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Abstract: A theoretical investigation of the influence of a standing wave flow-field on the dynamics
of a laminar two-dimensional spray diffusion flame is presented for the first time. The mathematical
analysis permits mild slip between the droplets and their host surroundings. For the liquid phase,
the use of a small Stokes number as the perturbation parameater enables a solution of the governing
equations to be developed. Influence of the standing wave flow-field on droplet grouping is described
by a specially constructed modification of the vaporization Damkohler number. Instantaneous flame
front shapes are found via a solution for the usual Schwab–Zeldovitch parameter. Numerical results
obtained from the analytical solution uncover the strong bearing that droplet grouping, induced by
the standing wave flow-field, can have on flame height, shape, and type (over- or under-ventilated)
and on the existence of multiple flame fronts.

Keywords: spray combustion; diffusion flames; modeling; droplet grouping

1. Introduction

The efficiency of spray systems in combustion engineering systems relies strongly on
the dynamics of the liquid droplets, and among other things, their tendency to form groups.
This grouping tendency has an influence on their evaporation, the drag force applied on
them, and on their final settling point. Increased relevance is also assumed in view of
current trends of introducing biofuel blends in practical combustion systems. The better the
phenomenon of droplet grouping is understood, the more readily it can be controlled and,
perhaps, manipulated for increasing a combustion system’s efficiency and reducing air
pollution emissions. By “grouping” is meant the coming together or convening of droplets
that were previously more distantly removed from one another. This convening can arise
when droplets are moving in an unsteady gas field [1], but as was observed in recent
experiments [2], it can also arise in non-oscillating host-flow and in droplet streams, even if
the droplets are monodisperse, injected in a quiescent environment by a droplet stream
generator [3]. There are a number of previous works in the literature relevant to the study
of single streams of monodisperse droplets. In his classical text, Lamb [4] considers the case
of two spheres moving in the line of their centers. His analysis concludes that under certain
operating conditions, the spheres will be attracted to one another. Happel and Pfeffer [5]
performed an experimental study of two spheres (of radius 6.35 mm) following one another
in a viscous fluid. For Reynolds numbers greater than 0.25, they noted a definite attraction
between the two spheres—inertial effects acted to slow down the lower sphere without
affecting the upper one. For values of the Reynolds number less than 0.25, their findings
concurred with the mathematical theory of Stimson and Jeffrey [6] for the motion of two
spheres in a viscous fluid. More recently, Katoshevski, Greenberg, and co-workers [7–11]
reported on grouping in aerosols/sprays in an oscillating flow field. Their theoretical and
numerical analysis (supported qualitatively by independent experimental observations)
showed that there is a tendency of droplets in sprays traveling in oscillating flow fields to
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form clusters, whereby regions of increased droplet concentration separated from regions
of reduced droplet concentration exist.

A relevant study was conducted by Heinlin and Fritsching [12]. In their experimental
investigation of what they termed “droplet clustering in liquid sprays”, they compared
this effect using two different types of atomizers: a pressure atomizer and a twin-fluid
atomizer. They found that for the twin-fluid atomizer, clustering occurred mostly in the
outside spray area. In contrast, clustering took place mainly in the central area of the spray
for the pressure atomizer. The droplets were in the size range up to 70 µm. However, no
clear influence of droplet size on the formation of droplet clusters was found.

Direct numerical simulations (DNS) were executed by Reveillon and Demoulin [13,14]
to analyze in depth what they call the “preferential segregation” of droplets in isotropic
homogeneous turbulence in both non-combusting [13] and combusting [14] situations.
Droplet segregation was found to lead to local clusters of droplets surrounded by high
levels of fuel vapor. This can lower the evaporation rate and exert a strong influence on the
type of combustion (premixed or partially premixed).

Greenberg and Katoshevski [8] formulated a theory of a laminar spray diffusion flame
in the presence of a prescribed oscillating flow field. Their specific aim was to delineate
those operating conditions under which droplet grouping occurs. Initial indications of
the way grouping can influence flame structure were captured. Numerically computed
results established how the phenomenon of droplet grouping can lead to the existence of
multiple flame sheets. These are created as a result of the dynamic change in the type of
the main homogeneous flame from under- to over-ventilated as the flow field oscillates.
Resulting fluctuating thermal fields were also produced, for which the possible production
of undesirable pollutants might ensue. Perhaps, the most important conclusion to be drawn
from these studies is the potential of controlling the extent of droplet grouping/clustering.
The aforementioned basic studies also showed how droplet grouping can impact on
flame behavior even by using a relatively simple model, without having to resort to
computationally intensive direct numerical simulations.

