
fluids

Article

Analysis and Modelling of the Commutation Error

Markus Klein 1,* and Massimo Germano 2

����������
�������

Citation: Klein, M.; Germano, M.

Analysis and Modelling of the

Commutation Error. Fluids 2021, 6, 15.

https://doi.org/10.3390/fluids

6010015

Received: 08 December 2020

Accepted: 24 December 2020

Published: 31 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: c© 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Aerospace Engineering, Bundeswehr University Munich, Werner-Heisenberg-Weg 39,
85577 Neubiberg, Germany

2 Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA;
mg234@duke.edu

* Correspondence: markus.klein@unibw.de; Tel.:+49-89-6004-2122

Abstract: A multiscale dynamic analysis of the commutation error, based on the filtering approach
is performed. The similarity multiscale hypothesis proposed by Bardina (1983) and extended by
Geurts and Holm (2006) to the commutation error is examined in detail and an extension of the
Germano identity to the analysis and the modelling of the commutation error is proposed. For a
detailed analysis under controlled condition the method is first applied to synthetic turbulence and
subsequently to the a-priori analysis of a turbulent channel flow at Reτ = 590. The results illustrate
the flexibility of the dynamic modelling approach. Combined with a scale similarity assumption for
the commutation error very satisfactory results have been obtained for first order derivatives and
reasonable results for second order derivatives. In all cases the modelling of the commutation error
resulted in smaller errors than the error obtained by neglecting the commutation error.

Keywords: large eddy simulation; commutation error; dynamic modelling; scale similarity model;
a-priori analysis

1. Introduction

Turbulence modelling using the Large Eddy Simulation (LES) technique is considered
advantageous over traditional methods relying on Reynolds averaging due to its inherent
ability to resolve the energy carrying turbulent structures. Given the advances in computing
power over the last decades, together with recent advances in numerical methods [1,2] and
advanced modelling techniques [3,4] based on machine learning, it can be expected that LES
will be increasingly used in the future for a variety of applications such as combustion [5,6]
or two-phase flows [7–9] to name only two.

The Large Eddy Simulation of turbulent flow is affected by many errors, due to many
reasons, first of all the granularity of the grid coupled with the nonlinearity of the equations.
Following Reference [10], we can formalize all that in terms of a filtering approach that
reads the data produced by a numerical code as a filtered database. The filtering operator
representative of a given LES is characterized by a filter length, directly associated to the
grid length, and a lot of information, useful both for modelling and for analysing the
results, can be recovered by comparing two different simulations at two different resolution
levels by means of the so called dynamic filtering approach. As recalled in the abstract, the
first application of the dynamic modelling approach was presented thirty years ago at the
Summer Meeting of the CTR [11], and since then a lot of different applications flourished
thanks to the interest of many researchers around the world. We refer both to the cited
Reference [12] and to Reference [13] for more details on that.

In order to derive the LES formalism, the Navier-Stokes equations are usually filtered
with a commutative filter, that is, ∂u = ∂u where u denotes a general variable and · a
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general filtering operation, typically defined as a convolution integral (here for illustration
in 1D) with the filter kernel G such that

u(x) =
∫ ∞

−∞
u(y)G(x− y)dy,

∫ ∞

−∞
G(x− y)dy = 1. (1)

Examples of filter kernels in physical scace are the box filter

G(x− y) =
1
∆

if |x− y| ≤ ∆
2

; G(x− y) = 0 otherwise (2)

or the Gaussian filter

G(x− y) =
(

6
π∆2

)1/2
exp
(
−6|x− y|2

∆2

)
. (3)

Making use of the linearity of filtering one obtains

∂

∂t
ui = −

∂

∂xj

(
uiuj

)
+

∂

∂xj
ν

(
∂ui
∂xj

+
∂uj

∂xi

)
− 1

ρ

∂p
∂xi

. (4)

Without loss of generality viscosity ν and density ρ are assumed to be constant. Two
approaches exist to deal with the unknown correlation uiuj appearing in the filtered Navier-
Stokes equations [14]:

uiuj = ui uj +
(
uiuj − ui uj

)
(5)

uiuj = ui uj +
(
uiuj − ui uj

)
. (6)

The term in parentheses is the unknown sgs stress tensor τij. If Equation (5) is used,
a closed equation for ui is obtained, provided a model for τij is supplied. This equation
requires no explicit filtering during the solution process. If relation (6) is used one obtains
again a closed equation but this time with an additional explicit filtering operation applied
to the non linear term. Therefore we call the first approach implicit filtering and the second
approach explicit filtering ([15] uses the terminology triple and double decomposition).

