
∂

∂ym

∂G(v;α;y)
∂αp

}
(v0;α0)

M
∏
j=1

δ
[
yj − ηj

(
α0)]

−
Ny

∑
i=1

Ny

∏
j=1,j 6=i

dj(α
0)∫

cj(α0)

dyj

{[
∂G(v;α;y)

∂ym

∂di(α)
∂αp

]
yi=di(α0)

M
∏
j=1

δ
[
yj − ηj(α)

]}
(v0,α0)

+
Ny

∑
i=1

Ny

∏
j=1,j 6=i

dj(α
0)∫

cj(α0)

dyj

{[
∂G(v;α;y)

∂ym

∂ci(α)
∂αp

]
xi=ai(α0)

M
∏
j=1

δ
[
yj − ηj(α)

]}
(v0,α0)

,

f or m = 1, . . . , M ≤ Ny .

(A32)

The sensitivities θ
(p)
k , ∂ξk(α)/∂αp ; k = 1, . . . , K ≤ Nx of the critical point ξ(α) ,

[ξ1(α), . . . , ξK(α)]
† with respect to the uncertain parameter αp are computed by inverting

Equation (A29) to obtain:

τ(p) = T−1q(p), p = 1, . . . , Zα (A33)

The characteristics of Equation (A33) are similar to those of Equation (58), namely:

1. Before computing the right-side of Equation (A33), it is necessary to determine

the adjoint functions g(I)
m (x) and g(I I)

m (y) by solving the 1st-LASS comprising
Equations (A25)–(A27). Solving this 1st-LASS represents a “large-scale” computation,
of the same size as solving the original system represented by Equations (1)–(3).
Solving the 1st-LASS is expected to be less intensive computationally than solving
the original system, since the 1st-LASS is linear in the dependent variables, whereas
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Equations (1)–(3) are nonlinear in the dependent variables. It is also important to note
that the 1st-LASS is independent of parameter variations. The 1st-LASS needs to be
solved once for each component of the critical point ξ(α) , [ξ1(α), . . . , ξK(α)]

† in
the phase-space of independent variables.

2. Since the right-side of Equation (A33) depends on derivatives of various quantities
with respect to the parameters, it would need to be computed anew for each parameter.
However, these computations involve only integrals over various quantities. These
integrals can be computed efficiently and inexpensively using quadrature formulas
(as opposed to needing to solve large-scale differential equations).

3. The matrix T is the only matrix that needs to be inverted. It is small, having dimen-
sions equal to the number of the independent variables (or less) that characterize
“subsystem II.” Therefore, T is inverted once only and its inverse is stored for subse-
quent use for computing Zα-times the right-side of Equation (A33).
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