In the current work, we consider, for the first time, how a standing wave flow-field
influences the dynamic behavior of a laminar spray diffusion flame when droplet grouping
occurs. Consideration of this particular flow-field is inspired by the clever practical ex-
ploitation of the grouping phenomenon suggested by Katoshevski and coworkers [7,15,16],
who showed that it is possible to reduce the number and increase the size of particulate
matter, PM, by promoting their grouping in an appropriate standing wave flow-field. By
designing and constructing a wavy/corrugated car engine exhaust pipe, which enhances
the grouping of smoke particles, better filtration of micron and sub-micron sized parti-
cles was achieved. In the context of combustion research, standing waves were studied
in azimuthal instabilities in annular gas-turbine combustors [17]. More recently, Chen
et al. [18] reported a numerical study of a turbulent methane jet diffusion flame subject to a
standing wave in a longitudinal chamber. Their aim was to understand the influence of
acoustic–flame interaction on flame stability. However, both of these works were restricted
to pure gas flames only, whereas here, our aim is to investigate the two-phase problem,
as mentioned above.

The paper is organized as follows. The governing equations are formulated and then
normalized and reduced to a solvable form. This is followed by solving the spray equations
and introducing a model for droplet grouping. Then, the solution for the dynamic motion
of the spray diffusion flame(s) is derived. Finally, results based on the theory are presented
and discussed.

2. Governing Equations—Formulation

We consider the Burke–Schumann spray flame configuration (see Figure 1), in which
fuel vapor and droplets flow in an inner duct (of half-width L) and air flows in outer ducts
(each of width R). Under appropriate operating conditions, after diffusive mixing of the
two streams, a laminar, spray diffusion flame is established.
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Figure 1. Configuration for the formation of a Burke–Schumann spray diffusion flame schematically
showing fuel droplet grouping due to local variations in gas velocity.

In the inner and outer ducts, the velocities of the streams are the same, but in contrast
to Burke–Schumann’s original gas flame analysis, they are not constant and are given by:

→
v (x, y, t) = (u, v) =

(
−Ṽbxksin(ky)sin(ωt),

(
Ṽa − Ṽbcos(ky)sin(ωt)

))
(1)

where
→
v (x, y, t) is the velocity vector, Ṽa is the mean flow velocity, Ṽb is the amplitude of

a standing wave in the axial direction, k is the wave number, and ω is the angular velocity.
Without forfeiting generality, Ṽa and Ṽb are assumed to be positive. The spray is described
using the sectional approach [19]. Here, for the sake of straightforwardness, we take the
spray to be mono-sectional. In addition, the Lewis number is taken to be equal to one.
Then, the governing equations assume the following form.

For the spray:
∂ud
∂t∗

+ ud
∂ud
∂x

+ vd
∂ud
∂y

=
1
τ
(u− ud) (2)

∂vd
∂t∗

+ ud
∂vd
∂x

+ vd
∂vd
∂y

=
1
τ
(v− vd) (3)

∂md
∂t∗

+ ud
∂md
∂x

+ vd
∂md
∂y

= −C̃md −
(

∂ud
∂x

+
∂vd
∂y

)
md. (4)

Equations (2) and (3) are conservation of momentum equations for the droplets in the
mono-sectional spray with ud, vd being the transverse and axial average droplet velocity
components, respectively, τ is the Stokes number, md is the mass fraction of liquid fuel
in the spray, and C̃ is the sectional vaporization coefficient. Time is denoted by t∗. The
conservation equations for the Schwab–Zeldovitch parameters m (Equation (5)) and mT
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(Equation (7)), which are derived from the conservation equations for fuel vapor, oxygen,
and energy, are coupled to the liquid phase equations:

∂m
∂t∗

+ u
∂m
∂x

+ v
∂m
∂y

= Dg

[
∂2m
∂x2 +

∂2m
∂y2

]
+ C̃md (5)

in which m is defined by:
m = mF −mO/ν (6)

where m represents mass fraction, the subscripts F,O refer to fuel vapor and oxygen, respec-
tively, and ν is the stoichiometric coefficient associated with the single-step global chemical
reaction that is assumed to describe the chemistry of the diffusion flame, F + νO→Products.
It is further assumed that the chemical Damkohler number Da is infinitely large, so that
the flame is limited to a thin surface into which fuel vapor and oxidant flow from opposite
sides of the front. In Equation (5), Dg is the diffusion coefficient taken to be identical for
the fuel vapor and the oxygen and implying a unity Lewis number.