In order to derive Equation (4) a homogeneous filter defined in an infinite domain
has been assumed. Problems with the theory outlined so far can therefore arise from
inhomogeneous filters or from bounded computational domains. This can be seen by
differentiating Equation (1) with respect to x which gives [15]:

∂u(x)
∂x

=
∂u(x)

∂x
+
∫ ∞

−∞
u(y)

∂G(x− y)
∂x

dy. (7)

Inhomogeneous filters (grids) are extensively applied in the proximity of walls or
regions of strong gradients, like shear layers for example. Hence, the commutation of
derivation and filtering is of particular importance for manipulating the Navier-Stokes
equations and application of a non commutative filter to the governing equations results in
unknown expressions for all terms.

The problem of deriving high order commutative (HOC) filters has been addressed in
the past literature (e.g., References [16–18]). Vasilyev et al. [17] developed a class of HOC
filters using a mapping function. In extension to that work Marsden et al. [18] proposed a
more general procedure for use on unstructured meshes. These filters are defined as a linear
combination of simple commutative basis filters, thus allowing to control additionally the
filter shape. An implementation of this method into an unstructured solver can for example
be found in Reference [19]. The underlying idea of the work mentioned above is that
the commutation error can be controlled by imposing conditions on the filter moments.
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However, as the primary filtering operation is not explicitly performed in a real LES [14],
a general limitation of these ideas is, that these commutative filters can only be used for
the secondary filtering operation, such as in Equation (6), or when using a test filter in the
dynamic modelling approach. John [20] argues that the commutation error vanishes if
and only if the normal stress on the boundary is zero for all times which is very unlikely.
While the analysis in this work considers only spatial, time independent filters, it is
worth to mention the following extensions: Leonard et al. [21] discuss the commutation
error when the spatial filter varies in time, while Franke and Frank analyse the temporal
commutation error [22]. The next sections discuss a framework that potentially could be
used for modelling the commutation error for the primary filtering operation such as in
Equation (5).

2. Multiscale Modelling

It has been mentioned in Reference [23] that the commutation error can be modelled
using a scale similarity type approach. Here the main attention is not only to modelling
but equally important to analyse the commutation errors with the filtering approach
and the related multiscale procedure based on the Germano identity. We remark that in
the framework of the filtering approach a Large Eddy Simulation of a turbulent flow is
mathematically formalized as a filtered representation of a Direct Simulation. If with F
we represent the filtering operator usually unknown and denoted with an overbar ·, that
produces the filtered LES values 〈ui〉 f of the velocity components, a basic problem is to
understand how the filtered product 〈uiuj〉 f is related to them. The filtering approach tries
to resolve this problem from a multiscale point of view. We define the Generalized Central
Moment, (GCM), τf (ui, uj) associated to 〈uiuj〉 f as

τf (ui, uj) = 〈uiuj〉 f − 〈ui〉 f 〈uj〉 f , (8)

and we look to the GCM associated to 〈〈uiuj〉 f 〉g, where G is an explicit test filtering
operator, denoted also with a hat ·̂,

τf g(ui, uj) = 〈〈uiuj〉 f 〉g − 〈〈ui〉 f 〉g〈〈uj〉 f 〉g. (9)

It is easy to see that the resolved GCM (based on resolved quantities 〈·〉 f and consider-
ing filter level g),

τg(〈ui〉 f , 〈uj〉 f ) = 〈〈ui〉 f 〈uj〉 f 〉g − 〈〈ui〉 f 〉g〈〈uj〉 f 〉g (10)

can alternatively be expressed by the tensor Mij defined as

Mij = τf g(ui, uj)− 〈τf (ui, uj〉〉g. (11)