∂mT
∂t∗

+ u
∂mT
∂x

+ v
∂mT
∂y

= Dg

[
∂2mT

∂x2 +
∂2mT

∂y2

]
+ (1− β)C̃md (7)

in which mT is defined by
mT = mF + T (8)

and β is the ratio of the latent heat of vaporization to the heat of reaction.
The boundary conditions for these governing equations are:

0 ≤ x ≤ L, y ≥ 0, t∗ ≥ 0 : (ud, vd) = (ud0, vd0), md = md0 (9)

m = mF, mT = mF + T0 (10)

L ≤ x ≤ R, y ≥ 0, t∗ ≥ 0 : m = −mO0

ν
, mT = T0 (11)

x = 0, R, y ≥ 0, t∗ ≥ 0 :
∂m
∂x

=
∂mT
∂x

= 0. (12)

Condition (9) specifies the liquid phase’s entrance velocity components and mass
fraction, (10) specifies the inlet fuel vapor mass fraction and its combination with the
temperature, (11) specifies the inlet oxygen mass fraction and the temperature, and (12)
specifies the symmetry and impermeability of the outer wall of the chamber to both mass
and heat transfer, respectively.

3. Normalization of the Governing Equations

For ease of presentation, it is instructive to formulate the governing equations by
normalizing the various independent and dependent variables. Following Greenberg [20],
use is made of the following:

(ξ, η, c) =
(

x
R

,
yDg

vch.R2 ,
L
R

)
(13)

(γ, γd, V) = (m, md, mO0/ν)/mtot f uel , γT = γF + T (14)

where the non-dimensional temperature is defined by

T =
(
(T∗ − T0)/Tre f .

)
(15)

in which T∗ is the actual temperature and Tre f . is some reference temperature.
In addition,

(lch., tch.) =

(
vch.R2

Dg
,

lch.
vch.

)
, t = t∗/tch.. (16)
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In these definitions, mtot f uel is the total mass fraction of fuel (i.e., vapor + liquid)
at the outlet of the inner duct and the subscript ch. denotes a characteristic value. In
addition, all velocity components will be normalized by vch.. The characteristic values will
be judiciously chosen to lie within the parameter range found by Katoshevski et al. [1]
for which droplet grouping occurs, and to assist in obtaining an analytical solution to
the problem.

Applying these definitions leads to the following form for the governing non-dimensional
equations (no special notation is used for non-dimensional velocities etc.):

∂ud
∂t

+ Pe · ud
∂ud
∂ξ

+ vd
∂ud
∂η

=
1
τ̃
(u− ud) (17)

∂vd
∂t

+ Pe · ud
∂vd
∂ξ

+ vd
∂vd
∂η

=
1
τ̃
(v− vd) (18)

∂γd
∂t

+ Pe · ud
∂γd
∂ξ

+ vd
∂γd
∂η

= −∆γd −
(

Pe · ∂ud
∂ξ

+
∂vd
∂η

)
γd (19)

∂γ

∂t
+ Pe · u ∂γ

∂ξ
+ v

∂γ

∂η
=

[
∂2γ

∂ξ2 +
1

Pe2
∂2γ

∂η2

]
+ ∆γd (20)

∂γT
∂t

+ Pe · u ∂γT
∂ξ

+ v
∂γT
∂η

=

[
∂2γT

∂ξ2 +
1

Pe2
∂2γT

∂η2

]
+ ∆(1− β)γd (21)

subject to boundary conditions:

0 ≤ ξ ≤ c, η ≥ 0, t > 0 : (ud, vd) = (ud0, vd0), γd = δ (22)

γ = 1− vdo
v

δ, γT = 1− vdo
v

δ + T0 (23)

c ≤ ξ ≤ 1, η ≥ 0, t > 0 : γ = −V, γT = T0 (24)

ξ = 0, 1, η ≥ 0, t > 0 :
∂γ

∂ξ
=

∂γT
∂ξ

= 0 (25)

in which δ is the initial fraction of liquid fuel in the total fuel supply, τ̃ = τDg/R2, the Peclet
number, Pe, is vch.R/Dg, and the vaporization Damkohler number is ∆ = C̃R2/Dg. In
addition, the gas velocity becomes

→
v (x, y, t) =

(
− Ṽb

vch.

ξκ

Pe
sin(κη)sin(Ωt),

(
Ṽa

vch.
− Ṽb

vch.
cos(κη)sin(Ωt)

))
(26)

where

(κ, Ω) =

(
k

vch.R2

Dg
,

R2

Dg
ω

)
. (27)

4. Reduction of the Governing Equations

We now consider typical data of relevance in order to cast the equations in the right
setting for which Katoshevski et al. [1] showed that droplet grouping occurs. In this way,
solution of the equations under the appropriate conditions should shed light on the way that
droplet grouping, brought on by the velocity field, affects the combustion characteristics.

We use the following orders of magnitude for the data: Dg ≈ 10−6 − 10−7 m2/s ,
R ≈ 10−2 m , vch. ≈ 10−2 m/s. This leads to Pe ≈ 102 − 103, from which we deduce that
the large Peclet number limit can be adopted. Allowing Pe→ ∞ produces the reduced set
of equations:

∂ud
∂t

+ vd
∂ud
∂η

= − 1
τ̃

ud (28)
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∂vd
∂t

+ vd
∂vd
∂η

=
1
τ̃
(v− vd) (29)

∂γd
∂t

+ vd
∂γd
∂η

= −∆γd −
(

∂vd
∂η

)
γd (30)

∂γ

∂t
+ v

∂γ

∂η
=

∂2γ

∂ξ2 + ∆γd (31)

∂γT
∂t

+ v
∂γT
∂η

=
∂2γT

∂ξ2 + ∆(1− β)γd (32)

with the velocity field becoming a standing wave in the vertical direction:

→
v (ξ, η, t) =

(
0, Ṽa − Ṽbcos(κη)sin(Ωt)

)
. (33)

For a stable or persistent grouping phenomenon to occur, Katoshevski et al. [1] demon-
strated that the following conditions must apply:∣∣∣∣Va −Vw

Vb

∣∣∣∣ < 1, Vw =
ω

k
. (34)

The data they quote, from non-combusting experiments with axisymmetric jets, indi-
cate that Vw ≈ 0.8Va. Thus, if Ṽa and Ṽb are both of the order of vch., it is not hard to show
that with ω ≈ 10, a value of k ≈ 103 is implied.

5. Spray Equations Solution

In the first stage of development of a solution, we focus on the spray equations. Under
appropriate operating conditions, τ̃ << 1, whence it can be adopted as a perturbation
parameter. The spray variables are expanded in power series in τ̃:

(ud, vd, γd) =
(

u(0)
d , v(0)d , γ

(0)
d

)
+ τ̃

(
u(1)

d , v(1)d , γ
(1)
d

)
+ . . . . . . (35)

Substituting in Equations (28)–(30) produces the O(1) solutions for the droplets veloc-
ity components: (

u(0)
d , v(0)d

)
=
(

0, Ṽa − Ṽbcos(κη)sin(Ωt)
)

(36)

so that, in leading order, the droplets in the spray are in dynamic equilibrium with the host
carrier gas. To O(τ̃):(

u(1)
d , v(1)d

)
=
(

0, ΩṼbcos(κη)cos(Ωt)− κṼbsin(κη)sin(Ωt)
{

Ṽa − Ṽbcos(κη)sin(Ωt)
})

.
(37)

The leading order equation for the liquid fuel’s mass fraction becomes:

∂γ
(0)
d

∂t
+
(

Ṽa − Ṽbcos(κη)sin(Ωt)
)∂γ

(0)
d

∂η
= −

[
∆ + κṼbsin(κη)sin(Ωt)

]
γ
(0)
d . (38)

This first-order hyperbolic partial differential equation can be rewritten as:

dt =
dη(

Ṽa − Ṽbcos(κη)sin(Ωt)
) = −

dγ
(0)
d[

∆ + κṼbsin(κη)sin(Ωt)
]
γ
(0)
d

. (39)

Solution of:
dη

dt
=
(

Ṽa − Ṽbcos(κη)sin(Ωt)
)

(40)
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using an ODE solver yields the characteristic curves η = η(t, t0), where the notation t0
denotes the initial point (0 ≤ ξ ≤ c, 0, t0) from which a characteristic emanates. Given
t0, the value of γ

(0)
d can be extracted along the relevant characteristics by the numerical

solution of:
dγ

(0)
d

dt
= −

[
∆ + κṼbsin(κη)sin(Ωt)

]
γ
(0)
d . (41)

In a similar fashion, the O(τ) correction is determinable, along the same characteristics,
by the numerical solution of:

dγ
(1)
d

dt
= −

[
∆ + κṼbsin(κη)sin(Ωt)

]
γ
(1)
d − γ

(0)
d

(
∂v(1)d

∂η

)
− v(1)d

(
∂γ

(0)
d

∂η

)
(42)

where the last two terms on the RHS can be evaluated from known values of γ
(0)
d (from

Equation (41)) and v(1)d (from Equation (37)).
Thus, summarizing this section, the spray’s velocity and liquid fuel normalized mass

fraction can be determined at any point in time and space.