Inserting a model expression for τf and τf g with one free model parameter into
Equation (11) to express Mij and equating it to Equation (10) one could in principle
determine this model parameter from

τg(〈ui〉 f , 〈uj〉 f ) = Mij. (12)

However, each tensor component would provide a different equation and a different
value of for the model parameter. If instead we contract the identity (12) with Mij, following
the approach of Lilly [24], we have identically

τg(〈ui〉 f , 〈uj〉 f )Mij = Mij Mij . (13)

The contraction corresponds to summation over both indices and as a result of it the
resulting model parameter represents the single model parameter which provides the best
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approximation in a least square sense to the six equations representing the symmetric
tensor components.

We remark that from the LES modelling point of view, but not only, it is very important
to understand how the dynamic coefficient C

C =
τg(〈ui〉 f , 〈uj〉 f )Mij

Mij Mij
(14)

scales with resolved quantities. Obviously the dynamic coefficient C should be rigorously
equal to one everywhere if the modelling scaling is exact, but this is not the case for a
generic scaling model. As an example, we can scale Mij with the similarity model of
Bardina [25].

Thus we can write

τss, f (ui, uj) = τf (〈ui〉 f , 〈uj〉 f ) =

= 〈〈ui〉 f 〈uj〉 f 〉 f − 〈〈ui〉 f 〉 f 〈〈uj〉 f 〉 f

= ui ui − ui uj (15)

τss, f g(ui, uj) = τf g(〈ui〉 f g, 〈uj〉 f g)

= 〈〈ui〉 f g〈uj〉 f g〉 f g − 〈〈ui〉 f g〉 f g〈〈uj〉 f g〉 f g

=
̂̂
ui ûi −

̂̂
ui
̂̂
uj (16)

and finally the parameter Css be computed with resolved quantities

Css =
τg(〈ui〉 f , 〈uj〉 f )Mss,ij

Mss,ij Mss,ij
(17)

where
Mss,ij = τss, f g(ui, uj)− 〈τss, f (ui, uj)〉g. (18)

In this local form, the Bardina dynamic coefficient Css depends on time and space,
but a global form can be conceived, averaged in time and/or eventually in homogeneous
space directions.

Strangely enough this multiscale approach and the main use of the identity (12) was to
model turbulence, and not to analyse its multiscale peculiarities. The reasons for that are not
so simple to explain. We only remark that this attitude has prevented simple observations
that could be usefully applied to LES. One of them refers to the commutation error, and
that is the main contribution of this paper. Let us formally consider the GCM associated to
the filtered product of a space derivative with a velocity component 〈∂jui〉 f , on filter level
F defined as

τf (∂i, uj) = 〈∂iuj〉 f − ∂i〈uj〉 f =
∂u
∂x
− ∂u

∂x
. (19)

If we introduce once more an explicit test filter G, a simple extension of the identity (12)
is the following

τg(∂i, 〈uj〉 f ) = τf g(∂i, uj)− 〈τf (∂i, uj)〉g =

(
∂̂u
∂x
− ∂û

∂x

)
−

̂(
∂u
∂x
− ∂u

∂x

)
, (20)

where τg(∂i, 〈uj〉 f ) is the resolved GCM given by

τg(∂i, 〈uj〉 f ) = 〈∂i〈uj〉 f 〉g − ∂i〈uj〉 f g =

(
∂̂u
∂x
− ∂û

∂x

)
. (21)
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We can contract this identity like

τg(∂i, 〈uj〉 f )Mij = Mij Mij, (22)

where

Mij = τf g(∂i, uj)− 〈τf (∂i, uj)〉g =

(
∂̂u
∂x
− ∂û

∂x

)
−

̂(
∂u
∂x
− ∂u

∂x

)
(23)

and also in this case it is very important to understand how the dynamic coefficient C
associated to the commutation GCM,