6. Modeling Droplet Grouping

The afore-described solution is quite general, under the assumptions adopted, and will
therefore be relevant if droplet grouping occurs. What is now needed is to incorporate some
model that captures the core of the grouping phenomenon. In view of the sparse evidence
in the literature, we choose to express the influence of droplet grouping through its impact
on evaporation via the vaporization Damkohler number, ∆. The model makes use of
Equation (40) for the characteristic curves. The basic idea is that wherever these curves
cluster in the η − t plane, the value of the vaporization Damkohler number is modified
to reflect an appropriate reduction in the rate of evaporation. At any arbitrary point in
time, the maximum value of η(t), i.e., ηmax.(t), is known from the solution of Equation
(40). Suppose we consider ncc characteristic curves that pass through the line t = constant
in the η − t plane. Then, the average distance between two adjacent characteristics is
l(t) = ηmax.(t)/ncc(t). Suppose the actual distance between two adjacent characteristics
is lj(t) = ηj(t)− ηj−1(t) (where we take j = 1, 2, 3 . . . . ncc(t)) and that η0 = 0 for all t. Let
`j = min

{
lj, lj+1

}
. Then, the way in which grouping affects the vaporization Damkohler

number is taken to be:

∆ ≡ ∆G = α

[
∆0H

(
l(t)− `j(t)

)( `j(t)
l(t)

)2

+ ∆0H
(
`j(t)− l(t)

)]
+ (1− α)∆0 (43)

where ∆0 is the value of the vaporization Damkohler number under conditions of no
grouping, the subscript G denotes the grouping situation, H is the Heaviside function
and α is a parameter that relates to the extent of reduction of the vaporization Damkohler
number. The vaporization Damkohler number reflecting grouping is utilized in the solution
given before.

7. Spray Diffusion Flame Solution

Knowing the solution to the spray equations allows us to focus attention on solution
of Equations (31) and (32) for the Schwab–Zeldovitch variables, γ, γT . Taking the finite
cosine transform in the ξ-direction, the following equations result:

∂γn

∂t
+
(

Ṽa − Ṽbcos(κη)sin(Ωt)
)∂γn

∂η
= −(nπ)2γn + ∆Γd,n, n = 0, 1 , 2 . . . (44)

∂γT,n
∂t +

(
Ṽa − Ṽbcos(κη)sin(Ωt)

)
∂γT,n

∂η = −(nπ)2γT,n + ∆(1− β)Γd,n, n = 0, 1, 2 . . . . (45)
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where

(γn(η, t), γT,n(η, t)) =
1∫

0

(γ(ξ, η, t), γT(ξ, η, t))cos(nπξ)dξ (46)

and

Γd,n =

c∫
0

γdcos(nπξ)dξ (47)

For each value of n, Equations (44) and (45) can be formulated as:

dt =
dη

(Ṽa − Ṽbsin(κη −Ωt))
=

dγn

−(nπ)2γn + ∆Γd,n
=

dγT,n

−(nπ)2γn + ∆(1− β)Γd,n
(48)

The characteristic curves are identical to those of Equation (40) along which the
solutions are:

(γn(η, t), γT,n(η, t)) = (γn(0, t0), γT,n(0, t0))exp
(
−(nπ)2(t− t0)

)
+

exp
(
−(nπ)2(t− t0)

) t∫
t0

(1, 1− β)∆exp
(
(nπ)2(t− t0)

)
Γd,ndt

(49)

In this equation,

(γn(0, t0), γT,n(0, t0)) =

(
[1 + V]− δ

vd(0, t0)

v(0, t0)
,
[

1− δ
vd(0, t0)

v(0, t0)

])
sinnπc

nπ
, n 6= 0 (50)

(γ0(0, t0), γT,0(0, t0)) =
(

c
(

1− δ
vd(0,t0)
v(0,t0)

)
−V(1− c), c

(
1− δ

vd(0,t0)
v(0,t0)

)
+ T0

)
, n = 0. (51)

Numerical evaluation of the integral in Equation (49) is straightforward. Inverting
Equation (46) with the help of Equation (49) yields the full solution:

(γ(ξ, η, t), γT(ξ, η, t)) = (γ0(η, t), γT,0(η, t)) + 2
∞

∑
n=1

(γn(η, t), γT,n(η, t))cosnπξ. (52)

The location of the flame front is given at any instant of time, t̃ say, by those points
(ξ, η) satisfying γ

(
ξ, η, t̃

)
= 0.

8. Results and Discussion

The dataset used for computing the results to be presented is as follows: V = 0.174,
Va = 0.5, Vb = 0.4, Ω = π, κ = 3, τ̃ = 0.01, δ = 0.75, ∆0 = 5, c = 1/6, and α = 0.75 unless
otherwise specified. The reduction parameter, α, is based on data quoted by Bellan [21]
(see also [22,23]).

We start by exploring when droplet grouping occurs. In Figure 2, typical characteristic
lines are drawn in the η − t plane (constructed by solving the relevant part of Equation
(34)) for several values of the average velocity, Va. The influence of Va on these lines is
conspicuous. As the value of the average wave velocity grows (in the range shown), the
clustering of the characteristic curves diminishes, which implies a decrease in droplet
grouping. However, it is evident that in regions of clustering of the lines, droplet grouping
is to be expected, with an accompanying variation of the vaporization Damkohler number
according to Equation (37). Figure 3 illustrates the way in which the amplitude, Vb, of
the applied host gas standing wave influences the characteristic lines for a fixed average
velocity, Va. It is evident that as the amplitude decreases, clustering of the characteristic lines
decreases, with an expected waning of droplet grouping. Physically, this is understandable,
as the deviation from the average velocity of the wave tends to become smaller as Vb → 0.
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Figure 2. Influence of average velocity, Va, on characteristic curves for spray droplet dynamics in
a host gas standing wave flow-field.

Figure 3. Influence of amplitude of the standing wave, Vb, on characteristic curves for spray droplet
dynamics in a host gas standing wave flow-field.

The problem of the singularity due to the crossing of characteristic lines when dealing
with equations of the form of (22)–(24) was discussed by Massot [24] and Desjardin et al. [25].
In the current work, this difficulty has been avoided through careful choice of the parameter
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values utilized. This was achieved by considering the parameters affecting the paths of
characteristics lines for the problem at hand, viz., Va, Vb, κ and Ω. The values chosen,
for the results herein presented, were based on the location of the points of origin of the
characteristic lines at η = 0, i.e., the time increments involved. Then, figures such as
Figures 2 and 3 in the manuscript were meticulously scrutinized to ensure that no crossing
of the characteristic lines occurred.

The way in which grouping affects flame characteristics is best demonstrated by mak-
ing a comparison between results predicted using the current theory and those generated
by neutralizing the effect of grouping, i.e., by setting the evaporation Damkohler number,
∆, equal to a constant, rather than allowing it to vary in accordance with the local degree of
proximity of the characteristic curves. To this end, Figure 4 presents a series of snapshots
in the evolution of a spray diffusion flame in a standing wave host flow. Due to symmetry,
only half of the flame sheet is drawn. The solid black lines are associated with the evolving
flame when grouping is accounted for, whereas the gray lines relate to the flame without
accounting for droplet grouping. The dominant influence asserted on the flame dynamics
due to the host gas steady wave flow-field’s induced droplet grouping is readily observed.
When the full influence is neutralized, via neglecting droplet grouping, the single spray
flame is seen to be under-ventilated for the entire evolutionary cycle illustrated. At t = 2.00,
the flame height is at its maximum. As time progresses, the flame exhibits a collapse,
and at about t = 2.75, it reaches its minimum height. Subsequently, it begins to regrow
in height until it regains its original shape and height with which it started at t = 2.00.
The rise-and-fall sequence of the flame front results from the standing wave flow-field,
which oscillates in time, but for which the peak amplitude profile does not move in space.

Figure 4. Comparison between the evolution of spray diffusion flame fronts with and without
droplet grouping induced by the host gas standing wave flow field accounted for; Key: Solid black
lines—with grouping, gray lines—without grouping.