C =
τg(∂i, 〈uj〉 f )Mij

Mij Mij
(24)

scales with resolved quantities. Obviously the candidates to this explorations are many.
The scale similarity model is known to show high correlations in a-priori tests not only for
isothermal flows but also for the stress, the flux modelling and the reaction rate closure in
reacting flows [26–28] or two phase flows [7,8]. The problem of insufficient dissipation of
the model has for example been addressed in Reference [29]. Encouraged by these results
and by the work of Reference [23] we will therefore examine in some detail how the ratio C
scales with the extension of the similarity model of Bardina [25]. We write

τss, f (∂i, 〈uj〉 f ) = 〈∂i〈uj〉 f 〉 f − ∂i〈〈uj〉 f 〉 f = C

(
∂u
∂x
− ∂u

∂x

)
(25)

τss, f g(∂i, 〈uj〉 f g) = 〈∂i〈uj〉 f g〉 f g − ∂i〈〈uj〉 f g〉 f g = C

 ∂̂û
∂x
− ∂

̂̂
u

∂x

 (26)

as well as
Mss,ij = τss, f g(∂i, uj)− 〈τss, f (∂i, uj)〉g (27)

such that finally

Css =
τg(∂i, 〈uj〉 f )Mss,ij

Mss,ij Mss,ij

=

(
∂̂u
∂x −

∂û
∂x

)
×
[(

∂̂û
∂x −

∂
̂̂
u

∂x

)
− ̂( ∂u

∂x −
∂u
∂x

)]
[(

∂̂û
∂x −

∂
̂̂
u

∂x

)
− ̂( ∂u

∂x −
∂u
∂x

)]
×
[(

∂̂û
∂x −

∂
̂̂
u

∂x

)
− ̂( ∂u

∂x −
∂u
∂x

)
,
] (28)

where numerator and denominator will be space or ensemble averaged as appropriate.
Averaging is a standard procedure for regularisation of the dynamic procedure (for an
overview on this topic see Reference [15]). For unsteady 3D flow problems the averaging
in homogeneous directions can be replaced by the Lagrangian dynamic model proposed
by Meneveau et al. [30].

3. Approximations for Commutation Errors

In this section a first order approximation of the commutation error for the first and
second derivative will be presented under the assumption that the filter is a differential or
elliptic filter. If the filter varies in space and the filter width is formally associated to the
length scale ∆ one can explicitly include this dependency in Equation (7)
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∂u(x, t, ∆)
∂x

=
∂u(x, t, ∆)

∂x
+
∫ ∞

−∞

∂G(ξ, ∆)
∂x

u(x− ξ, t)dξ

=
∂u(x, t, ∆)

∂x
+
∫ ∞

−∞

∂∆
∂x

∂G(ξ, ∆)
∂∆

u(x− ξ, t)dξ (29)

such that the commutation error can be formally expressed in one dimension as [31,32]

τf (∂, u) ≡ 〈∂u〉 f − ∂〈u〉 f = −
∂∆
∂x

∂〈u〉 f

∂∆
. (30)

By using the overline notation we derive the following expression for the second
order derivative

τ(∂, u) =
∂u
∂x
− ∂u

∂x
= −∂∆

∂x
∂u
∂∆

(31)

τ(∂, ∂u) =
∂

∂x
∂u
∂x
− ∂

∂x
∂u
∂x

= −∂∆
∂x

∂

∂∆
∂u
∂x

(32)

τ(∂2, u) =
∂2u
∂x2 −

∂2u
∂x2

=
∂τ(∂, u)

∂x
− ∂∆

∂x
∂2ū

∂∆∂x
− ∂∆

∂x
∂τ(∂, u)

∂∆
. (33)

The commutation error has been also examined in Reference [33]. From this last paper
we can derive an estimate of the derivative of u with ∆ in the case of the elliptic differential
filter [34]

u = u− ∆2 ∂2u
∂x2 ;

∂u
∂∆
∼ 2∆

∂2ū
∂x2 . (34)

In this case we have as a first approximation

τ(∂, u) ≈ τa = −2∆
∂∆
∂x

∂2u
∂x2 . (35)

Similarly, the Gaussian filter and its inverse can be approximated by a differential
filter [15]

u ≈ u− 1
24

∆2 ∂2u
∂x2 ; u ≈ u +

1
24

∆2 ∂2u
∂x2 = u + (∆∗)2 ∂2u

∂x2 ; ∆∗ = (1/24)1/2∆. (36)

From Equation (31) we get

∂τ(∂, u)
∂x

= −∂2∆
∂x2

∂ū
∂∆
− ∂∆

∂x
∂2ū

∂∆∂x
(37)

∂τ(∂, u)
∂∆

= −∂∆
∂x

∂2ū
∂∆2 (38)

and insertion in Equation (33) gives

∂2u
∂x2 −

∂2u
∂x2 = −2

∂∆
∂x

∂2ū
∂∆∂x

− ∂2∆
∂x2

∂ū
∂∆
−
(

∂∆
∂x

)2 ∂2ū
∂∆2 . (39)

If, using Equation (34), we write as a first approximation

∂2ū
∂x∂∆

= 2∆
∂3ū
∂x3 + 2

∂∆
∂x

∂2ū
∂x2 (40)

the first term to the right in (39) reads as
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− 2
∂∆
∂x

∂2ū
∂∆∂x

= −4∆
∂∆
∂x

∂3ū
∂x3 − 4

(
∂∆
∂x

)2 ∂2u
∂x2 . (41)

One can assume that (∂∆/∂x)2 < (∂∆/∂x) and (∂∆/∂x)2 < ∆(∂∆/∂x). Often a
constant grid stretching is used such that ∂∆/∂x = const and ∂2∆/∂x2 = 0. Under these
conditions one has

τ(∂2, u) =≈ τ2
a = −4∆

∂∆
∂x

∂3u
∂x3 . (42)

4. Analysis of Synthetic Turbulence

The commutation for the primary filter affects, apart from the temporal derivative,
every term in the Navier-Stokes equations. Hence an implementation of the methodology
in a real LES will be cumbersome and not straightforward on bounded domains with
non-uniform meshes. For a first illustration of the methodology a simple 1D example has
been chosen here, which has also the advantage that all turbulence parameters can be
strictly controlled.

4.1. First Order Derivatives

The computational mesh used for illustration of the method is a stretched one-
dimensional mesh with variables stored in the cell center on a domain with unity length.
The first cell has a length of ∆x = ∆x1 and the subsequent cells (50 in total) have the width
∆xi = ∆x · si−1 where s is a constant stretch factor taken as 1.05 for the example in Figure 1.
In this particular case the first mesh cell has a width of ∆x = ∆x1 = 0.00239. The discrete
filter is an inhomogeneous, asymmetric box filter as illustrated in Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1. Illustration of the stretched 1D computational mesh with cell centred data storage and one sketched box filter.

For a given parameter p the filter around a point i0 is given by the coefficients with
the weights wi0+i:

wi0+i = ∆xi0+i/wtot, i = −p, . . . , p, wtot = ∑
i=−p,...,p

∆xi0+i. (43)

All derivatives are calculated by second order accurate finite differences for non-
equidistant meshes

∂ui
∂x
≈

ui+1∆2
− − ui−1∆2

+ + ui(∆2
+ − ∆2

−)

∆−∆+(∆− + ∆+)
, ∆− = xi − xi−1, ∆+ = xi+1 − xi, (44)

where xi denotes the midpoints of the cells. It is worth noting that this formula reduces
to the standard central difference for equidistant meshes. Due to the inhomogeneous
filtering operation the mesh has to be elongated in positive (x > 1) and negative (x < 0)
direction in order to have a well-defined filtering operation for up to fourfold filtering.
Pseudo turbulent data has been generated using the digital filter based method detailed
in Reference [35], where the integral turbulent length scale has been set to L11 = 5∆x1
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respectively 10∆x1 and the fluctuation intensity is set to unity without loss of generality.
The associated two-point autocorrelation function (an equivalent of the energy spectrum)
obtained by this approach resembles homogenous isotropic turbulence in a late stage [35].