In stark contrast, when the more realistic droplet grouping is taken into account,
a completely different picture of the flame dynamics is revealed. At time t = 2.00, the flame
shape is indistinguishable from that of when grouping is neglected. As time progresses, the
flame shapes part ways. The beginning of flame surface split-off and subsequent formation
of a second smaller flame can be observed at time frames t = 2.25 and t = 2.50, respectively.
At t = 2.25, a slight bulge toward the η-axis is observed. A look at Figure 3 shows that at
this time, close to η = 0, the characteristic lines are clustered (Ṽb = 0.4), and the availability
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of fuel vapor due to droplet evaporation is reduced because ∆G (Equation (43) is reduced.
Therefore, the local diffusion of oxidant from the outer duct pushes the flame toward the
η-axis, and the bulge splits into two parts. The low flame located very close to η = 0 at
t = 2.50 is the first part, an over-ventilated flame. The upper split-off flame spans the entire
half-plane and is fueled by oxidant from below and fuel vapor from above. It begins to
move downstream, whilst a third flame surface appears in between the lower short flame
at the entrance to the duct and the split-off flame (see the t = 2.75 frame). This third flame
is formed due to an enhancement effect (see later), which produces fuel vapor locally in
the surrounding “sea” of oxidant. At t = 3.00, the third flame surface has extended across
to the duct wall and itself has split into two. Meanwhile, the lowest (over-ventilated flame
surface) has grown in height. At the next time instant shown, the two upper split-off flame
surfaces are seen to have moved downstream, whilst the lowest flame surface has combined
with the third split-off surface and is forming an under-ventilated flame that eventually
(at t = 3.75) replicates the situation with which the cycle shown started. The two upper
flame surfaces continue to move downstream as they merge. Clearly, flow-induced droplet
grouping impacts on the flame dynamics in a remarkably diverse fashion when compared
to the dynamics when grouping is absent from the model. A short video clip of the flame
surface dynamics can be viewed in the Supplementary Materials to this manuscript.

To gain some insight into the way in which this evolving multiple flame scenario
occurs, Figures 5 and 6 compare contours of γd without and with grouping accounted for,
respectively. When no grouping is allowed, the exponential-like decay of the droplets along
the characteristic lines (along lines of constant ξ) becomes less gradual as time progresses
from t = 2.00 to t = 3.00, after which it becomes more gradual until t = 3.75. This
reflects the underlying standing wave motion of the carrier gas. It also determines the
region in which fuel vapor is deposited by the vaporizing droplets and impacts on the
instantaneous height of the flame, as can be readily observed. For example, the steepest
spatial downstream decrease in γd occurs at about t = 2.75. The fuel vapor available
diffuses radially and swamps the oxidant issuing from the outer duct resulting in the
lowest under-ventilated flame of those shown in Figures 4 and 5.

Figure 5. Evolution of normalized mass fraction of liquid fuel—without droplet grouping; the solid
black lines represent the flame front.
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Figure 6. Evolution of normalized mass fraction of liquid fuel—with droplet grouping; the solid
black lines represent the flame fronts.

In contrast, Figure 6 indicates how grouping can lead to a more complex profile of
the liquid fuel droplets and a region of very high values of γd that travels downstream
with the underlying wave motion. This concentrated region results from droplet grouping
and leads to an intricate inhomogeneous spatial and temporal distribution of fuel vapor,
which, in turn, produces the multiplicity of flame surfaces. The apparently anomalous
behavior, whereby γd can actually increase beyond unity, was noted by de la Mora and
Rosner [24], who dubbed it “particle phase enrichment”. It appears because when the
liquid phase behavior is described in a Eulerian framework (see Equation (30)), two source
terms, −∆γd and −(∂vd/∂η)γd, appear on the right hand side of the liquid fuel mass
conservation equation. The first is an evaporation term, and the latter is an extra term
effectively describing a liquid phase compressibility type of effect (despite the fact that the
gas flow field was taken as incompressible). de la Mora and Rosner [26] demonstrated
that the so-called enrichment factor resulting from this latter term can be as much as 10
for (non-evaporating) particles in stagnation point flow. The situation here is somewhat
different, but the same phenomenon is exhibited due to the standing wave character of
the host gas and (to leading order) the droplet velocity field. The phenomenon is almost
completely absent from the profile of γd when droplet grouping is not accounted for as in
the case of the data utilized here. (Note that γd is the ratio of the mass fraction of liquid
fuel in the droplets to the total initial mass fraction of fuel vapor and liquid fuel. If the
initial total fuel mass fraction is of the order of 10−2, for the values of γd greater than unity
obtained here, the actual mass fraction of liquid fuel will not exceed unity.)