The turbulent initial data has been generated on a uniform mesh and interpolated on
the non-equidistant computational mesh using a cubic spline function, as illustrated in
Figure 2. The derivatives of the signal shown in Figure 2 and the associated commutation
error are shown in Figure 3a,b. It is worth noting that for a homogeneous symmetric
filter τf = 0 and this has been verified in the numerical implementation by setting the
stretch factor to s = 1. We remark that the numerical gradients become smaller with
larger grid size (i.e., towards the right boundary of the computational domain). The scale
similarity model given by Equation (25) is shown together with the commutation error
in Figure 3b using C = 1. Table 1 shows the performance of the model in terms of the
Pearson correlation coefficient for initial data with two different length scales and two
different filter width, which according to Equation (43) can be specified using the parameter
p f . Furthermore, Table 1 shows the optimal model parameter C determined from a least
square fit of the model data to the real commutation error according to Equation (25). The
numerical experiment has been repeated 2000 times and all data is space and ensemble
averaged. In a real LES determination of the model constant C using least square fits is not
possible because the commutation error is unknown. Table 1 shows also the dynamically
determined model coefficient Css for different initial data and different f , g filter size pairs
(p f , pg). It can be seen that the dynamic procedure reasonably represents the optimal
model coefficient. It is also worth mentioning that in all cases the model error, using either
the default value C = 1 or the optimal value from least square fits, has been found to
be considerably smaller than the commutation error (representative of using no model)
and this is demonstrated in Table 1 by the relative mean squared error (RMSE) defined as
the local mean squared commutation error divided by the local mean squared value of
the derivative of the signal multiplied with 100. We remark the simple extension of the
dynamic procedure that can be easily generalized and implemented in different directions.

0 0.2 0.4 0.6 0.8 1

x

-2

-1

0

1

2

u

Spline

Discrete

Figure 2. Spline through digital filter based pseudo turbulence and corresponding values interpolated
on the computational mesh.
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0 0.2 0.4 0.6 0.8 1

x

-30

-20

-10

0

10

20

te
rm
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 o

f 
f

(a)

0 0.2 0.4 0.6 0.8 1

x

-2

0

2

4

f

f

f,ss

(b)

Figure 3. (a) (Filtered) gradients of the data (filtered data) shown in Figure 2. (b) Commutation error
given by ∂u/∂x− ∂u/∂x together with scale similarity model for the commutation error, given by
Equation (25) using C = 1.

Table 1. Performance of model τf ,ss for different initial data and different filter sizes (note that
the correlation coefficient is independent of the secondary filter). Dynamically determined model
coefficient C and mean squared error between commutation error and different approximations, for
different initial data and different f , g filter size pairs (p f , pg).

Turb. Length Scale L11 5∆x 5∆x 10∆x 10∆x
Filter Width Pair (p f , pg) (1,2) (5,10) (1,2) (5,10)

Corr. Coeff. 0.90 0.63 0.90 0.71
Opt. C 1.39 1.56 1.37 1.38

Css dynamic 1.66 1.83 1.51 1.53
RMSE (τf − 0) 0.16 6.36 0.09 5.02

RMSE (τf − τf ,ss, C = 1) 0.06 4.80 0.02 3.35
RMSE (τf − τf ,ss, Copt) 0.05 4.51 0.01 3.09

4.2. Second Order Derivatives

The same procedure can be automatically extended to the second derivatives. The
commutation error is then given by:

τ2
f =

∂2u
∂x2 −

∂2u
∂x2 . (45)

The second numerical derivatives are calculated using the following formula:

∂2ui
∂x2 ≈

2(ui+1∆− + ui−1∆+ − ui(∆+ + ∆−))
∆−∆+(∆− + ∆+)

, ∆− = xi − xi−1, ∆+ = xi+1 − xi (46)

The scale similarity model for the second derivative reads:

τ2
f ,ss = C

(
∂2u
∂x2 −

∂2u
∂x2

)
. (47)

The associated filtered second derivatives and second derivatives of filtered data are
illustrated in Figure 4a. The scale similarity model given by Equation (47) is shown together
with the commutation error in Figure 4b using C = 1. It becomes immediately clear that
the scale similarity assumption works less satisfactory for the second derivative compared
to the first derivative. Selected results for the second derivatives are summarised in Table 2.
The modelling and dynamic procedure are in analogy to the case of the first derivative.
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Figure 4. (a) (Filtered) second derivatives of the data (filtered data) shown in Figure 2. (b) Commu-
tation error given by ∂2u/∂x2 − ∂2u/∂x2 together with scale similarity model for the commutation
error, given by Equation (47) using C = 1.

While the correlation strengths for the second derivatives are lower compared to the
first derivative and also the reduction of RMSE happens to a smaller extend, Table 2 still
shows that modelling the commutation error results in a smaller error compared to the
commutation error itself especially for small filter width pairs (p f , pg).

Table 2. Performance of model τ2
f ,ss for different initial data and different filter sizes (note that

the correlation coefficient is independent of the secondary filter). Dynamically determined model
coefficient C for different initial data and different f , g filter size pairs (p f , pg).

Turb. Length Scale L11 5∆x 5∆x 10∆x 10∆x
Filter Width Pair (p f , pg) (1,2) (5,10) (1,2) (5,10)

Corr. Coeff. 0.59 0.34 0.50 0.35
Opt. C 1.42 1.12 1.40 1.05

Css dynamic 1.75 1.45 1.81 1.02
RMSE (τ2

f − 0) 1.75 33.41 1.47 30.94
RMSE (τ2

f − τ2
f ,ss, C = 1) 1.65 31.30 0.99 28.01

RMSE (τ2
f − τ2

f ,ss, Copt) 1.18 30.82 0.95 28.00

5. Analysis of Turbulent Channel Flow at Reτ = 590

Next the relations from Section 2 will be applied to DNS data. For this a-priori analysis
a turbulent channel flow DNS at Reτ = 590 is considered. The equations are solved by using
a finite volume technique on a cartesian mesh. The variables are located on a staggered grid.
For spatial discretization second order central differences are used. Temporal discretization
is an explicit third order, Runge–Kutta-method. The Poisson equation is inverted by using
a direct fast solver.

For the channel flow DNS the Reynolds number, based on the wall friction velocity,
has been set to Reτ = 590 similar to the DNS data of Moser et al. [36]. The exten-
sion of the computational domain in axial Lx spanwise Ly and vertical Lz direction is
6δ× 3δ× 2δ where δ is the channel half width. The computational domain is resolved
with 512× 512× 512 grid points. The grid is stretched in wall normal direction with a
factor of s = 1.0125 such that ∂∆/∂x = const and ∂2∆/∂x2 = 0. A fixed theoretical
pressure gradient is prescribed in the simulations. This results in a mesh of dimensions
∆x+ = 6.91, ∆y+ = 3.46, ∆z+ = 7.6 in the channel center and ∆zmin

+ = 0.32 at the wall.
The filter width parameter has been chosen to p = 1 for the primary filter and p = 2 for
the test filter. To avoid ambiguous definitions of the filter when approaching the wall,
all filtering operations stay away from the wall such that with every filter operation the
signal becomes a little bit shorter. Nevertheless, for the analysis presented here this is en-
tirely irrelevant. Periodic boundary conditions are applied in axial and spanwise direction,
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no slip conditions at the wall. It is worth noting that the above mesh can be considered
typical for a channel flow DNS. Using the filter parameter p = 1, that is, combining three
neighbouring cells into a representative filter volume, can be considered typical for a wall
resolved LES mesh. The meshes in homogeneous x, y-directions of channel flow LES/DNS
are typically uniform and no commutation errors occur in this direction. Therefore only
selected z-components of the different terms of the Navier-Stokes equation have been
analysed. It is remarked that in contrast to the analysis in Section 4 where mean values
of the signal were zero, the mean axial velocity profile for a channel flow is characterised
by strong wall normal gradients in particular in the vicinity to the wall. In other words
the signal to be analysed contains the mean velocity contribution which makes it more
predictable. Furthermore it is remarked that the wall normal filter width for the DNS
and the a-priori LES analysis is very small, presumably much smaller than characteristic
turbulent length scales.