Finally, we display a comparison between the thermal fields when grouping is absent,
in Figure 7, and when it is present, in Figure 8. These figures merely replicate, in terms of the
temperature contours, what was analyzed above. In Figure 7, the typical Burke–Schumann
spray under-ventilated diffusion flame temperature contours can be seen moving up and
down in space and time as the fuel and oxidant fluxes change with the steady standing
wave motion. However, Figure 8 shows the numerous unconventional thermal contours,
as flame split-off occurs and local hot and cold regions separate out. So-called “flame
pinching” was noted for gaseous diffusion flames using numerical simulations. Although
flame pinching was found in pulsating gaseous combustion [27–29], the results predicted
by Greenberg and Katoshevski [7,11] showed that droplet grouping can be a new source
of such behavior. The complexity of the dynamical behavior of the flame fronts and their
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multiplicity produces strong dynamical fluctuations of the thermal field of the sort that
can potentially be responsible for incomplete combustion, flame instability, or even local or
global extinction. The current theory points to a different flow-field that can be responsible
for the major bearing on the nature of the flame dynamics and all that it implies.

Figure 7. Evolution of normalized thermal field—without droplet grouping; the solid black lines
represent the flame front.

Figure 8. Evolution of normalized thermal field—with droplet grouping; the solid black lines
represent the flame front.

Notwithstanding the afore-described results, it is important to make note of the
limitations of the model we employed. A number of fundamental assumptions were
adopted to facilitate an analytical solution.

(1) The gas velocities in the inner and outer ducts were assumed identical and unchang-
ing, thereby divorcing the heat and mass transfer equations that were solved from the
gas flow equations. In the context of a common constant gas flow field velocity, it was
shown [30] that the effect of the non-uniform flow that develops downstream of the
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boundary between the inner and outer ducts on the overall characteristics of the spray
flame could be expressed in terms of a rescaled vaporization Damkohler number.

(2) Wall effects on the flow are ignored here as the inner ducts width is much smaller
than the width of the chamber.

(3) The chemical Damkohler number was assumed to be infinitely large. This is a common
reasonable assumption, but questions of flame extinction can only be fully addressed
if a finite chemical Damkohler number is used. Of course, a more detailed study,
including incomplete combustion, would require a multiple-step chemical kinetic
scheme to be adopted rather than the single-step overall scheme applied here.

(4) Gas expansion effects were not accounted for. However, this may not unreasonable if the
reaction zone is limited to a surface (i.e., via the infinite chemical Damkohler number).

(5) Finally, the treatment of the spray as being mono-sectional is approximate, as true
sprays are generally polydisperse. Nevertheless, the mono-sectional spray does give
a good initial indication concerning the overall flame characteristics.

A fuller, more precise description of the problem we solved here clearly requires
a full numerical solution of all the fluid flow, heat and mass transfer, and spray governing
equations, which is beyond the scope of this current initial analytical foray into this difficult
two-phase problem. Despite these limitations, the theory and results presented here do
afford a preliminary glance at the sort of phenomena that are to be anticipated in such
a configuration.

9. Conclusions

A mathematical model was formulated to describe two-dimensional laminar spray
diffusion flame dynamics when the underlying imposed flow-field is a standing wave. The
effect of droplet grouping was incorporated into the model. A small Stokes number was
employed for developing a solution to the spray-related equations. The solution for a flame
surface was found using appropriately constructed Schwab–Zeldovitch parameters. Calcu-
lated results based on the analytical solution were compared with those from an equivalent
model in which droplet grouping was forcibly absent. The comparison provided an insight
into the mechanisms at play that are uniquely induced by droplet grouping, which resulted
from the standing wave flow field. In particular, de la Mora and Rosner’s [24] “particle
phase enrichment” was present, leading, when coupled with grouping, the formation
of multiple flame fronts, flame pinching, and transition from under- to over-ventilated
scenarios, as several regions of fuel vapor that were created by the evaporating droplets.
This was accompanied by very non-uniform thermal field dynamics. These phenomena
were in glaring contrast to the flame dynamics without droplet grouping, for which only a
single under-ventilated flame front existed, oscillating in height and width in tandem with
the availability of fuel vapor, oxidant, and the standing wave flow-field. The ramifications
of the complex nature of the standing wave and its impact on the flame dynamics when
droplet grouping was present, with respect to incomplete combustion and the potential for
flame extinguishment, were noted, as were the limitations of the model employed.

Supplementary Materials: The following are available online at https://www.mdpi.com/2311-552
1/6/1/27/s1. A short video file entitled “BS Spray flame in standing wave flow field fluids” shows
the typical evolution of the spray flames, with and without droplet grouping, and the velocity field
they experience (dubbed “flame velocity”).
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