First attention is focused on the first order derivatives in the Navier-Stokes equation,
that is, the convective term and the pressure gradient. Figure 5a compares the commutation
error for the wall normal derivative of convective component uw with the wall normal
gradient of the SGS turbulent flux. Consistent with the analysis of Reference [37] it is
found that the commutation error for the convective term can have the same order of
magnitude than the SGS contribution. It can further be seen from Figure 5b,d that the scale
similarity model represents very well the commutation errors for the term ∂uw/∂z and the
pressure gradient, where the commutation error for the pressure gradient is much smaller
in magnitude. Finally, Figure 5c shows that the dynamically determined model parameter
Css is very close to unity which is consistent with subfigure (b). It is argued that this result
is due to the small wall normal filter width (typical for wall bounded LES/DNS) and the
velocity profile being dominated by the strong mean gradients.

Terms containing second derivatives, that is, for constant viscosity and density flow
the diffusion term and the pressure Laplacian appearing in the Poisson equation for the
pressure, will be considered next in Figure 6. Subfigure (a) again shows a very good perfor-
mance of the scale similarity model (here for the second derivative). Similar observations in
regards of the performance for the pressure Laplacian can be seen in Figure 6b. In all cases
shown in Figures 5 and 6 the optimal model parameter is very close to unity which has
been recovered by the dynamic procedure, but is not explicitly shown here for all terms.

Finally Figure 7 illustrates that Equations (35) and (42) represent reasonable approxi-
mations for the commutation error of the first and second wall normal derivative of axial
velocity in channel flows. The differential filter given in Equation (36) has been used for
filtering the data.
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Figure 5. (a) Commutation error at primary filter level f for the first derivative ∂uw/∂z compared
to the SGS component ∂(uw− u w)/∂z (b) Commutation error at primary filter level f for the first
derivative ∂uw/∂z together with the corresponding scale similarity model. (c) Dynamic model
parameter Css averaged in both homogeneous directions. (d) Commutation error at primary filter
level f for the pressure gradient ∂p/∂z together with the corresponding scale similarity model.
Without explicitly mentioning it, all results have been averaged in both homogeneous directions here
and in the following figures.
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Figure 6. (a) Commutation error at primary filter level f for the second derivative (viscous term)
ν∂2u/∂z2 together with the corresponding scale similarity model. (b) Commutation error at primary
filter level f for the second derivative ∂2 p/∂z2 appearing in the Poisson equation of the projection
method together with the corresponding scale similarity model.
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Figure 7. (a) Commutation error for ∂uw/∂z and (b) ν∂2u/∂z2 with the approximations given by
Equations (35) and (42).

6. Conclusions

A large eddy simulation consists of filtering the Navier-Stokes equations in order
to compute the large energy carrying motions of the flow while the smaller scales are
modelled. The scale separation is formally introduced by a filtering operation. While this
approach is very appealing, the filtering operation turns out to be more difficult compared
to Reynolds averaging, because of the non-commutativity non only with respect to products
but also with respect to derivatives in the case of anisotropic meshes.

A dynamic commutation error model has been produced by generalizing the dynamic
modelling procedure. The commutation errors at two different resolution levels are defined
and a multiscale identity relating them is derived. All that is in strict analogy with the well
known dynamic model. The first results are promising for the future and it is remarked
that the same formalism has been extended to second derivatives as well. The framework
has been first applied to a synthetic turbulent flow with zero mean values and precisely
controllable turbulence characteristics. The results reveal a good correlation strength of the
scale similarity model and the dynamic procedure was shown to provide model coefficients
close to the optimal model parameter (which cannot be calculated in a real LES in the
absence of DNS data).

In a second step an a-priori analysis of a turbulent channel flow has been conducted
indicating that the scale similarity models provide a very satisfactory performance with
optimal model parameters very close to unity, which again was reproduced by the dynamic
procedure. Selected terms of the Navier-Stokes equations have been analysed, showing
that the commutation error for the first and second derivative can have a similar order
of magnitude than the convective SGS contribution, which is (for the first derivative)
consistent with findings from Reference [37] for a different flow configuration and different
filtering technique.

In particular the results show, as remarked by Reference [12] that constraints derived
from generalizations of the multiscale identities between different resolution levels may
provide useful input in the specification of model parameters. Apart future more dedicated
applications, the main aim of this short note should be to show the easiness and flexibility
of the dynamic approach in very different modelling contexts.
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